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Endocrine factors regulate food intake and growth, two interlinked physiological

processes critical for the proper development of organisms. Somatic growth is mainly

regulated by growth hormone (GH) and insulin-like growth factors I and II (IGF-I and

IGF-II) that act on target tissues, including muscle, and bones. Peptidyl hormones

produced from the brain and peripheral tissues regulate feeding to meet metabolic

demands. The GH-IGF system and hormones regulating appetite are regulated by both

internal (indicating the metabolic status of the organism) and external (environmental)

signals. Among the external signals, the most notable are diet availability and diet

composition. Macronutrients and micronutrients act on several hormone-producing

tissues to regulate the synthesis and secretion of appetite-regulating hormones and

hormones of the GH-IGF system, eventually modulating growth and food intake. A

comprehensive understanding of how nutrients regulate hormones is essential to design

diet formulations that better modulate endogenous factors for the benefit of aquaculture

to increase yield. This review will discuss the current knowledge on nutritional regulation

of hormones modulating growth and food intake in fish.
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INTRODUCTION

Physiological processes in fish, as well as in other vertebrates, are subject to complex regulatory
mechanisms that act in response to both internal and external signals (1–4). Signals provided by the
environment, along with internal cues are sensed and centrally integrated, providing information
about the metabolic status. This enables fish to determine whether conditions are ripe to feed,
grow, reproduce and save energy (4, 5). Among the external signals that can influence feeding
behavior and growth in fish, one of the most important is food (6, 7). Both food availability and
food composition exert a critical control of these processes, primarily by acting on the hormones
in charge of their endocrine control. The main aim of this review is to summarize the recent
advances on the role of feeding and fasting, as well as of dietary macro- and micronutrients, on
the regulation of appetite- and growth-regulating hormones in fish. A better understanding of the
effects of feeding status and diet composition on the expression and release of those hormones
could be beneficial to determine the effects of a specific diet or feeding regime on fish health, growth,
and development, which could be crucial in aquaculture. This review will also aim to identify gaps
in knowledge and directions for future research regarding this important topic.
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NUTRIENTS AND THEIR IMPORTANCE IN
FISH

Nutrients are organic compounds involved in biochemical
reactions that produce energy and are constituents of cellular
biomass (8). They are divided into two broad groups:
macronutrients and micronutrients. Macronutrients are
classified into carbohydrates (CHO), proteins and lipids, and are
needed in relatively large amounts since they are the primary
source to generate the energy organisms require to survive,
grow, and reproduce. These nutrients can be stored within the
body for later use, or be utilized, leading to the somatic growth
of the animal (9). The micronutrients comprise of vitamins
and minerals and are needed in smaller quantity, although they
have several critical roles in cellular processes. The nutritional
requirements regarding the composition and proportion of
different nutrients present in the diet vary among species and
within species, is determined by various extrinsic and intrinsic
factors such as environmental conditions, stage of life cycle, sex,
and reproductive state (10). The importance and main roles of
each nutrient in fish metabolism are summarized in Table 1.

Organisms coordinate their growth and development with
nutrient level fluctuations in their environment, and therefore
they must be able to sense their internal and external nutrient
levels (24). In mammals, sensing mechanisms regulate specific
processes such as food intake, hormone secretion, and energy
expenditure to maintain energy homeostasis (25–27). The
sensing of nutrients may occur directly or indirectly. In the first
case, the nutrient molecule binds to its sensor. In the second case,
nutrient abundance is detected through a related molecule (8).
These detection processes occur in both central and peripheral
tissues in fish. At the central level, the brain integrates metabolic
information related to nutrient availability, satiety/hunger signals
and hormones related to adiposity. As a result of such signal
integration, a response is generated in peripheral tissues aiming
to modulate the metabolism (28, 29). At the periphery, metabolic
regulation by the sensing systems occurs directly or indirectly
through the action of endocrine effectors (28).

HORMONES REGULATING FOOD INTAKE

The regulation of food intake involves the integration of
exogenous and endogenous factors to supply the energy
necessary to support biological processes. Such regulation is
achieved by the endocrine system, which secretes hormones and
regulates the activity of the cells by transferring information
between the organs. The major organs that secrete hormones
involved in regulating appetite are the brain (hypothalamus) and
gastrointestinal tissues. The following section will provide a brief
description of the main hormones with a critical role in feeding
regulation.

Brain Hormones/Neuropeptides
Neuropeptide Y (NPY)
Neuropeptide Y, a 36 kDa amino acid protein, belongs to the NPY
family of peptides, which also includes the pancreatic polypeptide
(PNP) and peptide tyrosine (PYY). All these peptides share a
common three-dimensional structure composed of polyproline

coil and an amphipathic helix. The structure of the neuropeptide
Y family is tightened by hydrophobic interactions between
prolines and the helix (30). NPY is mainly secreted by the
neurosecretory cells in the hypothalamus and is abundantly
expressed in the brain, pituitary, spleen, gastrointestinal tract,
kidney, testis and smooth muscles (31, 32). In teleosts, NPY has
been shown to play an essential role in stimulating feeding [see
Volkoff (33) for review].

Agouti Related Protein (AgRP)
AgRP is a 128 amino acid neuropeptide released by the
NPY/AgRP neurons, and is an endogenous antagonist of
melanocortin receptors 3 and 4 (MC3R and MC4R) (34). It is
mainly expressed in the brain, but it is also found in several
peripheral tissues, including ovary, muscle and ventral skin (34).
AgRP receptor is highly localized at the site of the paraventricular
nucleus, the dorsal motor nucleus of the vagus nerve and also
in the raphe nucleus, all areas that are highly involved in
energy homeostasis. AgRP acts as an orexigenic factor in fish, by
antagonizing the activity of MC4R (33).

Proopiomelanocortin (POMC)
POMC is a 267 amino acid peptide secreted by the hypothalamic
neurons located in the arcuate nucleus, as well as the
corticotropic cells of the anterior pituitary, the melanotropic
cells of the pars intermedia and skin melanocytes (35). In
vertebrates, precursors of POMC has three domains, namely
N-terminal pro-γ -melanocyte stimulating hormone (MSH),
adrenocorticotropic hormone (ACTH) and C-terminal β-
lipotropin, which are cleaved by the action of prohormone
convertases. The most important of these derivatives are α-
MSH, which plays a vital role in suppressing feeding by acting
as an agonist at the anorectic MC4R (33), and ACTH, which
regulates the secretion of glucocorticoids from the adrenal
glands (36, 37).

Cocaine- and Amphetamine-Regulated Transcript

(CART)
CART was isolated from rat striatum upon injection of cocaine
and amphetamine, two psychomotor stimulants (38). In goldfish,
two forms of CART precursor exist, namely, CARTI that encodes
a 117 amino acid pro-CART, and CART-II which encodes a
120 amino acid pro-CART (39). Both CART precursors have
been reported to be abundantly expressed in brain, pituitary and
also in other peripheral tissues such as eye, interrenal tissues,
and gonads in goldfish (39). CART exerts multiple physiological
functions in fish, including the inhibition of appetite (39),
regulation of the stress response (40) and energy balance (41).

Orexins
Orexins/hypocretins consist of two orexins, orexin-A, and
orexin-B, both cleaved from the same precursor, prepro-orexin
(42, 43). In fish, both the prepro-orexin RNA and the peptides A
and B have been shown to be abundant in the hypothalamus (44),
as well as in the gastrointestinal tract (33). Two heptahelical G-
protein coupled receptors are known tomediate orexin functions.
Orexins have been reported to have a significant role in increasing
feeding behavior and locomotor activity (33), and they were also
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TABLE 1 | The role of principal macronutrients in fish metabolism.

Nutrient Major role in fish Importance for fish metabolism References

Carbohydrates (CHO) Stored as glycogen that can be mobilized to satisfy

energy demands when necessary. In fish, CHO seems to

play only a minor role compared to lipids and proteins.

Fish are in general unable to rapidly lower circulating

glucose levels following a glucose load or a high CHO

meal, thus leading to the interpretation that fish are

glucose-intolerant.

Great importance to the metabolism of all fish species, since they

act as an oxidative substrate to some cells and tissues.

Control of glucose levels exists in tissues relying on glucose such

as the brain. Numerous studies carried out in recent years have

also demonstrated the existence of glucose sensing mechanisms

in such tissues.

(7, 11–14)

Lipids Storage and provision of metabolic energy in the form of

ATP provided through the β-oxidation of fatty acids. They

also play an important role as precursors for the

synthesis of many hormones and in the formation of cell

membranes.

Together with their constituent fatty acids, they are the main

nutrients playing important functions as sources of metabolic

energy for growth and reproduction. In fish diet, they are

particularly important the n-3 and n-6 unsaturated fatty acids

(“omega 3” and “omega 6”), which are not synthesized by animals,

and therefore must be supplied in the diet.

(15–21)

Proteins Amino acids are an essential component of the diet of all

animals. Fish require a balanced combination of the 20

amino acids, of which 10 are not synthesized by fish and

adequate amounts must be provided through their diet.

These essential amino acids are methionine, arginine,

threonine, tryptophan, histidine, isoleucine, lysine,

leucine, valine and phenylalanine.

Proteins and amino acid requirements differ between fish species

since they develop different roles. Some proteins are enzymes,

catalyzing a wide range of chemical reactions; other proteins have

essential functions in muscle contraction, the transport of specific

molecules or as structural elements. In carnivorous fish, proteins

also have an important role as a source of energy.

(9, 21, 22)

Vitamins Are necessary for normal fish growth and health. They

are usually not synthesized by fish and must be supplied

in the diet. Vitamin deficiency results in scoliosis, dark

coloration and/or, most commonly, reduction in growth

rate.

Are highly important in the proper functioning of the metabolism

since some of them are enzymatic co-factors.

(20)

Minerals Fish can absorb many minerals directly from the water

through their gills and skin, allowing them to compensate

in some degree, mineral deficiencies in their diet.

Some are incorporated into the bones, while others have

a major function in acid-base balance, electron transfer

or the maintenance of cell homeostasis.

They can be divided into two groups based on the quantity

required in the diet. Macro-minerals such as sodium, chloride,

potassium or phosphorous, regulate osmotic balance and are

integrated into the skeletal structure. Micro-minerals are required in

small amounts as components in enzyme and hormone systems.

(20, 21, 23)

implicated in the regulation of sleep, energy homeostasis and
circadian cycle (45).

Melanin-Concentrating Hormone (MCH)
Melanin-concentrating hormone (MCH), a 17 amino acid cyclic
peptide, was initially isolated from the brain of chum salmon
(46). Two genes, MCH1 and MCH2, have been identified in
zebrafish and pufferfish (47). The MCH receptor was identified
as the GPCR SLC-1, later termed as MCH-R1. MCH-R1 couples
to different G-proteins and plays an essential role in activating
different signaling pathways. The MCH-R1 is preferentially
expressed in the brain, particularly in the hypothalamus, areas
of the cortex, arcuate and ventromedial nuclei, and olfactory
lobes. MCH mainly acts on the melanophores regulating the
color change and also lightens the skin in fish. Besides this, MCH
seems to have a role in the regulation of feeding, although such a
function is still unclear in fish [see Volkoff (33) for review].

Nesfatin-1
Nesfatin-1 is an 82 amino acid peptide originally isolated from
the rat hypothalamus and is encoded in the nucleobindin-2
(NUCB2) gene (48). It is proposed that NUCB2 is cleaved
by the prohormone convertases into three different peptides,
namely nesfatin-1 (82 amino acids), nesfatin-2 (85–163 amino

acids) and nesfatin-3 (166–396 amino acids), respectively.
Of all these peptides, nesfatin-1 has been shown to have
biological activity. The 30-amino acid mid-segment of nesfatin-
1 is considered as the bioactive core and has been shown
to affect appetite, the hypothalamus-pituitary-ovarian axis, and
to modulate intracellular Ca2+ signaling in mammals (49).
Among non-mammals, nesfatin-1 has been studied in various
fish species, including goldfish (50), Ya-fish (51), and rainbow
trout (52). In goldfish, nesfatin-1-like immunoreactivity has been
found in the hypothalamus, particularly in the nucleus lateralis
tuberis (NLT) (50). Exogenous administration of nesfatin-1 has
been shown to cause anorectic actions in goldfish (50).

Hormones Primarily Arising From
Peripheral Tissues
Ghrelin
Ghrelin has been identified in numerous fish species. It consists
of 28 amino acids in mammals and has 12 to 25 amino acids in
fish depending on the species. The gene encoding the protein
was identified within the chromosome 3 and consists of four
exons. Ghrelin exerts its physiological functions by binding to
the growth hormone secretagogue receptor-1a (GHS-R1a/ghrelin
receptor) (53). This peptide is mainly released in the stomach
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(or its equivalent in stomachless species), although other tissues
have been shown to synthesize the hormone, particularly the
hypothalamus (54). The central role described for ghrelin is
its potent orexigenic role (33), but there are other well-known
physiological roles for this hormone, including the regulation of
GH release from the pituitary, a role in energy balance regulation,
and cardiovascular effects, among others (55–57).

Cholecystokinin (CCK)
CCK is a peptide characterized by a C-terminal tetrapeptide
sequence. The structure of pro-CCK consists of three sulfated
tyrosine residues, which play a crucial role in the activation of
CCK receptors (58). CCK binds to two receptor subtypes, CCK-
A receptor (CCK1) and CCK-B receptor (CCK2), which are
primarily localized at the site of the gastrointestinal tract and the
brain (59). In fish, CCK and its cleavage sites suggest that the
precursor protein (pro-CCK) is processed into octapeptides and
are fully sulfated. CCK plays an essential role in the regulation of
feeding, influences digestion and activates satiety signals (60). In
goldfish, acute administration of CCK resulted in the suppression
of food intake (61), likely by acting on NPY and orexin-A (62).

Peptide YY
Peptide YY, a member of the Y family of peptides, is a 36 amino
acid gut-brain hormone that is known to have anorectic actions
in goldfish (63). PYY is released from the endocrine cells of
ileum and colon (64), and binds to the NPY receptor 1 which
is abundantly expressed in the brain and gut of fish. Similar to
NPY, PYY plays an essential role in signaling between the enteric
nervous system and central nervous system in fish (31, 65).

Glucagon-Like-Peptide-1 (GLP-1)
GLP-1, another anorexigenic intestinal peptide, belongs to the
family of glucagon-like peptides encoded in the preproglucagon
gene. In fish, the pancreas synthesizes glucagon and GLP-1,
while the intestine secretes oxyntomodulin (66), and all of these
peptides are processed from the proglucagon in the nervous
system and intestine. GLP mRNAs have been identified in
several teleosts, and its receptor (GLP-1R) has been successfully
cloned in zebrafish and goldfish (67). Apart from reducing
food intake, GLP-1 has been involved in gastric emptying and
plays an important role in regulating liver glycogenolysis and
gluconeogenesis (66).

Leptin
Leptin is a 16 kDa protein encoded in chromosome 7. While
mammalian leptin is mainly produced by the adipose tissue,
the liver appears to be the main leptin production site in fish
(68). The structure of leptin resembles that of growth hormone,
belonging to the family of tetrahelical cytokines. In fish, this
hormone has been shown to affect adipogenesis (57), and to
increase lipolysis while reducing lipogenesis in liver (69). Besides
this, leptin decreases food intake in several fish species (33),
likely by stimulating the anorexigenic neuropeptides POMC and
CART (70).

HORMONAL REGULATORS OF GROWTH

Regulation of growth in fish, as well as in most of the
vertebrates, is coordinated by the GH-IGF system (71). A
summary of each component of the GH-IGF system as well
as their principal function related to growth is presented in
this section.

Growth Hormone
Growth hormone (GH) is an endocrine regulator of many
physiological processes in vertebrates. In fish, GH is involved
in almost all physiological processes including osmotic balance,
lipid, protein and CHO metabolism, reproduction and growth.
Moreover, studies have indicated that GH also affects behavioral
aspects, such as appetite (72) and foraging (73) in rainbow
trout and transgenic Atlantic salmon, respectively. In fish,
GH is released from the adenohypophysis in response
to hypothalamic signals, and exerts its effects on target
tissues (74).

Growth Hormone Receptors
In fish cells, GH binds to its receptors GHR-I and GHR-
II (growth hormone receptor I and II, respectively) to exert
its biological actions (75). GH receptors (GHRs) are widely
distributed in tissues, but the primary expression is in the
liver (or hepatopancreas). In that tissue, the important response
to GH binding its receptors is the release of the insulin-like
growth factor I (IGF-I). In other tissues, GHRs also mediate
the growth-promoting effects of GH, although the liver is still
the place in which GHRs have a significant role in the somatic
growth regulation.

Insulin-Like Growth Factors
As GHRs, IGF-I and IGF-II are expressed in several tissues,
but the main expression is in fish liver. Both factors play a key
role in the promotion of cellular proliferation and differentiation
in vertebrates (76–78). These and other biological functions
of IGFs are mediated by binding to specific transmembrane
receptors, present in fish as well as in mammals (79). Apart from
growth, IGF-I has also been associated with fish metabolism,
development, reproduction and osmoregulation in seawater (74).
The IGF-II mRNA has been detected in the liver as well as in
the brain, heart, kidney, gills, gastrointestinal tract, pancreatic
islets, skeletal muscle and gonads of fish (74). The widespread
gene expression of IGF-II detected by RT-qPCR in both juvenile
and adult fish contrasts the findings in mammals, in which its
expression seems to be relevant only during the early stages of
development (80). A role in metabolism regulation by IGF-II
was demonstrated in muscle cells from trout (81), indicating
that this factor could act as a metabolic hormone in fish. There
is evidence that GH regulates igf-II gene in all tissues in fish
(82–84), while GH most likely regulates only the expression
of the igf-I gene in vertebrates. This situation makes fish
an excellent model to study species-specific differences in the
growth system.
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NUTRITIONAL REGULATION OF
HORMONES MODULATING FOOD INTAKE
IN FISH

Feeding
The nutritional status is an important modulator of appetite-
regulating hormones in fish. In this respect, several central and
peripheral appetite regulators are affected by a single meal,
showing periprandial fluctuations in their expression and/or
secretion levels. Brain hormones showing such changes in fish
include NPY (85, 86), orexin (87–90), CART (87, 88, 91, 92),
and nesfatin-1 (93). In general terms, appetite-stimulating or
orexigenic factors, including NPY (85, 86), and orexin (89, 90),
have been shown to display periprandial changes characterized
by higher expression levels before or at mealtime, and lower levels
post feeding, suggesting that they are hunger signals. By contrast,
appetite inhibiting or anorexigenic signals, such as CART (91,
92), were found to be mainly upregulated after a meal, thus acting
as a postprandial satiety signal.

As for peripheral appetite-regulating hormones, the most
studied in terms of periprandial fluctuations have been ghrelin,
CCK, PYY, and leptin. Circulating levels of ghrelin (in its
acylated form) were found to rise pre-prandially in goldfish
(94), supporting the role of acyl-ghrelin as a meal initiator
in this teleost. Consistently, Unniappan et al. (95) described
a significant decrease in total ghrelin in circulation after a
meal in goldfish, although this postprandial decrease in plasma
ghrelin levels seems to be species-specific as it was detected
neither in rainbow trout (96) nor in Mozambique tilapia (97).
Ghrelin has also been shown to display periprandial fluctuations
in terms of gene expression, although different profiles have
been described depending on the species [Atlantic cod, (90);
gibel carp, (98); goldfish, (94, 95); Mozambique tilapia, (97, 99);
Schizothorax prenanti, (100); zebrafish, (101)]. The periprandial
changes of CCK have been only studied in terms of its mRNA
expression. Although species-specific changes were observed
(88, 89), periprandial variations of cck expression are mainly
characterized by an increase in mRNA levels after a meal in the
intestine and/or the hypothalamus [dourado, (87); Schizottorax
prenanti, (102)]. A similar periprandial profile was described
for pyy in the hypothalamus of the Mexican blind cavefish (89)
and Schizottorax prenanti (103), in the brain of goldfish (63),
and in the brain and gut of Siberian sturgeon (104). Finally,
leptin seems only to vary postprandially, although such variations
are species- and tissue-specific. Thus, postprandial increases in
leptinmRNA expression has been observed in the brain and liver
of the mandarin fish (105), in the liver of goldfish (106) and
in the visceral adipose tissue of the Atlantic salmon (107), but
not in the brain of goldfish (106), the brain and intestine of pacu
(88), or the liver of Schizothorax prenanti (102).

Food Deprivation
Food deprivation has been shown to regulate the secretion and
expression of appetite-regulating hormones. Table 2 includes a
summary of the available studies within the literature and shows
the main effect of fasting periods of different duration on the
circulating levels and the mRNA expression of the main appetite

regulators in several fish species. In general terms, as expected,
fasting has been found to upregulate the levels of orexigens
and decrease the levels of anorexigens, but several exceptions
have been observed depending on the duration of the fasting
period, the tissue analyzed and the species (see Table 2 for results
and references). In general an upregulation of orexigens and
the GH-IGF system should result in an increase in growth.
However, without a complete profile of the redundant endocrine
milieu, such conclusions are not valid. In addition, a major
limitation of many of the studies is that only mRNA expression
was determined. Without understanding more about the peptide
synthesis in its major tissue sources, and its levels in circulation,
it is difficult to reach conclusions on the effects of nutrient status
on these hormones.

Diet Composition
Another nutritional aspect influencing the appetite-regulating
hormones is the composition of diets. This is of great importance
as there is significant interest in fisheries and aquaculture in
modulating fish growth and reproduction by altering diet and/or
endocrine milieu. Therefore, it is important to understand
the dietary regulation of hormones, as they have remarkable
effects on both reproduction and growth. Although the literature
available on this is not very large, several studies have described
that altering the macronutrient (i.e., carbohydrates, proteins, and
fat) composition of the diet has significant effects on the secretion
and/or expression of appetite-regulating hormones in fish.

Carbohydrates (CHO)
Few studies have been performed in fish describing the
effects of CHO on appetite regulators. In 2002, Narnaware
and Peter described that feeding goldfish CHO-enriched
diets significantly reduces NPY mRNA levels in brain areas
(175). Additionally, this macronutrient has been shown to
upregulate preproghrelinmRNA expression in the pituitary (176).
An in vitro assay performed to test the effects of glucose
on the expression of appetite-regulating hormones revealed
that exposure of goldfish intestinal fragments to different
concentrations of this monosaccharide leads to a downregulation
of nucb2/nesfatin-1mRNAs and an upregulation of preproghrelin
mRNA expression (177).

Proteins
High-protein diets also modulate important appetite-regulating
hormonal systems. A study performed in sea bream revealed
that fish fed on high protein diets has higher mRNA expression
levels of preproghrelin and cck than those fish fed on diets
containing a lower amount of protein (178). In goldfish, feeding
diets enriched in this type ofmacronutrient results in a significant
increase in nucb2/nesfatin-1 expression in the pituitary, and a
significant decrease in nucb2/nesfatin-1mRNAs in the gut and in
preproghrelin mRNAs in the liver (176). Accordingly, expression
of both nucb2/nesfatin-1 and preproghrelin was reduced by direct
exposure of goldfish intestinal and hepatopancreas fragments to
L-tryptophan (177). Very recently, Volkoff et al. demonstrated
that the replacement of dietary fish protein with soy protein does
not produce major changes in the expression of cart, orexin, cck,
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TABLE 2 | Effects of fasting periods of different duration on the circulating levels and the mRNA expression of the main appetite-regulating hormones in several fish

species.

Short-term fasting

(1–6 days)

Mid-term fasting

(7–29 days)

Long-term fasting

(≥30 days)

Circulating

levels

Brain expres. Periph.

expres.

Circulating

levels

Brain expres. Periph.

expres.

Circulating

levels

Brain

expres.

Periph.

expres.

NPY Atlantic salmon = (108)

Blunt snout bream ↑

(109)

Goldfish ↑ (110)

Blunt snout

bream= (109)

Blunt snout bream ↑

(109)

Brazilian flounder ↑ (85)

Coho salmon ↑ (111)

Cunner ↓ (112)

Nile tilapia ↑ (113)

Platyfish = (114)

Schizothorax prenanti

↑ (115)

Tiger puffer ↑ (116)

Winter flounder ↑ (117)

Winter skate ↑ (118)

Yellowtail ↑ (119)

Zebrafish↑ (120)

Blunt snout

bream= (109)

Rainbow

trout = (121)

AgRP Atlantic salmon ↓ (108)

Goldfish ↑ (34)

Schizothorax prenanti

↓ (122)

Sea bass ↓ (123)

Common carp ↓ (124)

Goldfish ↑ (34)

Schizothorax

prenanti = (122)

Sea bass ↑ (123)

Zebrafish ↑ (125)

Rainbow

trout = (121)

POMC Flatfish ↑ (126) Goldfish = (127)

Rainbow trout = ↑

(128)

Zebrafish = (125)

Zebrafish ↓ (129)

Rainbow trout

↑ (121)

CART Atlantic salmon ↓ (108)

Catfish ↓ (130)

Dourado = (87)

Goldfish ↓ (39)

Siberian sturgeon ↑

(92)

Zebrafish ↓ (131)

Atlantic cod ↓ (132)

Channel catfish ↓ (133)

Common carp ↓ (124)

Cunner ↓ (112)

Goldfish ↓ (134)

Pacu ↓ (88)

Platyfish ↓ (114)

Red-bellied piranha ↓

(135)

Schizothorax prenanti

↓ (91)

Siberian sturgeon↑ (92)

Winter flounder ↓ (117)

Winter skate = (118)

Rainbow

trout = (121)

Orexin Dourado ↑ (87)

Zebrafish = (136)

Blind cave fish ↑ (89)

Cunner ↓ (112)

Goldfish ↑ (134)

Pacu ↑ (88)

Platyfish ↑ (114)

Red-bellied piranha ↑

(135)

Zebrafish ↑ (136, 137)

MCH Starry flounder ↑ (138) Atlantic code ↑ (139)

Barfin flounder ↑ (140)

Hammerhead

shark = (141)

Schizothorax prenanti

↑ (142)

Winter flounder ↑ (143)

Zebrafish ↑ (144)

(Continued)
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TABLE 2 | Continued

Short-term fasting

(1–6 days)

Mid-term fasting

(7–29 days)

Long-term fasting

(≥30 days)

Circulating

levels

Brain expres. Periph.

expres.

Circulating

levels

Brain expres. Periph.

expres.

Circulating

levels

Brain

expres.

Periph.

expres.

Nesf-1 Zebrafish = (93) Goldfish ↑

(50)

Ya-fish ↑ (51)

Zebrafish= (93)

Goldfish ↓ (50)

Ya-fish ↓ (51)

Zebrafish ↓ (93)

Goldfish ↑

(50)

Ya-fish ↑ (51)

Zebrafish ↓

(93)

Ghrelin Atlantic

salmon ↑

(145)

Tilapia = (97)

Blunt snout bream ↑

(109)

Grass carp ↑ (146)

Schizothorax

prenanti = (100)

Zebrafish = (147)

Zebrafish ↑ (148)

Atlantic

salmon ↑

(149)

Atlantic

salmon ↓

(145)

Blunt snout

bream ↑ (109)

Chinese

perch ↓ (150)

Gibel

carp = (98)

Grass carp ↑

(146)

Schizothorax

davidi ↑ (151)

Schizothorax

prenanti= (100)

Sea

bass = (152)

Tilapia = (97)

Zebrafish ↓

(153)

Zebrafish ↑

(148)

Atlantic

salmon= (145)

Goldfish =

(93)

Hybrid striped

bass ↑ (154)

Rainbow

trout = (96)

Tilapia= (155)

Tilapia ↑ (97)

Blunt snout bream ↑

(109)

Goldfish

= ↑ (93, 156)

Grass carp ↑ (146)

Red-bellied

piranha = (157)

Zebrafish = (147)

Zebrafish ↑ (148)

Atlantic

salmon= (145)

Blunt snout

bream ↑ (109)

Gibel carp ↑

(98)

Goldfish ↑

(93, 156)

Grass carp ↑

(146)

Red-bellied

piranha ↑

(157)

Schizothorax

davidi ↑ (151)

Sea bass ↑

(152)

Tilapia = (97)

Zebrafish ↑

(148)

CCK Blunt snout bream ↓

(109)

Dourado = (87)

Grass carp ↓ (158)

Schizothorax prenanti

↓ (102)

Atlantic

salmon= (149)

Blunt snout

bream ↓ (109)

Dourado= (87)

Grass carp ↓

(158)

Schizothorax

prenanti ↓

(102)

White sea

bream ↑

(CCK-1), ↓

(CCK- 2)

(159)

Yellowtail ↓

(160)

Zebrafish ↓

(153)

Blind cave fish = (89)

Blunt snout bream ↓

(109)

Grass carp ↓ (158)

Pacu = (88)

Red-bellied

piranha = (135)

Schizothorax prenanti

↓ (102)

Winter skate = (118)

Platyfish ↓ (114)

Cunner ↓ (112)

Blunt snout

bream ↓ (109)

Grass carp ↓

(158)

Pacu ↓ (88)

Platyfish ↓

(114)

Red-bellied

piranha= (135)

Schizothorax

prenanti ↓

(102)

Winter

flounder ↓

(117)

Winter skate

↑ (118)

Cunner ↓

(112)

PYY Goldfish ↓ (63)

Siberian sturgeon ↓

(104)

Schizothorax prenanti

↓ (103)

Siberian

sturgeon ↓

(104)

Atlantic

salmon= (149)

Yellowtail ↑

(160)

Blind cave fish = (89)

Goldfish ↓ (63)

Nile tilapia ↓ (113)

Red-bellied

piranha = (135)

Siberian sturgeon ↓

(104)

Schizothorax prenanti

↓ (103)

Nile tilapia ↓

(113)

Red-bellied

piranha ↓

(135)

Siberian

sturgeon ↓

(104)

(Continued)
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TABLE 2 | Continued

Short-term fasting

(1–6 days)

Mid-term fasting

(7–29 days)

Long-term fasting

(≥30 days)

Circulating

levels

Brain expres. Periph.

expres.

Circulating

levels

Brain expres. Periph.

expres.

Circulating

levels

Brain

expres.

Periph.

expres.

Leptin Mandarin fish ↑ (105) Common

carp = (161)

Mandarin fish

↑ (105)

Schizothorax

prenanti ↓

(102)

Fine flounder

↑ (162, 163)

Rainbow trout

↑ (164)

Tilapia ↑ (1)

Goldfish = (106)

Orange-spotted

grouper = (165)

Pacu = (88)

Red-bellied

piranha = (157)

Tilapia = (166)

Common

carp = (161)

European sea

bass ↑ (167)

Goldfish= (106)

Green sunfish

↓ (168)

Orange-

spotted

grouper ↑

(165)

Pacu = (88)

Rainbow trout

↑ (169)

Red-bellied

piranha ↓

(157)

Schizothorax

prenanti ↓

(102)

Striped bass

↓ (170)

Tilapia ↑ (1)

White-clouds

Mountain

minnow ↑

(171)

Zebrafish ↓

(172)

Fine

flounder= (163)

Rainbow

trout = (121)

Arctic charr ↑

(173)

Atlantic

salmon= (107)

Eel = (174)

Rainbow trout

↑ (121)

= levels not altered; ↑ levels upregulated; ↓ levels downregulated.

and leptin in the pacu (88). Similarly, varying the diet lysine to
arginine ratio has been described to not significantly modify the
expression of npy and cck in juvenile cobia (86). Leucine reduced
leptin secretion from the adipocytes of food-restricted rainbow
trout (57).

Lipids
Intake of fat-enriched diets has been described to reduce the gene
expression of npy in the goldfish telencephalon-preoptic area
(175), and to increase the mRNA levels of nucb2/nesfatin-1 in the
hypothalamus and liver, and of preproghrelin in the pituitary of
goldfish (176). Treatment of goldfish intestine with different fatty
acids in vitro revealed that fatty acids, in general, downregulate
NUCB2/nesfatin-1 in the intestine, but only the longer and highly
unsaturated fatty acids inhibit preproghrelin (177). Jönsson and
coworkers showed that rainbow trout fed a normal-protein/high-
lipid diet tends to have higher plasma ghrelin levels than those
fed a high-protein/low-lipid diet (96). Apart from the above-
mentioned studies, which were all carried out in adult fish, few
studies have been performed at larvae or post-larvae state to
study the effects of the replacement of the dietary fat source on
the expression of metabolic hormones. Bertucci and coworkers
demonstrated that the replacement of dietary fish oil with

sunflower oil leads to a decrease in nucb2/nesfatin-1 mRNA
expression in pejerrey larvae (179). Additionally, it was described
that Senegalese sole post-larvae fed with diets containing soybean
oil have higher cart1 and cckmRNA levels in the brain, but lower
peripheral cck levels than larvae fed cod liver oil (180).

NUTRITIONAL REGULATION OF THE
GH-IGF SYSTEM AND ITS INFLUENCE ON
FISH GROWTH

Nutritional Status
Themain environmental factor that regulates the GH-IGF system
is the nutritional status (181). Table 3 summarizes the effects of
fasting on the expression of components of the GH-IGF system
in different fish species.During fasting, growth ceases, and energy
is mobilized from tissues to support metabolism. This is mainly
mediated by changes in the GH-IGF system: plasma levels of
GH generally increase while plasma levels of IGFs decrease
(182). These changes are explained by a phenomenon known
as liver GH resistance, which is characterized by the fact that
hepatocytes become resistant to GH, resulting in decreased IGF
production despite elevated GH (197). These changes in GH-
IGF system during fasting could be adaptive jn response to the
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TABLE 3 | Effects of fasting periods of different duration on the circulating levels and the mRNA expression of the GH-IGF system endocrine components in several fish

species.

Short-term fasting

(1–6 days)

Mid-term fasting

(7–29 days)

Long-term fasting

(≥30 days)

Circulating

levels

Brain/Pit expres. Periph.

expres.

Circulating

levels

Brain/Pit expres. Periph.

expres.

Circulating

levels

Brain

expres.

Periph.

expres.

GH Chinook

salmon= (182)

Tilapia ↑ (97)

Channel

catfish = ↑

(183)

Chinook

salmon ↑

(182)

Coho salmon

↑ (76, 184)

Fine flounder

↑ (162)

Rainbow trout

↑ (185–187)

Tilapia

↑ = (97, 188,

189)

Channel catfish = ↑

(183)

Cichlasoma

dimerus = (190)

Crucian carp ↓ (191)

Grouper ↑ (192)

Tilapia ↑ (188)

IGF-I Chinook

salmon = ↓

(182)

Tilapia ↓ (97)

Chinook

salmon = ↓

(182)

Channel

catfish ↓ (183)

Chinook

salmon ↓

(182)

Coho salmon

↓ (184)

Rainbow trout

↓ (185)

Tilapia ↓

(97, 188, 189,

193)

Atlantic

salmon= (145)

Channel

catfish ↓ (183)

Chinook

salmon ↓

(182)

Coho salmon

Cichlasoma

dimerus = ↓

(190)

↓ = (76)

Crucian carp

↓ (191)

Grouper ↓

(192)

Tilapia ↓ (188,

189, 193)

Yellowtail= (194)

Brown trout ↓

(195)

Masu salmon

↓ (196)

Masu

salmon= (196)

IGF-II Atlantic

salmon = ↓

(145)

Tilapia= (193)

= levels not altered; ↑ levels upregulated; ↓ levels downregulated

high GH plasmatic levels together with low levels of IGF-I (and
also insulin) induces lipolysis making fatty acids available to
peripheral tissues (197). Using this mechanism, fish are capable
to usually maintain its internal functions during fasting, avoiding
somatic growth.

Studies on the effects of feed quantity are available regarding
the GH-IGF system. In general, increased feed ration results
in inverse changes in GH-IGF system hormones, compared to
fasting (182, 198–200). This state in which plasmatic GH levels
are low and IGFs are high is correlated with an increase in the
somatic growth rate of fish (200). However, if feed ration size is
considerable, plasmatic GH levels are high, and GHRs and IGFs
levels remain low. This probably diminishes feed utilization for
growth (199).

Diet Composition
CHO
Diet composition is another important factor regulating the
GH-IGF system and somatic growth (197). Several works have
been carried out in the past years aiming to determine the
effect of dietary carbohydrates, especially glucose, on GH in fish.
Rodgers et al. (201) demonstrated that when tilapia pituitaries
were incubated in the presence of varying glucose concentrations,
the quantity of GH released is inversely related to glucose
concentration in the culture media. However, Riley et al. (202)
found no changes in pituitary GH mRNA or plasma GH
in response to intraperitoneal (IP) glucose injection. In the
liver, IP glucose treatment significantly elevates the levels of
GHSR mRNAs. Although the IGF-I mRNA expression was not
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altered by the IP glucose injection, the IGF-I plasma levels
were significantly reduced in tilapia (202). In an in vitro assay
carried out by our group (203), it was found that incubation
of goldfish hepatopancreas with different glucose concentrations
significantly increases the expression of ghr-I, ghr-II, igf-I, and
igf-II mRNAs at 4 h. The increase in GHR and GH mRNAs
caused by glucose could be related its insulinotropic effect, as
such outcomes were demonstrated in mammals (204). IGFs were
postulated as regulators of glucose uptake in fish (205), and
in mammals (206), likely through the modulation of GLUT-
1 glucose transporter (207). GH has been shown to have
a hyperglycemic effect in several species of fish, and it is
glycogenolytic, glycolytic and gluconeogenetic in some tissues,
including the liver, brain, and gill (208). Therefore, IGFs seem
to play a role in maintaining the balance between GH and insulin
to promote normal carbohydrate metabolism.

Proteins
Dietary protein seems to regulate the hepatic IGF-I expression
and secretion, as it was demonstrated in mirror carp (209)
and Nile tilapia juveniles (210). In both cases, authors found a
significant correlation between dietary protein levels and hepatic
IGF-I mRNA expression. Moreover, Qiang et al. (210) found that
the increase in the dietary protein content not only increases the
IGF-I mRNA expression but also increases the plasmatic IGF-
I levels. These authors also reported a significant correlation
between the fish-specific growth rate (SGR) and the IGF-I
plasmatic levels and/or IGF-I hepatic mRNA expression. In gibel
carp (211), it was found that an increase in dietary protein
levels leads to an increase in SGR and hepatic IGF-I mRNA
levels, although a decrease in both parameters was observed with
extremely high protein levels in the diet. Moreover, Tu et al.
(211) reported that GH mRNA expression in pituitary shows
the opposite trend compared to hepatic IGF-I mRNA. Pérez-
Sánchez et al. (199) found that gilthead seabream fed on low
protein diets had significantly higher GH, but lower hepatic GH
binding and lower IGF-I levels than fish fed on higher protein
diets. This situation resembles the one discussed previously in
which fish under fasting shows diminished IGFs production and
elevated GH. Therefore, low and very high dietary protein levels
may influence the GH-IGF axis through the same mechanism as
fasting, possibly by direct control of pituitary hormone secretion
by circulating nutrients.

Lipids
Dietary lipids have also been shown to modulate fish growth. In
several fish species, an increase in the dietary lipid content or a
decrease in the protein/lipid ratio was shown to have a negative
effect on growth, as reported for the Senegalese sole (212), the
turbot (213), and the flounder (214). Although a few studies show
the effect of dietary lipids on fish growth performance, there is
little knowledge on their effect on the regulation of the GH-IGF
system. In Senegalese sole, it was demonstrated that an increase
in dietary lipid content increases the hepatic IGF-I mRNA
expression, and this was inversely correlated with the somatic
growth (215). In pejerrey, an increase from 10 to 21% in the
dietary lipid amount generates a decrease in the hepatopancreatic

GHR-II mRNA expression, while no changes in somatic growth
were found (216). In largemouth bass, the effects of different
carbohydrates/lipids (CHO/L) ratios on the GH-IGF system, as
well as on the somatic growth, were studied. Authors found
that CHO/L ratios from 0.32 to 2.36 significantly upregulate GH
mRNA expression and downregulate IGF-I mRNA expression.
Higher ratios did not exert any further effects on them. A positive
correlation between hepatic IGF-I mRNA levels and specific
growth rates with varying dietary CHO/LIP ratios was found
(217). All these findings indicate that dietary lipid level can
differentially regulate the growth endocrine axis, at least at the
transcription level. That can be directly associated with the role of
these hormones in regulating lipid homeostasis, and particularly
with the direct lipolytic effects of GH and the promotion of tissue
growth by IGF-I. Moreover, results presented here also indicate
that hepatic IGF-I mRNA as well as its plasma abundance could
be a reliable index to assess growth and nutritional fitness.

Several studies have been focused on the effect of fatty acids
present in dietary lipids and in the replacement of dietary fish oil
by vegetable oil on fish growth. Inmost of the cases, an increase in
the dietary amount of fatty acids from vegetable sources causes an
increase in GHmRNA expression and/or circulating levels, while
diminishes the IGF-I plasmatic and GHR-I mRNA levels (179,
203, 218). The hepatic mRNA expression of GHR-II and IGF-II
seems to be constitutive and not affected by dietary fatty acids
in sea bream (218), while in pejerrey the replacement of dietary
fish oil by sunflower oil increases their mRNA expression (179).
As a general conclusion, large replacements of high-unsaturated
fatty acids by low-unsaturated fatty acids in fish diet lead to the
GH-IGF system pattern to resemble one observed during fasting.

Micronutrients
The effect of micronutrients on the expression of GH-IGF system
components was not extensively studied. To the best of our
knowledge there is only one work reporting an effect of vitamins
on igf-I expression (219). In this, the authors found that 4%
of dietary vitamins generate an increase in the IGF-I mRNA
expression in sea bass larvae after 38 days of the experiment,
compared with diets containing lower or higher amounts.

FUTURE PERSPECTIVES

The role of nutrition as a potent modulator of the endocrine
system governing feeding behavior and growth in fish is
described in this review. Aquaculture research is a topic of
increasing interest due to the demand for sustainable food
production. That makes it essential to summarize the knowledge
generated in the last past years in order to identify the
weak points and to determine the direction in which new
studies should be focused. As described here, food availability
and feed composition are two of the most influent external
signals modulating appetite-regulating and growth modulatory
hormones. Future research should, therefore, be focused on
tapping into this knowledge, expanding it in depth, and exploring
its use to enhance feeding and growth in fish. Such approaches
will eventually lead to increased yield in cultured fish.
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It is also interesting to note the species-specific differences
in the effect of feeding on the expression of appetite-regulating
hormones and the GH-IGF system. Such differences could
be related to the feeding behavior of specific fish species, as
the carnivorous, herbivorous and omnivorous fish tend to fall
into three different groups of responses. This fact also reflects
the flexibility of metabolic systems, considering that the same
components present in all fish species could generate distinct
responses from the same food stimuli. Therefore, it is critical to
bear in mind that results obtained from one species of fish might
not apply to another.

As a final consideration, it would be interesting to broaden
our knowledge of the crosstalk between hormones regulating
food intake and those regulating growth. For instance, GH and
IGF-I not only regulate somatic growth but can at the same
time modulate lipid and carbohydrate metabolism, respectively
(220). Others, including ghrelin, could stimulate food intake
(221), and also GH release from pituitary (222, 223). Likewise,
it has been shown that leptin directly regulates the expression
of IGFs and GHRs in fish hepatopancreas (224). These are a
few examples of the crosslinks mentioned above, that serve to
highlight the close interaction that exists between hormones
controlling food intake and growth to ensure the proper growth
and development of fish. Thus, comprehensive approaches to
determine both metabolic and growth regulatory hormone

responses to nutritional challenges are more desirable from an
aquaculture perspective. Future research must focus to identify
gaps in knowledge, including the ones identified above. In
addition, the use of alternate feed ingredients, use of endogenous
feeding and growth regulatory factors as feed additives, and
employing hormones using targeted molecular and cellular
approaches should be explored to modulate growth rate and yield
in cultured species.
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