

Venovenous Extracorporeal Membrane Oxygenation •

Flow, Pressure, Hematology, and Emergencies

Jenelle H. Badulak

Department of Emergency Medicine and Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, Washington

> This video serves as a resource for novice venovenous extracorporeal membrane oxygenation (ECMO) providers to understand the fundamentals of blood flow, circuit pressures, hemolysis and anticoagulation, circuit emergencies, and cardiac arrest. Low blood flow is due to inadequate pump preload or increased pump

afterload, and both lead to increased resistance in the circuit. Chatter, the extreme form of inadequate pump preload, should be addressed with speed reduction and assessment for causes including hypovolemia and tension physiology in the thorax. Monitor for hemolysis using free hemoglobin, lactate dehydrogenase, and

Video 1. Instructional video for venovenous extracorporeal membrane oxygenation (ECMO) including blood flow, pressures, hematology, and emergencies. Image(s) used with permission from CollectedMed, LLC.

(Received in original form May 20, 2020; accepted in final form September 9, 2020)

Correspondence and requests for reprints should be addressed to Jenelle H. Badulak, M.D., Department of Emergency Medicine and Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, 325 9th Avenue, Box 359702, Seattle, WA 98104. E-mail: badulakj@uw.edu.

ATS Scholar Vol 2, Iss 1, pp 138-139, 2021 Copyright © 2021 by the American Thoracic Society DOI: 10.34197/ats-scholar.2020-0078VO

urine color. Causes of hemolysis include circuit pressure extremes, clot in the circuit, and disseminated intravascular coagulation. During a mechanical circuit emergency, such as air entrainment, circuit rupture, pump failure, accidental decannulation, or catastrophic clot, the ECMO team immediately clamps the circuit and works to quickly fix the circuit. Meanwhile, a separate team resuscitates the patient focusing on increasing gas

exchange through the native lung with rescue (increased) ventilator settings or bag ventilation. Most centers use low-intensity anticoagulation to prevent circuit thrombosis. Venovenous ECMO provides no cardiac support; thus, advanced cardiac life support is performed in the usual fashion.

<u>Author disclosures</u> are available with the text of this article at www.atsjournals.org.

RECOMMENDED READING

Brodie D, Slutsky AS, Combes A. Extracorporeal life support for adults with respiratory failure and related indications: a review. *JAMA* 2019;322:557–568.

Thomas J, Kostousov V, Teruya J. Bleeding and thrombotic complications in the use of extracorporeal membrane oxygenation. *Semin Thromb Hemost* 2018;44:20–29.

Annich GM, Zaulan O, Neufeld M, Wagner D, Reynolds MM. Thromboprophylaxis in extracorporeal circuits: current pharmacological strategies and future directions. *Am J Cardiovasc Drugs* 2017;17:425–439.

Dufour N, Radjou A, Thuong M. Hemolysis and plasma free hemoglobin during extracorporeal membrane oxygenation support: from clinical implications to laboratory details. ASAIO \Im 2020;66: 239–246.

Krueger K, Schmutz A, Zieger B, Kalbhenn J. Venovenous extracorporeal membrane oxygenation with prophylactic subcutaneous anticoagulation only: an observational study in more than 60 patients. *Artif Organs* 2017;41:186–192.