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Abstract

A wide variety of methods have been proposed in protein subnuclear localization to improve

the prediction accuracy. However, one important trend of these means is to treat fusion

representation by fusing multiple feature representations, of which, the fusion process takes

a lot of time. In view of this, this paper novelly proposed a method by combining a new single

feature representation and a new algorithm to obtain good recognition rate. Specifically,

based on the position-specific scoring matrix (PSSM), we proposed a new expression, cor-

relation position-specific scoring matrix (CoPSSM) as the protein feature representation.

Based on the classic nonlinear dimension reduction algorithm, kernel linear discriminant

analysis (KLDA), we added a new discriminant criterion and proposed a dichotomous

greedy genetic algorithm (DGGA) to intelligently select its kernel bandwidth parameter. Two

public datasets with Jackknife test and KNN classifier were used for the numerical experi-

ments. The results showed that the overall success rate (OSR) with single representation

CoPSSM is larger than that with many relevant representations. The OSR of the proposed

method can reach as high as 87.444% and 90.3361% for these two datasets, respectively,

outperforming many current methods. To show the generalization of the proposed algo-

rithm, two extra standard datasets of protein subcellular were chosen to conduct the

expending experiment, and the prediction accuracy by Jackknife test and Independent test

is still considerable.

Introduction

Subnuclear localization of protein is very important for molecular cell biology, proteomics,

and drug discovery and so on [1, 2]. When the basic function of a protein is known, the infor-

mation about its location in the cell nucleus may indicate some important facts such as the

pathway an enzyme belongs to [2]. Thus, if proteins are located at wrong positions in the

nucleus or in a cell, some diseases, even cancer, will be caused. With the development of

human genome project and proteomics project, numerous protein sequences increase
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dramatically day by day so that those traditional experimental methods can’t satisfy the

demands of current researches on account of their low efficiency and highly cost. Therefore, in

order to manage and address these huge biological data, computational techniques are essen-

tial. There are two typical procedures when researchers apply machine learning methods to

predict protein subnuclear location. One is to construct good representations for collecting as

much protein sequence information as possible and the other is to develop effective models for

prediction and classification [3, 4].

As far as feature representations are concerned, Nakashima and Nishikawa proposed a

well-known representation, amino acid composition (AAC) [5], which describes the occurrence

frequency of 20 kinds of essential amino acids in a protein sequence. However, AAC ignores

the associated information among amino acids [4]. Therefore, dipeptide composition (DipC)

was presented by considering 400 components of dipeptide composition information along

local order of amino acids [6]. Nevertheless, the discrimination of DipC is still insufficient. Sub-

sequently, taking into account both amino acid composition information and amphipathic

sequence-order information, Chou et al. introduced the pseudo-amino acid composition

(PseAAC), and relevant experimental results proved that the discriminant performance of

PseAAC overmatched both AAC and DipC partly [7–11]. Afterwards, the position-specific

scoring matrix (PSSM) was proposed by considering the evolution information of amino acids,

and PSSM is more helpful than PseAAC for protein subnuclear localization [12]. But the predic-

tion accuracy still can’t meet researchers’ expectation. Hence, they tried to build more efficient

protein feature expression. Based on above single feature representations, researchers proposed

the concept of fusion representation by combining two single expressions for improving the

prediction accuracy since fusion representation contained more original protein sequence

information [4, 13, 14]. However, although the predictive accuracy is improved with this kind

of method, the extra workload and time-consuming caused by the process of fusing different

representations increase a lot [4]. With this consideration, the research of this paper devoted to

developing a new single representation to make it can express protein sequence more effectively,

and then lots of time will be saved by doing so relative to the fusion representation.

Next, due to the high dimensionality of protein feature representation data, lots of dimen-

sion reduction algorithms were employed to extract feature such as linear discriminate analysis

(LDA) [4, 13, 15], principal component analysis (PCA), kernel principal component analysis

(KPCA) [12], kernel entropy component analysis (KECA), kernel LDA (KLDA) and so on [12,

16–22]. Since the nonlinear characteristics are more popular than the linear characteristics in

biology [12, 23, 24], the nonlinear kernel algorithms are the keystone of this paper. Especially,

KLDA is selected to use because it not only can reduce dimensionality but also can help classi-

fication and recognition. However, the window width parameter of kernel function in current

studies tends to be empirically selected, which is not reasonable. So instead, in this paper, we

realized the intelligent selection of the bandwidth parameter by our proposed new discrimi-

nant criterion and optimization algorithm DGGA. After extracting good features, researchers

try to develop effective classifiers for prediction, including biological neural networks, Bayes-

ian networks, support vector machines (SVM), ensemble-classifiers [25, 26], optimally

weighted fuzzy K-NN algorithm [2] and so on. Thereinto, the neural network not only needs

mass of data to train the structural classifier model, but also needs effective method and plenty

of time to tune the network parameters, which is a hard problem to be improved [27]. Simi-

larly, the prediction results based on Bayes discriminant algorithm can be improved as the

amount of training data increases; therefore, a small number of training data may cause the

prediction results less stable [28]. In addition, although the SVM, ensemble-classifier and the

weighted fuzzy K-NN algorithm can get good prediction, they are all time-consuming in the

training phase [25, 29–31]. Compared with them, the KNN classifier is lazy learning, namely, it
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almost doesn’t have to train, which will save a certain amount of time. In practical application,

the calculated quantity of KNN classifier is proportional to the sample size [32]. Here in this

paper, the experimental data are small sample size, which makes it more appropriate to utilize

the KNN classifier compared to those classifiers mentioned above. Hence, we only employ the

simple KNN classifier in this paper to both reduce the computational complexity and highlight

the innovation of the proposed method, CoPSSM with intelligent KLDA based on DGGA.

To sum up, although good results were obtained based on those above approaches, namely,

fusing different representations, developing more effective models or classifiers, shortcomings

still exist in current works. Computation complexity, for instance, increases a lot to some

extent. So, if we can improve the prediction accuracy of protein subnuclear location only

use the single feature representation and simple classifier, a lot of time-consuming and costly

work will be saved, and that will be very meaningful. And here, the work of this paper is just

to realize this goal. First of all steps, the single feature vector, position-specific scoring matrix

(PSSM), was extracted from the given original protein sequence and then a new feature ex-

pression CoPSSM would be created based on the PSSM matrix. Next, the nonlinear dimen-

sionality reduction (DR) algorithm, kernel linear discriminant analysis (KLDA), whose

bandwidth parameter was intelligently optimized by the proposed new discriminant criterion

and dichotomous greedy genetic algorithm (DGGA), has been employed to address the high-

dimensionality problem by transforming the representation of protein sequence for arriving at

an optimal expression for K-nearest-neighbor (KNN) classifier. The final numerical experi-

mental results with Jackknife test show our proposed single feature representation CoPSSM

and optimization algorithm are efficient in the prediction of protein subnuclear location.

Here, we listed abbreviation of the full name for all terms appeared in this paper in Table 1.

Materials and methods

Dataset

To validate the adaptability and the efficiency of the proposed method in this paper, and to

have a critical comparison with other studies, two public benchmark datasets were chosen to

Table 1. Abbreviation for the corresponding term.

Number Full Name of Term Abbreviation

1 Pseudo-amino acid composition PseAAC

2 Position-specific scoring matrix PSSM

3 Correlation position-specific scoring matrix CoPSSM

4 Kernel linear discriminant analysis KLDA

5 K-nearest-neighbor KNN

6 Genetic algorithm GA

7 Dichotomous greedy genetic algorithm DGGA

8 Overall success rate OSR

9 True positive TP

10 True negative TN

11 False positive FP

12 False negative FN

13 Sensitivity SE

14 Specificity SP

15 Accuracy ACC

16 Mathew’s correlation coefficient MCC

https://doi.org/10.1371/journal.pone.0195636.t001
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conduct the numerical experiments. The first dataset was constructed by Ravindra Kumar

et al. in 2014 [33], which is in their web-server named SubNucPred for predicting protein sub-

nuclear localization with the link of http://proteininformatics.org/mkumar/subnucpred/index.

html. The second dataset is in web-sever Nuc-Ploc [7], which was constructed by Shen and

Chou in 2007 and could be downloaded from the link of http://www.csbio.sjtu.edu.cn/bioinf/

Nuc-PLoc/Supp-A.pdf. Detailed information of these two datasets is in Table 2.

As shown in Table 2, dataset 1 totally contains 669 proteins that attribute to 10 subnuclear

localizations and dataset 2 contains 714 proteins in total and locates at 9 subnuclear localizations.

Next, to show the generalization of the proposed method, two protein subcellular bench-

mark datasets were chosen to conduct the expending experiment, as are shown in Table 3.

From Table 3, it can be found that datasets 3 and 4 contain 653 and 643 proteins, respec-

tively, and they can be downloaded directly from http://www.csbio.sjtu.edu.cn/bioinf/Gneg/

Data.htm [34].

To sum up, in this paper, we used four datatsets that were constructed in previous studies

[7, 33, 34]. For an easy access to all these data, we construct a new link to gather all the link

information about these datasets, that is https://github.com/tingyaoyue/Dataset.git.

A newly proposed feature representation CoPSSM

Before introducing the proposed new feature expression CoPSSM, we first need to give some

brief presentation for PseAAC and PSSM that are used for comparison in this paper. Then,

introduction for CoPSSM will be deployed based on PSSM.

Table 2. Constitutions of protein benchmark datasets.

Dataset 1 of ten subnuclear locations Dataset 2 of nine subnuclear locations

Class Subnuclear Location Number Class Subnuclear Location Number

1 Centromere 86 1 Chromatin 99

2 Chromosome 113 2 Heterochromatin 22

3 Nuclear envelope 17 3 Nuclear envelope 61

4 Nuclear matrix 18 4 Nuclear matrix 29

5 Nuclear pore complex 12 5 Nuclear pore complex 79

6 Nuclear speckle 50 6 Nuclear speckle 67

7 Nucleolus 294 7 Nucleolus 307

8 Nucleoplasm 30 8 Nucleoplasm 37

9 Telomere 37 9 Nuclear PML body 13

10 Nuclear PML body 12

Sum 669 Sum 714

https://doi.org/10.1371/journal.pone.0195636.t002

Table 3. Constitutions of protein benchmark datasets for expending experiment.

Class Subcellular Location Number of Dataset 3 Number of Dataset 4

1 Cytoplasm 152 210

2 Extracell 76 20

3 Fimbrium 12 4

4 Flagellum 6 1

5 Inner membrane 186 345

6 Nucleoid 6 1

7 Outer membrane 103 13

8 Periplasm 112 49

Sum 653 643

https://doi.org/10.1371/journal.pone.0195636.t003
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1. PseAAC, put forward by Chou et al., represents a protein sequence with its sequence com-

position and order information in a vector [7]. Generally speaking, PseAAC is expressed as

PPseAAC = [p1,p2,. . .,p20,p20+1,. . .,p20+2β]
T. And here, the parameter β is set as 10 empirically

to obtain a 40-D feature vector. The first 20 components reflect the effect of the classical 20

amino acid composition, and components from 20 + 1 to 20 + 2β reflect the amphipathic

sequence-order pattern with considering the impact of hydrophobic and hydrophilic of

amino acids [35–38].

2. PSSM, whose description is as below:

A variety of variations, such as the insertion, substitution or deletion of one or several

amino acid residues in the protein sequence, often occur in the biological evolution process.

And with long-term accumulation of these variations, similarities between the original and

the new synthesis proteins are reducing gradually, but these homologous proteins may

exhibit remarkably similar structures and functions [39]. Hence, the position-specific scor-

ing matrix (PSSM) was introduced to represent the evolution information of a protein sam-

ple P with L amino acid residues. Its descriptor is shown as following:

PPSSM ¼

M1!1 M1!2 � � � M1!20

M2!1 M2!2 � � � M2!20

..

. ..
. . .

. ..
.

ML!1 ML!2 � � � ML!20

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

ð1Þ

whereMi!j(i = 1,2,. . .,L; j = 1,2,. . .,20) represents the score of the amino acid residue in the

i th position of the protein sequence being replaced by the amino acid type j during the evo-

lution process. And here in this paper, the PPSSM matrix was generated via using PSI-BLAST

to search the Swiss-Prot database, of which the iterative times were 3 and the E-value was

0.001.

3. Introduction for the newly proposed feature representation CoPSSM

Feature representation plays an important role in protein subnuclear localization [4]. Based

on this idea, this paper skillfully proposed a new feature expression. Since sizes of above

obtained PPSSM matrices were not unified for different proteins, researchers usually trans-

formed them into 400-D vectors by adding all rows of the same element [12, 13]. Here, we will

develop a better representation.

Firstly, calculate average value of each column in PPSSM according to (2).

�Mj ¼
1

L
PL

i¼1
Mi!j ðj ¼ 1; 2; . . . 20Þ ð2Þ

Secondly, calculate the product of two different elements in the above obtained 20 average

values according to formula (3).

CoPSSM ¼ �Mj �
�Mk ðj ¼ 1; 2; . . . ; 20; k is integer and j � k � 20Þ ð3Þ

Last, a 210-D vector shown in (4) will be attained according to Eqs (2) and (3). Since it

takes the correlation of two different average values into consideration, we named the pro-

posed feature representation as correlation position-specific scoring matrix CoPSSM.

CoPSSM ¼ ðCoPSSM1; CoPSSM2; . . . ; CoPSSM210Þ ð4Þ

Subnuclear localization with new representation and kernel linear discriminant analysis
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A newly proposed discriminant criterion added to KLDA

Kernel linear discriminant analysis, also known as generalized discriminant analysis is the ker-

nel extension method of linear discriminant analysis (LDA), which is expanded to solve the

nonlinear problems. Therefore, KLDA is much suitable for processing biological data because

of its high-dimensional and nonlinear characteristics. KLDA algorithm maps the input vectors

to a higher dimensional feature space F via the nonlinear mapping function ;, and then it exe-

cutes the linear discriminant analysis in the high dimensional feature space [40]. To increase

further understanding, the KLDA algorithm will be described in detail in the S1 File, in which,

these two literatures [41, 42] will be cited.

But what actually matters is the bandwidth parameter of the kernel function, which changes

the mapping relation between the input space and the feature space so that it can affect the

properties of the feature space. So far, there is a lack of good methods to find out the best value

of the window width parameter [40, 43]. Usually, researchers set this parameter empirically.

Besides, a method called grid searching method was used to determine value of this parameter

[44]. But they were partly irrational for lacking of a rational answer even good results were

obtained, and there still existed defects in the grid searching method, missing the valid values

and much time-consuming for instance. Thus, we try to introduce more reasonable method to

select the bandwidth parameter to deal with this problem in protein subnuclear location. Here

in this paper, the gauss kernel function: K x; yð Þ ¼ exp � kx� yk
2

2s2

� �
is taken into consideration,

and we’ll propose a new discriminant criterion to evaluate its bandwidth parameter σ whether

good or not.

Providing that the reduced samples by KLDA are r1,r2,. . .,rN, then we define a new discrim-

inant criterion to evaluate distinguishability of these reduced data, as formula (5):

max
DB

DW
ð5Þ

where DW and DB represents the within-class dispersion and the between-class dispersion,

respectively. Our purpose here is to minimize DW and to maximize DB. Nevertheless, they two

will change randomly during the course of the experiment. Hence, we defined the above ratio

and stipulated that the best reduced data corresponded to the largest ratio. Hence, formula (5)

is set as the fitness function of the proposed dichotomous greedy genetic algorithm (DGGA).

Thereinto, DW and DB can be obtained via formulas (6) and (7).

DW ¼
PK

i¼1

PNi
m¼1
krim � aik2 ð6Þ

DB ¼
PK

i¼1
kai � ak2 ð7Þ

where the 2-norm k�k2 denotes the Euclidean distance, K is the number of protein type, Ni is

the number of class i, ai represents the mean vector of class i and a denotes the mean vector of

all classes, i.e., ai ¼ 1

Ni

PNi
m¼1

rim and a ¼ 1

N

PN
n¼1
rn.

An improved dichotomous greedy genetic algorithm (DGGA) for kernel

parameter selecting

Genetic algorithm (GA) is a kind of adaptive method for dealing with complex optimization

problem whose core is the “survival of the fittest” rule and chromosomal crossover mechanism

within a group. Increasingly wide attention and applications are drawn in GA for its robust-

ness, parallelism and global optimization characteristics in recent years. Whereas
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shortcomings still exist in this algorithm such as easy to trap in local optimum. Therefore, we

proposed a new algorithm, dichotomous greedy genetic algorithm (DGGA), to improve gen-

eral GA algorithm. DGGA is based on GA by introducing the idea of inter-partition and

Greedy Algorithm. In simple terms, in order to search the gauss kernel parameter more effi-

ciently, we keep on dividing the interval into two subintervals and reserving the effective one

on which the largest fitness is obtained by employing GA, which derives from the theory of

Greedy Algorithm until the iterations run out. Thus, the proposed DGGA is named as dichot-

omous greedy genetic algorithm, of which, the word dichotomous means dividing the interval

into two subintervals continually and greedy signifys the using of the idea of Greedy Algo-

rithm. The specific steps of DGGA are listed as below.

• Step1: Select a certain amount of points randomly in the given interval [X0,Xn], as the initial

population;

• Step2: Calculate fitness of the initial population;

• Step3: Let Xmax be the location identifier of the point with maximal fitness among the initial

population, then we get 2 inter-partitions [X0,Xmax] and [Xmax,Xn];

• Step4: Generate the initial population P1 and P2 randomly in the inter-partition of [X0,Xmax]
and [Xmax,Xn] respectively, then calculate their fitness respectively, named f1 and f2;

• Step5: Employed GA to optimize the kernel parameter with (f1,P1) and (f2,P2) as the input

parameters respectively, then the updated population and fitness are marked as (newf1,

newP1) and (newf2, newP2);

• Step6: Letmaxfit1 be the max value of newf1 andmaxfit2 be the max value of newf2.

• Step7: Ifmaxfit1 is larger thanmaxfit2, let X1 be the corresponding location identifier and

make Xn = Xmax, then let Xmax = X1; else, let X2 be the corresponding location identifier of

maxfit2 and make X0 = Xmax, then let Xmax = X2. Therefore, the updated inter-partitions are

as [X0,Xmax] and [Xmax,Xn]. Next, turn to Step4 until the iterations run out.

At last, to have an intuitivism apprehension of DGGA, we summarize the above procedures

and give the full design flow of DGGA for optimizing the kernel parameter, displayed in Fig 1.

After the optimal kernel parameter had been trained, it would be realizable to calculate the

optimal projection matrix, and then both train dataset and test dataset would be mapped to

the low-dimensional feature space. Last, the KNN classifier would be employed to predict cor-

responding protein subnuclear location according to the rule of Jackknife test. We’ll provide

Fig 2 to display specific flows of the whole processes predicting protein subnuclear location.

Assessment criteria, classifier and test method

To evaluate prediction performance of the proposed method, indexes: Sensitivity (SE), Speci-

ficity (SP), ACC (Accuracy) and MCC (Mathew’s Correlation Coefficient) are calculated to

compare different representations in the case of Jackknife test. In the following formulas (8)–

(12), TP means the true positive and TN means the true negative, of which both are the num-

ber of proteins that were correctly located, while FP (the false positive) and FN (the false nega-

tive) are the number of those that were wrongly located proteins[4]. Then, 4 index equations

are obtained:

SEðiÞ ¼ TPðiÞ=ðTPðiÞ þ FNðiÞÞ ði ¼ 1; 2; . . . ; kÞ ð8Þ

SPðiÞ ¼ TNðiÞ=ðTNðiÞ þ FPðiÞÞ ði ¼ 1; 2; . . . ; kÞ ð9Þ

Subnuclear localization with new representation and kernel linear discriminant analysis
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ACCðiÞ ¼
TPðiÞ þ TNðiÞ

TPðiÞ þ FPðiÞ þ TNðiÞ þ FNðiÞ
ði ¼ 1; 2; . . . ; kÞ ð10Þ

MCCðiÞ ¼
ðTPðiÞ � TNðiÞÞ � ðFPðiÞ � FNðiÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPðiÞ þ FPðiÞÞ � ðTPðiÞ þ FNðiÞÞ � ðTNðiÞ þ FPðiÞÞ � ðTNðiÞ þ FNðiÞÞ

p ði ¼ 1; 2; . . . ; kÞð11Þ

Here, SE, also called the success rate, denotes the rate of positive samples correctly located;

SP denotes the rate of negative samples correctly located and ACC means the rate of correctly

located samples. MCC returns a value lying in [–1, 1] and the value of MCC reflects the predic-

tion consequences. The value of 1 denotes a perfect prediction, 0 represents random prediction

and -1 represents a bad prediction. Generally, MCC is regarded as one of the best assessment

indexes [45].

Fig 1. The DGGA algorithm for searching kernel parameter.

https://doi.org/10.1371/journal.pone.0195636.g001
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In addition, we also defined the overall success rate (OSR) as follow to evaluate the overall

classification effects. From Eqs (8) to (12), k is the number of protein type.

OSR ¼

Xk

i¼1
TPðiÞ

Xk

i¼1
ðTPðiÞ þ FNðiÞÞ

ð12Þ

Last, in this paper, we take KNN as the classifier for its simplicity, but competitive results.

The Cosine distance is used to measure the close degree of two proteins. Besides, Jackknife test

which is accounted as the most reasonable testing method are employed to estimate the predic-

tion performance of our proposed method.

Results and discussion

In this paper, the number of the initial population and the iterations were selected as 10 with

taking the calculating time into consideration. Larger population and bigger iterations will

cost more time undoubtedly, while smaller population and iterations may cause incomplete

Fig 2. The flowchart for predicting protein subnuclear location.

https://doi.org/10.1371/journal.pone.0195636.g002
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optimization. Next, we empirically set probability of the selection, crossover and mutation

operator as 0.5, 0.7 and 0.1 respectively. Finally, the hardware operating environment of this

paper is: Intel(R) Core(TM) i7-3770 CPU @3.40GHz 3.40 GHz, RAM 4G, Matlab R2011b.

Comparison results of the newly proposed single expression CoPSSM with

two other common representations PseAAC and PSSM

To demonstrate effectiveness of the newly proposed single feature expression CoPSSM, we

conducted the comparison experimental investigation. Firstly, the often-used 40-D PseAAC

and 400-D PSSM were extracted from the given protein sequences respectively. Secondly, the

proposed 210-D CoPSSM would be obtained based on PSSM matrix. Thirdly, the KNN classi-

fier with cosine distance was used to predict protein subnuclear location. Last, the Jackknife

test, identified as the most objective and rigorous method was utilized to evaluate the classifica-

tion performance [14]. Concrete prediction accuracy (ACC) for each Class and the overall suc-

cess rate (OSR) are in Tables 4 and 5.

From Table 4, it clearly displays that the overall prediction success rate for our newly pro-

posed feature representation CoPSSM outperforms the two most-frequently used expressions

PseAAC and PSSM. Not only that, but CoPSSM can resolve the imbalanced data problem. As

evident in Table 2, these two benchmark datasets are heavily imbalanced. Generally, classifier

tends to be biased towards the majority class, resulting in poor accuracy for those classes hav-

ing smaller number of samples [33]. For PseAAC, we can find bad prediction for Classes 8 and

10 with accuracy of 0, and this kind of situation still exists in PSSM although its OSR is larger

than that of PseAAC. For CoPSSM, even though some prediction accuracies are smaller than

those of PseAAC and PSSM for the same Class, there is no bad prediction, which denotes the

proposed new feature representation CoPSSM can solve the data imbalance problem to a cer-

tain degree. This is because CoPSSM can express protein sequence better than the 40-D

PseAAC and the 400-D PSSM.

Table 5 also shows that the proposed CoPSSM performs better than both PseAAC and

PSSM. Besides, we can clearly see that bad prediction accuracies for Classes 8 and 9 are all

equal to 0 when the feature representation is PseAAC. For CoPSSM, even though several pre-

diction accuracies are smaller than those of PseAAC and PSSM, there is no bad prediction,

Table 4. Prediction results for protein subnuclear of dataset 1.

Type� Feature Representation

PseAAC (40-D) PSSM (400-D) The proposed CoPSSM (210-D)

Class 1 30.2326% 55.8140% 70.9302%

Class 2 36.2832% 41.5929% 53.0973%

Class 3 29.4118% 0 23.5294%

Class 4 16.6667% 22.2222% 50%

Class 5 41.6667% 58.3333% 66.6667%

Class 6 32% 30% 26%

Class 7 86.0544% 81.6327% 78.5714%

Class 8 0 10% 23.3333%

Class 9 5.4054% 10.8108% 43.2432%

Class 10 0 0 25%

OSR 52.4663% (K = 9) 55.0075% (K = 5) 61.5845% (K = 1)

� Class 1 ~ Class 10 denote Centromere, Chromosome, Nuclear envelope, Nuclear matrix, Nuclear pore complex,

Nuclear speckle, Nucleolus, Nucleoplasm, Telomere and Nuclear PML body respectively.

https://doi.org/10.1371/journal.pone.0195636.t004
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and the results denote the proposed new feature expression CoPSSM still can resolve the

imbalance problem of dataset 2.

Results of assessment criteria for PseAAC, PSSM and the proposed

CoPSSM

Next, to objectively evaluate effectiveness of our proposed new feature representation CoPSSM

in protein subnuclear location, we calculated the comparative values of these 4 assessment cri-

teria: SE (Sensitivity), SP (Specificity), ACC (Accuracy) and MCC (Mathew’s Correlation

Coefficient) for PseAAC, PSSM and the proposed CoPSSM. What shown in Table 6 is compar-

ison result for dataset 1, and Table 7 is results for dataset 2. Tables 6 and 7 were obtained

according to Eqs (8)–(11).

In Table 6, we can learn that there exist such outliers of 0 and “-” for the expressions

PseAAC and PSSM, where “-” means the missing phenomenon in computation. According to

Eqs (8) and (11), it can be inferred that none of these types of proteins were correctly located

and no other type of proteins was misclassified to them, which caused the exceptional values 0

and “-”, respectively. Indeed, the results in Table 4 confirm this conclusion. In Table 6, we can

see most values of CoPSSM are larger than those of PseAAC and PSSM for the same Class,

which signifys that CoPSSM outperforms them.

For the outliers 0 and “-” in Table 7, the explanation is the same as that of Table 6, and the

results in Table 5 can confirm it. Similarly, we can conclude that the proposed feature repre-

sentation CoPSSM performs better than both PseAAC and PSSM in protein subnuclear

localization.

The overall success rate (OSR) of PseAAC, PSSM and the proposed

CoPSSM for different K values of KNN classifier

Since various K values of the k-nearest-neighbour have an effect on the prediction perfor-

mance, here what we displayed in Tables 4 and 5 are the highest OSR among different K val-

ues. Therefore, we’ll provide following Figs 3 and 4 to show corresponding OSR of PseAAC,

PSSM and the proposed CoPSSM when K ranges from 1 to 20.

Figs 3 and 4 clearly display that the newly proposed feature representation CoPSSM per-

forms the best, the often used 400-D PSSM is in second place and PseAAC is the last. From Fig

Table 5. Prediction results for protein subnuclear of dataset 2.

Type� Feature Representation

PseAAC (40-D) PSSM (400-D) The proposed CoPSSM (210-D)

Class 1 48.4848% 69.6970% 59.5960%

Class 2 22.7272% 36.3636% 36.3636%

Class 3 24.5902% 29.5082% 49.1803%

Class 4 13.7931% 31.0345% 44.8276%

Class 5 55.6962% 67.0886% 78.4810%

Class 6 29.8507% 40.2985% 32.8358%

Class 7 81.4332% 71.3355% 79.1531%

Class 8 0 16.2162% 18.9189%

Class 9 0 7.6923% 15.3846%

OSR 54.0616% (K = 12) 57.4230% (K = 3) 62.4650% (K = 1)

� Class 1 ~ Class 9 denote Chromatin, Heterochromatin, Nuclear envelope, Nuclear matrix, Nuclear pore complex,

Nuclear speckle, Nucleolus, Nucleoplasm and Nuclear PML body respectively.

https://doi.org/10.1371/journal.pone.0195636.t005
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3, we can find that when K is equal to 9, 5 and 1, expressions PseAAC, PSSM and CoPSSM

obtain their biggest prediction accuracy, respectively. For dataset 2, corresponding K values

are 12, 3 and 1 separately.

Prediction results of the proposed method: CoPSSM with intelligent KLDA

based on DGGA

Based on above analysis, we have proved that the newly proposed feature representation

CoPSSM outperforms the two most frequently used representations, PseAAC and PSSM.

Since an effective dimension reducing method played significant role in the prediction of pro-

tein subnuclear location [4, 12, 13], here kernel linear discriminant analysis (KLDA) was

applied to conduct dimensionality reduction on the proposed and best-performing feature

expression CoPSSM. Kernel function of KLDA is the key point and it has a great influence on

the final results. However, there is short of rational method to select the optimal kernel param-

eter of kernel function at present. Inspired by it, we proposed a new algorithm based on the

Table 6. SE, SP, ACC and MCC for PseAAC, PSSM and the proposed CoPSSM on dataset 1.

Type and Representation Evaluation Index

SE SP ACC MCC

Class 1 PseAAC 0.3023 0.9286 0.8050 0.2859

PSSM 0.5581 0.8964 0.8307 0.4565

The proposed CoPSSM 0.7093 0.9117 0.8747 0.5979

Class 2 PseAAC 0.3628 0.7908 0.6950 0.1492

PSSM 0.4159 0.7716 0.6957 0.1735

The proposed CoPSSM 0.5310 0.8756 0.8 0.4106

Class 3 PseAAC 0.2941 0.9774 0.9461 0.3088

PSSM 0 0.9866 0.9436 -0.0243

The proposed CoPSSM 0.2353 0.9831 0.9537 0.2696

Class 4 PseAAC 0.1667 0.9943 0.9538 0.2999

PSSM 0.2222 0.9918 0.9558 0.3382

The proposed CoPSSM 0.5 0.9805 0.9604 0.4939

Class 5 PseAAC 0.4167 0.9914 0.9723 0.4969

PSSM 0.5833 0.9863 0.9735 0.5697

The proposed CoPSSM 0.6667 0.9902 0.9810 0.6569

Class 6 PseAAC 0.32 0.9571 0.8775 0.3428

PSSM 0.3 0.9671 0.8867 0.3526

The proposed CoPSSM 0.26 0.9236 0.8548 0.1905

Class 7 PseAAC 0.8605 0.3590 0.6190 0.2550

PSSM 0.8163 0.4830 0.6583 0.3190

The proposed CoPSSM 0.7857 0.7269 0.7587 0.5135

Class 8 PseAAC 0 1 0.9213 -

PSSM 0.1 0.9892 0.9223 0.1791

The proposed CoPSSM 0.2333 0.9485 0.9015 0.1847

Class 9 PseAAC 0.0541 0.9831 0.8954 0.0768

PSSM 0.1081 0.9945 0.9132 0.2447

The proposed CoPSSM 0.4324 0.9451 0.9035 0.3686

Class 10 PseAAC 0 0.9943 0.9616 -0.0137

PSSM 0 0.9973 0.9659 -0.0093

The proposed CoPSSM 0.25 0.9808 0.9604 0.2408

https://doi.org/10.1371/journal.pone.0195636.t006
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genetic algorithm (GA) to intelligently search the optimal kernel parameter. In the meantime,

a new discriminant criterion was put forward to serve as fitness of the proposed optimization

algorithm, dichotomous greedy genetic algorithm (DGGA). Hence, we named this method as

CoPSSM with intelligent KLDA based on DGGA. Last, the dimension-reduced CoPSSM

would be taken as input of KNN classifier to predict protein subnuclear location.

Here, the kernel linear discriminant analysis (KLDA) algorithm was implemented in

MATLAB (R2011b version), using the famous Matlab Toolbox (developed by Laurens van der

Maaten, Delft University of Technology).

Different dimensionalities of the reduced data would influence the prediction results of

protein subnuclear location, and since the Jackknife test method was very time-consuming, we

took the defaulted value of KLDA as the reduced dimension with a view to the operating con-

venience and conciseness. Namely, the number of protein type was set to the reduced dimen-

sion. Hence the reduced dimensionality for datasets 1 and 2 were 10 and 9 respectively.

Prediction results are as Table 8.

From Table 8, we can clearly see that the overall success rates (OSR) for datasets 1 and 2 are

87.444% and 90.3361% respectively. Besides, prediction accuracy for each class is no less than

70% and even can reach up to 100% for Classes 3 and 10 on dataset 1. For dataset 2, there’s nar-

rower fluctuation margin for each class. This is probably because the inherent attributes of

Table 7. SE, SP, ACC and MCC for PseAAC, PSSM and the proposed CoPSSM on dataset 2.

Type and Representation Evaluation Index

SE SP ACC MCC

Class 1 PseAAC 0.4848 0.7897 0.7324 0.2439

PSSM 0.6970 0.7445 0.7361 0.3579

The proposed CoPSSM 0.5960 0.9021 0.8447 0.4943

Class 2 PseAAC 0.2273 0.9896 0.9484 0.3335

PSSM 0.3636 0.9617 0.9318 0.3123

The proposed CoPSSM 0.3636 0.9648 0.9370 0.3151

Class 3 PseAAC 0.2459 0.9789 0.8773 0.3490

PSSM 0.2951 0.9561 0.8705 0.3174

The proposed CoPSSM 0.4918 0.9455 0.8902 0.4611

Class 4 PseAAC 0.1379 0.9922 0.9324 0.2576

PSSM 0.3103 0.9733 0.9297 0.3379

The proposed CoPSSM 0.4483 0.9752 0.9429 0.4629

Class 5 PseAAC 0.5570 0.8930 0.8355 0.4372

PSSM 0.6709 0.952 0.9031 0.6501

The proposed CoPSSM 0.7848 0.9576 0.9292 0.7424

Class 6 PseAAC 0.2985 0.9632 0.8635 0.3523

PSSM 0.4030 0.9341 0.8595 0.3697

The proposed CoPSSM 0.3284 0.9319 0.8544 0.2882

Class 7 PseAAC 0.8143 0.4533 0.6359 0.2874

PSSM 0.7134 0.6945 0.7045 0.4076

The proposed CoPSSM 0.7915 0.6767 0.7348 0.4716

Class 8 PseAAC 0 0.9897 0.9040 -0.03

PSSM 0.1622 0.9735 0.9071 0.1955

The proposed CoPSSM 0.1892 0.9543 0.8974 0.1634

Class 9 PseAAC 0 1 0.9674 -

PSSM 0.0769 0.9951 0.9670 0.1482

The proposed CoPSSM 0.1538 0.9801 0.9571 0.1453

https://doi.org/10.1371/journal.pone.0195636.t007
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different datasets lead to such a result. To show effectiveness of the proposed method, in the

next section, it will be extended to predict protein subcellular localization.

Experimental development: Predicting protein subcellular location via the

proposed method, CoPSSM with intelligent KLDA based on DGGA

To show the generalization of the proposed method, CoPSSM with intelligent KLDA based on

DGGA, two protein subcellular benchmark datasets (datasets 3 and 4, shown in Table 3) were

chosen to conduct the numerical experiment. Furthermore, dataset 4 was used as the real vali-

dation set of dataset 3 instead of the Jackknife test; namely, as the training set, dataset 3 was

tested by the Jackknife method while dataset 4 as the testing set was tested by the Independent

method. Still, we firstly verified the newly proposed feature representation CoPSSM outper-

forms the commonly used 40-D PseAAC and 400-D PSSSM. In the second place, the proposed

method CoPSSM with intelligent KLDA based on DGGA was employed to predict protein

subcellular location to demonstrate its effectiveness. The detailed experimental results are as

Tables 9 and 10.

From Table 9, we can get some useful information. For the Jackknife test dataset 3, it clearly

indicates that the proposed new feature representation CoPSSM performs better than the com-

monly used 40-D PseAAC and 400-D PSSM in discriminant ability. In addition, it shows

CoPSSM can solve the data imbalance problem for Classes 3 and 4 to a certain degree as well.

For the Independent test dataset 4, the performance of CoPSSM is superior to the 40-D

PseAAC while is inferior to the 400-D PSSM; however, we still recommend the proposed

CoPSSM in view of its lower dimensionality and better discriminant ability in dealing with the

data imbalance problem than the 400-D PSSM. Despite all this, we can find that the proposed

Fig 3. The OSR of PseAAC, PSSM and the proposed CoPSSM for different K values on dataset 1.

https://doi.org/10.1371/journal.pone.0195636.g003

Subnuclear localization with new representation and kernel linear discriminant analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0195636 April 12, 2018 14 / 20

https://doi.org/10.1371/journal.pone.0195636.g003
https://doi.org/10.1371/journal.pone.0195636


CoPSSM still can’t predict proteins belonging to Class 6, which requires us to improve this fea-

ture expression in the future work.

Next, the proposed method CoPSSM with intelligent KLDA based on DGGA will be uti-

lized to predict protein subcellular location. Numerical experiment results are shown in

Table 10.

From Table 10, we can clearly see that the overall success rates (OSR) for the training data-

set 3 and the testing dataset 4 are 92.3430% and 94.7123% respectively, which proves the gener-

alization of the proposed method in protein subcellular location. Last, to show effectiveness of

Fig 4. The OSR of PseAAC, PSSM and the proposed CoPSSM for different K values on dataset 2.

https://doi.org/10.1371/journal.pone.0195636.g004

Table 8. Prediction results of the proposed method.

Dataset 1 (reduced 10-D CoPSSM) Dataset 2 (reduced 9-D CoPSSM)

Class 1 72.0930% 84.8485%

Class 2 80.5310% 90.9091%

Class 3 100% 86.8852%

Class 4 94.4444% 89.6552%

Class 5 83.3333% 88.6076%

Class 6 98% 89.5522%

Class 7 92.1769% 93.1596%

Class 8 93.3333% 91.8919%

Class 9 75.6757% 92.3077%

Class 10 100%

OSR 87.4440% (K = 13) 90.3361% (K = 10)

https://doi.org/10.1371/journal.pone.0195636.t008
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the proposed method CoPSSM with intelligent KLDA based on DGGA, it’s necessary to com-

pare it with state-of-the-art predictors on the same benchmark datasets. In the next section,

detailed comparison results can justify efficiency of the proposed method in protein subnu-

clear and subcellular localization.

Compare with existing prediction results

Table 11 clearly shows comparison results of the overall success rate among the proposed

method and different state-of-the-art algorithms on the four standard datasets.

The most significant aspect that Table 11 reveals is that our proposed optimization algo-

rithm can achieve good effect only with the single feature vector CoPSSM in the prediction of

protein subnuclear and subcellular localization; whereas the other researches employed com-

plex multiple representations, for instance, by fusing two kinds of different single representa-

tions. For dataset 1, our proposed method outperforms the SubNucPred [33] and the second

method in [4]. However, it is inferior to the first method in [4]. For dataset 2, the proposed

method prevails over the Nuc-PLoc [7] and the second method in [4] while is still inferior to

its first method. Note that the Jackknife test method used by us is more rigorous than the

10-fold cross-validation test employed in [4]. Hence, it reveals that our method is effective and

meaningful, and at the same time, it also reveals that prediction efficiency of single feature

Table 9. Prediction results for protein subcellular location.

Type � Jackknife test for dataset 3 Independent test for dataset 4

PseAAC (40-D) PSSM (400-D) CoPSSM (210-D) PseAAC (40-D) PSSM (400-D) CoPSSM (210-D)

Class 1 90.7895% 86.8421% 94.0790% 90.4762 89.0476 88.5714

Class 2 35.5263% 53.9474% 55.2632% 50 65 60

Class 3 0 8.3333% 50% 0 0 75

Class 4 0 83.3333% 83.3333% 100 100 100

Class 5 84.9462% 86.0215% 86.0215% 77.9710 79.1304 78.5507

Class 6 0 0 0 0 0 0

Class 7 60.1942% 54.3689% 61.1651% 46.1539 76.9231 84.6154

Class 8 48.2143% 65.1786% 53.5714% 61.2245 65.3061 57.1429

OSR 67.2282% (K = 5) 71.6692% (K = 8) 73.3538% (K = 6) 78.6936%

(K = 6)

80.2488%

(K = 12)

79.6268%

(K = 5)

� Class 1 ~ Class 8 denote Cytoplasm, Extracell, Fimbrium, Flagellum, Inner membrane, Nucleoid, Outer membrane, Periplasm respectively.

https://doi.org/10.1371/journal.pone.0195636.t009

Table 10. Prediction results of the proposed method for protein subcellular location.

Type Jackknife test for dataset 3 Independent test for dataset 4

Reduced 8-D CoPSSM Reduced 8-D CoPSSM

Class 1 136/152 = 89.4737% 186/210 = 88.5714%

Class 2 67/76 = 88.1579% 18/20 = 90%

Class 3 10/12 = 83.3333% 4/4 = 100%

Class 4 6/6 = 100% 1/1 = 100%

Class 5 181/186 = 97.3118% 339/345 = 98.2609%

Class 6 6/6 = 100% 1/1 = 100%

Class 7 97/103 = 94.1748% 12/13 = 92.3077%

Class 8 100/112 = 89.2857% 48/49 = 97.9592%

OSR 603/653 = 92.3430% (K = 13) 609/643 = 94.7123% (K = 5)

https://doi.org/10.1371/journal.pone.0195636.t010
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representation is less than that of information-rich fusion representation. For the extended

experiment (predicting protein subcellular localization), results of dataset 3 and 4 still show

the proposed method is effective. Besides, it proves again that the fusion representation con-

tains more protein sequence information than the single feature expression, which makes the

former get higher prediction result than the latter.

Conclusions

Until now, numerous studies have discussed protein subnuclear location [46–48]. Simulta-

neously, prediction accuracy is getting higher and higher with newly developed methods and

techniques [31, 49–52]. However, design complexity and time-consuming that come with it

are still thorny problems that need to be addressed. Taking into these issues consideration, this

paper tactfully put forward a new feature representation and idea to identify the protein sub-

nuclear location. First, a more informative feature expression CoPSSM was created based on

PSSM. Second, to search the bandwidth parameter of gauss kernel intelligently, we proposed

an optimization algorithm DGGA based on GA. Third, to evaluate results of dimension reduc-

tion, we proposed a new discriminant criterion as the fitness of DGGA. Compared with other

people’s research findings, our method can get high performance partly.

To verify generality and validity of the proposed method, two protein subnuclear standard

datasets and Jackknife test, were considered to conduct the numerical experiments. Then, SE,

SP, ACC and MCC were taken as the evaluation indexes. The experimental results were

encouraging. Furthermore, the proposed method with Independent test was utilized to predict

protein subcellular location and the obtained results still demonstrated its effectiveness.

Whereas the dimensionality reduction algorithms KLDA undoubtedly adds the computational

complexity to a certain degree, therefore, whether we can directly make good predictions with-

out employing any dimensionality reduction algorithm deserves us to have thorough analysis

and study in the future work. In addition, it remains an interesting challenge to obtain better

Table 11. Comparison of overall success rate on the four benchmark datasets.

Algorithm Representation and method OSR (%)

Dataset 1 SubNucPred [33] SSLD and AAC based on SVM by Jackknife test 81.46

Effective Fusion Representations [4] DipPSSM with LDA based on KNN by 10-fold cross-validation �97

PseAAPSSM with LDA based on KNN by 10-fold cross-validation �84

The proposed method: CoPSSM with intelligent KLDA based

on DGGA

CoPSSM with KLDA based on KNN and Jackknife test 87.44

Dataset 2 Nuc-PLoc [7] Fusion of PsePSSM and PseAAC based on Ensemble classifier by Jackknife

test

67.4

Effective Fusion Representations [4] DipPSSM with LDA based on KNN by 10-fold cross-validation 95.94

PseAAPSSM with LDA based on KNN by 10-fold cross-validation 88.1

The proposed method: CoPSSM with intelligent KLDA based

on DGGA

CoPSSM with KLDA based on KNN and Jackknife test 90.34

Dataset

3

Gneg-PLoc [34] Fusion of GO approach and PseAAC based on Ensemble classifier by

Jackknife test

87.3

Nonlinear dimensionality reduction method [12] Fusion of PSSM and PseAAC with KLDA based on KNN by Jackknife test 98.77

The proposed method: CoPSSM with intelligent KLDA based on

DGGA

CoPSSM with KLDA based on KNN and Jackknife test 92.34

Dataset

4

Gneg-PLoc [34] Fusion of GO approach and PseAAC based on Ensemble classifier by

Independent test

89.3

The proposed method: CoPSSM with intelligent KLDA based on

DGGA

CoPSSM with KLDA based on KNN and Independent test 94.71

https://doi.org/10.1371/journal.pone.0195636.t011
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representations for protein subnuclear localization and to study other machine learning classi-

fication algorithms [4].
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