
R E S E A R CH A R T I C L E

Assessing the utility of CASP14 models for molecular
replacement

Claudia Millán1 | Ronan M. Keegan2 | Joana Pereira3,4 |

Massimo D. Sammito1 | Adam J. Simpkin5 | Airlie J. McCoy1 |

Andrei N. Lupas3 | Marcus D. Hartmann3 | Daniel J. Rigden5 | Randy J. Read1

1Department of Haematology, University of

Cambridge, Cambridge Institute for Medical

Research, Cambridge, UK

2Department of Scientific Computing, Science

and Technologies Facilities Council, UK

Research and Innovation, Oxfordshire,

Didcot, UK

3Max Planck Institute for Developmental

Biology, Tübingen, Germany

4Biozentrum, University of Basel, Basel,

Switzerland

5Institute of Systems, Molecular and

Integrative Biology, Liverpool, UK

Correspondence

Randy J. Read, Department of Haematology,

University of Cambridge, Cambridge Institute

for Medical Research, The Keith Peters

Building, Hills Road, Cambridge, CB2 0XY, UK.

Email: rjr27@cam.ac.uk

Funding information

CCP4; Max-Planck-Gesellschaft; Wellcome

Trust, Grant/Award Number: 209407/Z/17/Z;

Biotechnology and Biological Sciences

Research Council, Grant/Award Number:

BB/S007105/1

Abstract

The assessment of CASP models for utility in molecular replacement is a measure of

their use in a valuable real-world application. In CASP7, the metric for molecular

replacement assessment involved full likelihood-based molecular replacement

searches; however, this restricted the assessable targets to crystal structures with

only one copy of the target in the asymmetric unit, and to those where the search

found the correct pose. In CASP10, full molecular replacement searches were rep-

laced by likelihood-based rigid-body refinement of models superimposed on the tar-

get using the LGA algorithm, with the metric being the refined log-likelihood-gain

(LLG) score. This enabled multi-copy targets and very poor models to be evaluated,

but a significant further issue remained: the requirement of diffraction data for

assessment. We introduce here the relative-expected-LLG (reLLG), which is indepen-

dent of diffraction data. This reLLG is also independent of any crystal form, and can

be calculated regardless of the source of the target, be it X-ray, NMR or cryo-EM.

We calibrate the reLLG against the LLG for targets in CASP14, showing that it is a

robust measure of both model and group ranking. Like the LLG, the reLLG shows that

accurate coordinate error estimates add substantial value to predicted models. We

find that refinement by CASP groups can often convert an inadequate initial model

into a successful MR search model. Consistent with findings from others, we show

that the AlphaFold2 models are sufficiently good, and reliably so, to surpass other

current model generation strategies for attempting molecular replacement phasing.
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1 | INTRODUCTION

As protein structure prediction becomes more accurate and reliable, it

is becoming an increasingly useful tool in a variety of scenarios, such

as prediction of the structural context of mutations either associatedClaudia Millán and Ronan M. Keegan have contributed equally to this study.
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with disease or with escape from an immune response. It is also clear

that protein structure prediction will accelerate the experimental

determination of 3D structures, by improving the models for molecu-

lar replacement (MR).

MR is the most commonly used method to determine the

unmeasured phases needed to compute an electron density map from

a diffraction pattern. This is carried out, typically, by determining the

orientation angles and translation vector (together referred to as the

“pose”) required to superimpose the model generated by prediction

with the coordinates of the atoms in the crystal. Models generated by

structure prediction supplement the models that can be derived from

previously determined structures of homologues in the worldwide

Protein Data Bank (wwPDB),1 often involving extensive editing.

As recently as 20 years ago, it would have been fair to say that

even template-based protein models were rarely more useful for MR

than the templates on which they were based, because it was too dif-

ficult to distinguish the few ways in which they could be improved

from the vast number of ways in which they could be degraded. Since

then, modeling methods have turned a corner and are becoming pro-

gressively more useful. A test for utility in MR was introduced for

CASP7,2 showing that about half of the best available templates in

the high accuracy category could be improved by at least one predic-

tor group, although only 33 of 1588 models evaluated were better

than the best template. It should be acknowledged here that there is

less room for improvement in the high accuracy category than in cases

where no closely related template is available. Indeed, in a striking

case from CASP7, an ab initio model of a small globular protein was

predicted to sufficient accuracy that it could have been used to solve

that structure by MR.3 Other work resulted in the program AMPLE,

which seeks to isolate sufficiently accurate substructures from sets of

ab initio models by clustering and truncation.4

When model accuracy was low, a useful score could only be gen-

erated if the model was sufficiently good to identify the correct pose

in the full search. This problem was circumvented later by the use of

rigid-body refinement starting from a structural superposition instead

of the full MR search, judging the models by the log-likelihood-gain

(LLG) score of the refined model instead of by whether or not the

model could be placed. This also had the benefit of dramatically

reducing the CPU time required to explore many incorrect solutions

with poor models that lack useful signal, and ensuring that the LLG

scores corresponded with models in the correct pose. Although the

success-or-failure aspect of the MR searches was lost, the LLG scores

could still be interpreted in the knowledge that MR searches yielding

LLG values above 60 are usually correct.5

A second problem arose in MR scoring when there are multiple

copies in the asymmetric unit, or more than one type of component.

With the full MR approach, the MR scoring was restricted to those

cases for which there was a single copy of a single protein component

in the asymmetric unit of the crystal. However, the rigid body refine-

ment approach allowed these more complicated targets to be scored

by placing all copies of the tested model within a background that

includes the deposited structure for all other components of the

crystal; the increase in the LLG obtained when adding the tested

model to the background structure alone was the measure of model

quality.

A Phaser script to carry out rigid-body refinement calculations,

written by Gábor Bunk�oczi, was used by other assessors in the refine-

ment category of CASP10,6 as well as by us for both the refinement7

and template-based modeling8 categories of CASP13. This script was

again used here for assessment in CASP14.

Problems remain with the rigid-body refinement approach, not

least the fact that it requires diffraction data to be made available to

assessors; not all crystallographers contributing targets are able

to share these data in advance of publication. A substantial number of

targets and domain evaluation units (EUs) derived from them now

arise from cryo-EM structure determinations (21 EUs from seven

structures in CASP13,9 and 22 EUs from seven structures in CASP14,43)

and hence have no diffraction data. In addition, the LLG scores vary in

a crystal-form-dependent fashion, depending on the resolution and

quality of the data, the number of copies of the protein in the asym-

metric unit of the crystal, and the fraction of the asymmetric unit

accounted for by the modeled component. Comparisons among

targets require some normalization, generally through the calculation

of Z-scores.

In this study, a novel likelihood score is introduced, the “relative
expected LLG” (reLLG) that requires only the coordinates of the target

to rank the suitability of a model for MR. Most significantly, it is a

crystal-form independent measure. We test the reLLG against the

LLG score as a ranking measure and demonstrate its utility as a more

convenient and robust measure, which should supersede the use of

the LLG for this purpose. We find that the ability of refinement groups

to improve reLLG values correlates well with their ability to improve

the performance of refinement targets in actual MR experiments.

Finally, our results provide another metric by which the superiority of

the AlphaFold210 models over the others in the assessment can

be seen.

2 | MATERIALS AND METHODS

2.1 | Target selection for log-likelihood-gain
scoring

In CASP, structures contributed for the prediction season are exam-

ined and divided into smaller pieces (often individual domains) that

usually have a relatively compact structure. These are referred to as

“evaluation units” or EUs. For CASP14, a total of 96 EUs were

selected for evaluation of structure prediction. Prior to the CASP14

meeting, diffraction data were made available by the experimentalists

who contributed 32 crystal structures, from which 54 EUs were

drawn. These EUs were therefore able to be included in the MR

assessment, which used the previously described diffraction data-

dependent LLG score. Diffraction data were not available at the time

of assessment for the remaining 17 EUs drawn from other crystal
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structures, nor of course for the EUs drawn from cryo-EM or NMR

structures.

In the refinement round, a total of 49 prediction targets were

selected. These included seven “extended” targets and seven “dou-
ble-barrelled” targets used to conduct additional experiments in

CASP14. For the extended targets, refined models were collected

after the initial 3-week period and again after an additional 6 weeks,

during which more extensive computations may have been per-

formed (denoted with an “x” in the target name). For the double-

barrelled targets, two starting models were chosen for refinement,

one typically chosen from the server models and the other from

models submitted by the AlphaFold2 group (denoted with “v1” or

“v2” in the target name, with the “1” or “2” chosen randomly).

Thirty-four of the 49 total targets were derived from structures

determined by X-ray crystallography, of which 20 had diffraction

data available at the time of assessment and could therefore be

used for LLG calculations.

2.2 | Model selection

For the double-barrelled refinement targets, one group recognized

correctly that one of the two starting models (the AlphaFold2 model,

though it was not identified as such) was superior to the other, and

they submitted the better model as a refinement model for the poorer

one. While the ability to recognize good models is laudable, it does

not reveal anything about the ability of the group to carry out refine-

ment, so the Alphafold2 models provided by this group were excluded

from consideration. All other models for both structure prediction and

refinement were evaluated.

2.3 | Evaluation measures

2.3.1 | Log-likelihood-gain

As in the case of CASP13, the LLG for each model of each EU was

computed by rigid-body refinement in Phaser, using the rest of the

final crystal structure as a fixed background for the calculation.

The initial superposition of the evaluation unit on the target was car-

ried out using the sequence-independent structure alignment program

TM-align.11 To allow for an assessment of the impact of the predicted

error estimates, the LLG calculations were performed in two different

modes for each prediction: once with the B-factor field interpreted as

error estimates (used to weight the MR calculations as discussed

below) and once with all B-factors set to a constant value. From each

of these scores, we subtracted the EU-specific null-model LLG (the

LLG value of the models with the lowest GDT_HA, corresponding to

the noise), thus calculating the equivalent to the CASP13 increase in

LLG from the background. The definition of the EU-specific null-

model-LLG stems from the observation that at low GDT_HA, LLG

values in GDT_HA versus LLG plots can be approximated by linear

regression for a given EU.

To calculate the EU-specific null-model-LLG, for each EU, the

models were binned into 100 equally spaced GDT_HA bins and the

average LLG value for each bin taken. This average was computed

iteratively, removing at each iteration those data points with an LLG

1σ below the average until no more data points were excluded. Out

of these bins, the first 35% (bottom 35% GDT_HA) were considered

further, and the average of their average LLG taken. Those bins with

an average LLG within 3σ the average over all bottom 35% were

sorted by their average LLG and the middle 80% taken. A linear model

was fitted to the averages of these bins and the intersection in the

y axis taken as the null-model-LLG. All models with an LLG below

the corresponding null-model-LLG were assigned a score of zero. This

can happen if the entries in the B-factor field for a model are all too

large to correspond to sensible root-mean-square displacement

(RMSD) estimates and effectively downweight the contributions of

the atoms to zero. The likelihood calculations can also fail for compu-

tational reasons, such as if the model represents an unfolded protein

and extends over such a large volume that memory limits are

exceeded in the FFT calculations of structure factors. Models leading

to such failures are also assigned a score of zero.

We refer to the difference LLG score as the dLLG for short.

2.3.2 | Relative expected log-likelihood-gain

As discussed above, there are substantial advantages to a likelihood

score that measures suitability for MR independent of crystal form or

structure determination method.

By the correlation theorem of Fourier transforms, the correlation

between electron densities is proportional to the complex

correlation between structure factors calculated from those electron

densities. In turn, the complex correlation in a resolution shell is equiv-

alent to the resolution-dependent σA value used in crystallographic

likelihood targets, such as the log-likelihood gain on intensities (LLGI)

used for MR.12 (Note that the complex correlation in a resolution shell

is also equivalent to the Fourier shell correlation, or FSC, commonly

used to assess cryo-EM reconstructions.13) We have shown that there

is a close relationship between σA and the score expected to be

obtained in likelihood-based MR. The expected log-likelihood-gain

(eLLG) can be approximated5 as the sum, over all Fourier terms, of

σ4A=2, allowing valuable optimizations of the MR strategy depending

on the qualities of the model and the data.14 This relationship

between electron density overlap and LLG is the basis of the reLLG

score discussed below.

Superposition of model and target with an algorithm such as that

in the LGA program15 will not generally optimize the electron density

overlap. Therefore, to enable the calculation of the reLLG score, a

new phased rigid-body refinement mode was implemented in phase-

rtng, which is under development to replace and enhance the func-

tionality of Phaser.16 The rigid-body refinement starts from a

sequence-independent superposition using LGA.15 Instead of optimiz-

ing the LLGI score, which lacks phase information, it uses a phased

likelihood target. This target starts from the assumption, based on the
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Central Limit Theorem, that structure factors computed from two sup-

erimposed models are related by a bivariate complex normal distribu-

tion; the assumption of multivariate complex normal distributions also

underlies many likelihood-based crystallographic algorithms, including

MR, refinement and experimental phasing. The probability distribution

relating two sets of structure factors is characterized by a Hermitian

covariance matrix. This takes a particularly simple form if the structure

factors are first normalized, giving E values for which the mean-

squared value is one. In this case, the off-diagonal complex covariance

term of the covariance matrix becomes the complex correlation, σA:

Σ¼ ⟨EtE
�
t ⟩ ⟨EtE

�
m⟩

⟨E�
tEm⟩ ⟨EmE

�
m⟩

" #
¼ 1 σA

σA 1

� �

Note that a complex covariance will in general be a complex number,

but σA is a real number because, if a systematic phase shift were

known between the two structures, that would imply the existence of

a known relative translation vector, which could be corrected instead.

The likelihood target is the conditional probability of the target

structure factors given the known model structure factors. This is

derived from the joint distribution by standard manipulations to

obtain the conditional variance of the target E-value given the model

and its expected value:

Σ¼1�σ2A

⟨Et⟩Em
¼ σAEm

These parameters are used to express the conditional probability as a

complex normal distribution:

p Et;Emð Þ¼ 1

π 1�σ2A
� �exp � Et�σAEmj j2

1�σ2A

 !

The target that is optimized is a log-likelihood-gain, obtained by taking

the logarithm of the conditional probability and subtracting the loga-

rithm of the probability of the null hypothesis, which is the Wilson dis-

tribution of structure factors17 and is equivalent to the conditional

probability when σA is zero, that is, when the model is uncorrelated to

the target and is thus uninformative. The contribution of a single Fou-

rier term to the total LLG is given in the following:

LLG Et;Emð Þ¼
2EtσAEmcos Δϕð Þ�σ2A E2t þE2m

� �
1�σ2A

� ln 1�σ2A
� �

The phased log-likelihood-gain is a function of the orientation and

position of the model relative to the target, and of the current value

for σA for each structure factor pair. The orientation is defined in

terms of three rotation angles specifying rotations of the pre-oriented

model around axes parallel to x, y and z running through the center of

the model. Because the perturbations of the initial orientation will be

small, these rotations will be nearly orthogonal and will therefore

behave well in the optimization. The position is defined in terms of

translations along the x, y, and z axes, which are orthogonal and are

essentially independent of the rotations applied around the center of

the model. The σA values are a function of the resolution of the rele-

vant structure factors and are defined in terms of the radial RMSD for

coordinate errors drawn from a single 3D Gaussian. The value of σA is

given, as a function of resolution, by the Fourier transform of that

Gaussian:

σA rmsd,sð Þ¼
ffiffiffiffi
fp

p
exp �2π2

3
rmsd2s2

	 


where fp is the fraction of the target explained by the model, assumed

to be one for the calculations reported here, rmsd is the refined

parameter and s is the magnitude of the diffraction vector (the inverse

of the resolution).

The refinement against the phased log-likelihood-gain can be

seen to optimize the electron density overlap: EtEmcos Δϕð Þ is equiva-
lent, by the correlation theorem, to the contribution of a Fourier term

to the density correlation. The variance term in the phased log-likeli-

hood-gain is controlled by the rmsd parameter, which will be optimal

when the σA values computed as a function of resolution from that

rmsd match the mean values of EtEmcos Δϕð Þ in resolution shells.

Once an optimal superposition is obtained, structure factors from

the target and the superimposed model are compared in resolution

shells to obtain an FSC curve. The eLLG is then calculated by accumu-

lating the sum of FSC4=2, weighted by the number of Fourier terms in

each shell. This eLLG varies with the number of Fourier terms, deter-

mined by crystal lattice volume (size of the target), so normalization to

a relative eLLG (reLLG) is required to put the scores on a common

scale for all target-model pairs. The normalization cannot be carried

out simply by comparing the eLLG to what one would expect for a

perfect model, because the conditional probability for a perfect model

with perfect data is a delta function, which would yield an infinite

LLG. We resolve this problem by introducing an “ideally imperfect

model”, that is, the best model one could reasonably expect to get

from a high-resolution structure determination of the same protein in

a different crystal form, given the inevitable errors in any experimental

structure and the differing influence of crystal packing and other envi-

ronmental effects. By comparing structures of the same protein in dif-

ferent crystal forms18 and by extrapolating the dependence of

structural variation with sequence identity to 100% identity19 it

emerges that the best one might hope for is an effective rmsd of

about 0.4 Å. The reLLG is therefore computed by dividing the eLLG

for the model being tested by the eLLG that would be obtained for σA

values computed for a complete model with rmsd set to 0.4 Å.

The reLLG calculation also requires making a choice for the high

resolution limit. A calculation carried out to a higher resolution limit

would be more sensitive to model errors, whereas the use of lower

resolution would be more forgiving. In principle, one could define

scores based on different resolution limits, analogous to the way that

the GDT_TS score is more forgiving than the GDT_HA score.15 We

have chosen a resolution limit of 2 Å for calculations here for two

MILL�AN ET AL. 1755



reasons. First, the median resolution of crystal structures in the

wwPDB1 is close to this value: 2.2 Å overall, and 2.1 Å for the year

2020. Second, 2 Å is approximately the resolution at which most

structures can be completed starting from even a partial correct MR

solution.20

We note that it would be possible to compute an eLLG from the

σA curve defined by the refined rmsd parameter, and this could even

be done analytically. The advantage of using the actual FSC curve

from the comparison of structure factors is that no assumptions are

made about the distribution of coordinate errors in the model. The

use of a single rmsd requires that all the coordinate errors are drawn

from the same 3D Gaussian distribution, whereas models have locally

varying errors. It is further assumed that the coordinate errors and the

atomic scattering factors are uncorrelated, whereas atoms on the sur-

face of a protein both tend to have higher B-factors and are modeled

less accurately.21

2.3.3 | Measuring the utility of coordinate error
estimates

For a number of years, predictors submitting models for CASP have

been asked to provide estimated RMS positional errors in the B-factor

field of the PDB files containing the models, on the principle that

knowing how confident you should be in a model is as useful, in prac-

tice, as the model itself. By CASP13, most predictors in the template-

based modeling category included error estimates8 but many partici-

pants in the refinement category did not.7 In this round of CASP, we

were pleased to see that most predictors and participants in the

refinement category do seem to have provided coordinate error esti-

mates within a plausible range.

Such error estimates are extremely valuable for MR models. If the

B-factors of the models are increased by an amount that effectively

smears each atom's density over its probability distribution of true

positions using the following equation, the electron density overlap,

and therefore the LLG score, is optimized.

B¼8π2

3
σ2r

This approach was suggested in the high-accuracy assessment for

CASP72 and supported by tests using either the actual or estimated

coordinate errors in models.22 The practical impact was demonstrated

further by showing that this treatment significantly improves the util-

ity for MR of models submitted to CASP10,23 as well as in the evalua-

tion of template-based modeling for CASP13.8

To measure the utility of the error predictions numerically, each

model was evaluated two times. In the primary calculation, the num-

ber in the B-factor field of the model was transformed using the equa-

tion above from a coordinate error estimate into a B-factor providing

an error weight; in the secondary calculation the B-factor was

substituted with a constant value set to 25 Å.2 (Because the calcula-

tion is carried out with normalized structure factors, or E-values, the

actual value of the constant B-factor is irrelevant. By extension, the

mean value of any B-factor distribution can be altered without affect-

ing the result.) The difference between the two results is a measure of

the value added by the error estimates.

2.4 | Computing group rankings

For all the evaluation measures, Z-scores were computed using an

algorithm that has frequently been applied in other rounds of CASP.

The primary ranking was based on model #1 of up to five models sub-

mitted for each target; this choice implicitly rewards the ability of

groups to assess the relative quality of their models. Z-scores were

computed in two steps: a set of initial scores was calculated based on

the mean and standard deviation (SD) of all models under consider-

ation. All models yielding a Z-score below �2 in the first pass were

considered as outliers and the Z-scores recomputed using the mean

and SD obtained when the outliers were excluded. At the end, the

minimum Z-score was set to �2 to avoid excessively penalizing out-

liers. For ranking, all Z-scores were summed and a penalty of �2 intro-

duced per target for which a method did not produce a model,

effectively treating missing models as outliers.

For rankings based on either the conventional LLG or the new

reLLG score, the primary ranking was based on interpreting the B-

factor field as an estimate of the RMS error in that atomic position, as

requested in the submission instructions provided by the CASP orga-

nizers. The difference between this LLG or reLLG for error-weighted

models and the value computed setting all B-factors to a constant

value was used to measure the value added by the coordinate error

estimate.

2.5 | Software and data availability

The tables with the reLLG calculations as well as the Jupyter note-

books24 used to analyze them can be found in the following reposi-

tory: https://github.com/clacri/CASP14_MR_evaluation. The Jupyter

notebooks have been prepared to be run in the cloud environment of

Google Collaboratory,25 so that the results can be reproduced without

having to set up a specific local environment. The analysis relies on

the following python scientific libraries: Matplotlib,26 Pandas,27 and

Numpy.28

Computation of the reLLG was implemented in phaser_voyager

(manuscript in preparation), a structural biology computing framework

that exploits phasertng16 in its core. Its focus on modularity and

abstraction enables rapid implementation of specific strategies, track-

ing of pathways, and result analysis. The phaser_voyager strategy

“CASP_rel_eLLG” is distributed in recent builds of Phenix29 starting

with the dev-4307 version. It is available from the command line as

phenix.voyager.casp_rel_ellg, requiring the pdb of the target structure

and a path to the folder containing models to evaluate (assumed to be

pre-oriented by default, but with an option to carry out a superposi-

tion). In addition, the command phenix.voyager.rmsd_to_bfactor is
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available to facilitate the conversion of estimated RMSD in the B-

factor field to the equivalent B-factor and the pruning of residues with

RMSD above a chosen threshold.

3 | RESULTS

3.1 | Structure prediction assessment

The statistical analysis and ranking calculations were carried out as

described in Materials and Methods. Briefly, the primary ranking was

based on the sum of the Z-scores for the #1 predictions when the B-

factor field was interpreted as an error estimate, and including the

penalty of assigning a Z-score of �2 for missing models.

3.1.1 | Group rankings by difference log-likelihood-
gain (dLLG) scores

Conventional dLLG scores were calculated for 54 evaluation units that

correspond to the 32 targets for which the experimental diffraction

data were available to us at the time of assessment. We calculated

the scores with and without using the error estimates that were

intended to be encoded in the B-factor field, thus assessing the

impact of the error estimates. The resulting rankings are shown in

Figure 1.

3.1.2 | Group rankings by reLLG scores

One hundred and forty-six groups presented models for at least some

of the 96 EUs. While calculation of the dLLG score requires diffraction

data (limited at the time of assessment to 54 EUs), the calculation of

the reLLG does not, and so allows all 96 EUs to be included in the sta-

tistics. This includes 71 EUs derived from structures determined by X-

ray crystallography, 22 from cryo-EM structures and three from NMR

structures.

In order to compare and assess the novel reLLG score against the

traditional CASP dLLG score, we addressed three questions. First, do

the dLLG and reLLG yield similar rankings of models for a specific tar-

get? Second, do the dLLG and reLLG yield similar group rankings?

Third, do the reLLG calculations obtained from cryo-EM or NMR

experiments also yield correlated group rankings?

We compared reLLG scores with dLLG scores for the targets for

which diffraction data were available at the time of assessment. We

do not expect these measures to be linearly related to each other,

because the dLLG score is affected non-linearly by factors such as

model quality (which has different effects for different resolution

limits) or the fraction of the asymmetric unit of the crystal

accounted for by the model. Because the reLLG calculation has

been designed to cope better with numerical issues caused by the

large estimated RMS errors found in some CASP models, compari-

sons of the scores obtained interpreting the B-factor field as an esti-

mated error can be complicated by the relative instability of the

Phaser calculations with some models. To avoid these complications,

we chose to compare the reLLG and dLLG values obtained when

setting the B-factors constant. Figure 2 shows scatter plots for four

disparate cases, spanning different categories of modeling difficulty,

different fractions of the asymmetric unit accounted for by the

model, and different resolution limits. The relationship between the

two scores is roughly monotonic, indicating that they will deliver

similar ranking order for models.

Next, we examined whether the group ranking on the subset of

targets for which diffraction data were available was similar. Figure 3

shows a very strong correlation between the ranking orders, with the

top five groups being identical for the two measures.

F IGURE 1 The top 20 groups ranked by the sum of Z-scores of the dLLGs for their #1 predictions. Methods were ranked based on the dLLGs
computed when considering the values in the B-factor field as error estimates (predicted RMSD to the target)
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To verify that there are no systematic differences in how reLLG

would score models of structures determined by other methods, we

compared the group ranking scores that would have been achieved

using only cryo-EM targets or NMR targets with those achieved using

X-ray targets. The scatter plots in Figure 4 demonstrate a strong cor-

relation among the rankings using all three types of target. Note that

the NMR scores are based on only three EUs.

Given that rankings on common targets are very similar using

either dLLG or reLLG, that reLLG rankings on sets of targets derived

by different methods (X-ray, cryo-EM, NMR) are similar, and that the

use of the reLLG allows the use of a much larger data set (96 EUs

rather than 54), we expect the ranking based on reLLG to be closer to

what would be achieved for dLLG if diffraction data were available for

all 96 EUs than the dLLG ranking based on only 54 EUs. The ranking

based on reLLG is more robust, and we take it as the authoritative

ranking for this study.

The ranking for all targets by reLLG Z-score (Figure 5a) is

again dominated by AlphaFold2, as also seen with dLLG and

F IGURE 2 Scatter plots comparing dLLG and reLLG scores for models of four EUs illustrating different circumstances. (A) T1085-D3: TBM-

hard case in which the model comprises 9.8% of the structure, data to 2.26 Å resolution. (B) T1032-D1: TBM-hard case, six copies of the target in
the asymmetric unit, data to 3.3 Å resolution. (C) TBM-easy case, two copies, data to 1.9 Å resolution. (D) FM case, 1 copy, data to 1.5 Å
resolution
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more traditional CASP measures. The other top performing

groups are BAKER, BAKER-experimental, BAKER-ROSETTAserver

and FEIG-R2, followed by a few other variants of FEIG group

algorithms.

We note that the top three groups are the same in this ranking as

in the rankings using just targets for which diffraction data are avail-

able, but there are substantial differences in other methods near the

top. Based on the comparisons discussed above, we believe that these

differences reflect sampling error rather than a systematic difference

between targets with and without diffraction data. Such sampling

error should be reduced for the larger set of targets, further

supporting the decision to use the reLLG Z-score as the primary rank-

ing measure in this study.

3.1.3 | Utility of coordinate error estimates in MR
calculations

CASP participants are asked to contribute error estimates for their

predicted models in the B-factor field of submitted PDB files. While

the group ranking analysis in this study has been done using the infor-

mation from those estimates, we also computed the reLLG scores

substituting those estimates by a constant value. We then computed

the difference between the sum of the reLLG scores for each group,

either using or not using the error estimates. As can be observed in

Figure 5b, the general trend for the top scoring groups is that the

inclusion of the error estimation in the reLLG calculation improves

the score.

F IGURE 3 Ranking scores based
on dLLG (magenta bars) and reLLG
(blue bars) using only targets for
which diffraction data were available
at the time of assessment. Groups are
ordered by their reLLG ranking score

F IGURE 4 Scatter plots comparing average reLLG scores per group by experimental technique. (A) X-ray versus CryoEM. (B) X-ray
versus NMR
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3.1.4 | Accuracy self-assessment in the prediction
category

The ability of the groups to identify their best models and rank them

is an important aspect for prospective users, as many users will focus

on the top model. Arguably, this is somewhat less important for MR

models, as it is reasonably common (though not universal) to test a

number of alternative models. One metric that can be used to score

the accuracy of self-ranking is a rank correlation. We chose instead to

use the fraction of the time that the #1 model is also the best of the

five models submitted, because it is easy to understand and

corresponds to one of the possible MR scenarios where only the best

model is tested.

A scatter plot comparing the percentage of #1 models ranked

correctly with the reLLG ranking score (Figure 6a) shows that

there is no overall correlation (correlation coefficient of �0.02)

between the ability of an algorithm to predict structure and the

ability to rank a set of predictions. This is unexpected, as one

would expect ranking to be an essential component of successful

prediction. Nonetheless, Figure 6b shows that the most successful

groups do better than random, with BAKER and FEIG-R1

doing best.

F IGURE 5 Ranking of
predictions by reLLG. (A) Group
ranking by the reLLG ranking
score for model #1 submissions.
(B) Improvement in performance
for the top groups when the
coordinate error estimates are
used to weight the reLLG
calculation. The 24 groups who

were in the top 20 for either the
weighted or unweighted scores
are included
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3.2 | Refinement assessment

3.2.1 | Refinement group ranking by reLLG scores

In this category, 36 groups contributed to 44 targets. Group rankings

were computed in the same way as for the prediction round. To

assess whether starting models were generally improved or degraded

by refinement, we included in the ranking calculations a “naïve predic-

tor”, who returns the starting model unchanged. One complication in

scoring the naïve predictor was that the B-factor field of the PDB files

containing the starting models did not typically contain estimated

RMS coordinate errors; for consistency we evaluated the starting

models by computing the reLLG score with all B-factors set to a con-

stant. For this reason, even if a refinement group had left the coordi-

nates unchanged but provided useful error estimates, they would

have surpassed the naïve predictor.

Figure 7a shows that the refinement of starting models is a diffi-

cult problem, as only six groups managed to consistently improve the

models. In keeping with findings from other CASP metrics,30 the top

three groups (FEIG, FEIG-S, and DellaCorteLab) employed restrained

molecular dynamics methods. It has been argued that physics-based

molecular dynamics methods add value in being orthogonal to the

F IGURE 6 Percentage of targets for each group for which model #1 was the highest scoring in reLLG. Only the targets for which five models
were submitted were considered. (A) Scatter plot of percentage correct versus average reLLG Z-score for the prediction category. All groups are
included except AlphaFold2, for which the average reLLG Z-score is 8.28 and the percentage correctly ranked is 26.1. (B) Bar plot of percentage
correctly ranked with the top 20 best groups from the overall prediction category ranking. (C) Scatter plot for the refinement category, as in (A),
including all groups. (D) Bar plot, as in (B), with all groups from the refinement category
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more information-based methods that predominate in the initial

model prediction approaches, including the deep-learning approaches

predating AlphaFold2.31 Smaller, but still useful, improvements were

achieved by the BAKER protocol, which complemented Rosetta

refinement with penalties for large residue-pair distance error

estimates.32

F IGURE 7 Ranking of
refinement models by reLLG.
(A) Group ranking by the reLLG
ranking score for model #1
submissions. (B) Improvement in
performance when the coordinate
error estimates are used to weight
the reLLG calculation
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3.2.2 | Utility of coordinate error estimates

The effect of including the coordinate error estimates in the reLLG

scoring was evaluated as for the prediction category. Figure 7b shows

that, again, considerable value was added to the model by including

good coordinate error estimates. How much this added can be seen

from an alternative ranking based on reLLG Z-scores computed with

constant B-factors (Figure S1), which therefore judge purely coordi-

nate accuracy and not the accuracy of the error estimates. A compari-

son of Figure S1 with Figure 7a shows that only three groups

outperform the naïve predictor, based only on coordinate accuracy:

BAKER, FEIG and FEIG-S. The inclusion of error weighting moves

Kiharalab_Refine up from 14th position to 6th, above the naïve pre-

dictor, showing the real-world value of their excellent performance in

coordinate error prediction, illustrated by Figure 7b.

3.2.3 | Accuracy self-assessment in the refinement
category

There is a weak positive correlation (correlation coefficient of 0.31)

between the ranking scores for different groups and their ability to

correctly rank their best model as #1 (Figures 6c,d). One would expect

this to be a strength in deciding whether a starting model had been

improved, but it is difficult to see why this ability should be more

important for refinement than for the initial prediction where no over-

all correlation was seen.

3.2.4 | Success of the refined models in MR

We performed MR using search models generated in the refinement

category for those cases where diffraction data were made available.

There were 13 targets that fulfilled this requirement. Four of these

included extended submissions benefitting from 6 weeks of refine-

ment in addition to the standard 3-week refinement submissions

(T1034, T1056, T1067, and T1074). Further to this, T1053, T1067,

and T1074 were double-barrelled cases with refinement performed

on two initial starting models. In each of these cases one of the

starting models was an AlphaFold2 prediction. This gave a total of

20 sets of refined models to be tested in MR. Refined models from

36 different groups were included with each group producing up to

five models per target. Starting models were also used in MR for com-

parison. The full set of target details is provided in Table 1.

The MrBUMP automated pipeline33 from the CCP4 suite34 (ver-

sion 7.1.013) was used to take each set of refined search models and

provide them to Phaser35 (version 2.8.3) to perform the MR trials.

Some of the target crystal structures contained more than one protein

TABLE 1 The set of prediction targets used in the refinement category where experimental diffraction data were available

Target Refinement
Nmol
asu

Space
group

Resolution
(Å)

Target seq
length

Model seq
length

% of
scattering

No. models
(refined)

T1030 R1030-D2 1 P21221 3.03 274 120 43.8 131

T1034 R1034 4 P21 2.057 157 157 25.0 142

R1034x1 4 P21 2.057 157 157 25.0 131

T1038 R1038-D2 3 P21 2.5 191 77 13.4 130

T1049 R1049 1 P212121 1.75 135 135 100 138

T1052 R1052-D2 1 H3 1.976 833 214 25.7 117

T1053 R1053v1 4 C2221 3.294 521 172 8.2 130

R1053v2 4 C2221 3.294 521 172 8.2 123

T1056 R1056 1 P21 2.3 170 170 100 132

R1056x1 1 P21 2.3 170 170 100 125

T1067 R1067v1 1 P23 1.44 222 222 100 132

R1067v2 1 P23 1.44 222 222 100 130

R1067x1 1 P23 1.44 222 222 100 106

T1074 R1074v1 1 C2221 1.5 133 133 100 143

R1074v2 1 C2221 1.5 133 133 100 137

R1074x2 1 C2221 1.5 133 133 100 128

T1082 R1082 3 P21 1.147 76 76 33.3 149

T1085 R1085-D1 1 P1 2.491 400 168 42.0 142

T1090 R1090 1 P212121 1.77 190 194 100 148

T1091 R1091-D2 1 P21212 2.994 465 108 23.2 142

Note: The three double-barrelled cases had an additional refinement using an Alphafold2 starting model (highlighted). Refinements denoted with an “x” are
where the model was refined for an additional 6 weeks. Cases with “D” denote starting models representing a single domain from the target.
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molecule in the asymmetric unit, but we searched for only one copy

to reduce the time taken for the MR run. For proteins with multiple

components this is a more demanding test, because the signal in the

MR search has a quadratic dependence on the fraction of the scatter-

ing accounted for by the model.5 We deemed this to be an acceptable

compromise as correct placement of the first copy is often indicative

of a good chance of success in MR. The likelihood target in Phaser

requires an estimate of the effective RMS coordinate error for the

search model, which we set to 1.2 Å for all search models. For all of

the refined models used, the B-factor field of the coordinate file was

interpreted as an estimated RMS error, as discussed in Materials and

Methods. To test if the solution in each trial was correct, we used

phenix.famos from Phenix29 to calculate a mean log absolute devia-

tion (MLAD) between the solved structure and the placed search

model, accounting for any origin shift. A value of <1.5 for MLAD was

used as the criterion for successful placement in MR.

Figure 8 shows the overall performance of all the groups for each

of the refined model sets. Of the 16 starting models for the 13 targets,

only five of these proved to be successful search models in MR. Three

of these were the AlphaFold2 predictions, with the remaining two

being the starting models for R1034/R1034x1 (provided by the Seok

server) and R1056/R1056x1 (from UOSHAN). Using these starting

models, most groups that participated produced refined models that

could also be used successfully in MR. In nine of the remaining

13 cases (including extended targets) refined models were produced

that were sufficient for correct placement in MR. The BAKER and

FEIG groups proved to be the most successful, yielding positive

results in 13 and 12 cases, respectively. Notably, the same six groups

appear at the top of the actual MR test as those above the naïve pre-

dictor in the reLLG ranking (Figure 7a); the groups that ranked below

the naïve predictor provided very few models that succeeded in MR

when the starting model failed. Figure S2 shows a ranking of groups

by the number of MR successes, along with a comparison of the rank-

ings obtained with the dLLG and reLLG Z-scores.

An example of a successful refinement by the FEIG-S group of a

starting model unsuitable as a search model in MR, for the target

T1090, is shown in Figure 9.

For two of the four targets subjected to the extra 3 weeks of

refinement time, groups MUFOLD, Jones-UCL, GLoSA, FOLDYNE,

and UNRES-template were able to exploit the extra time to improve

some of their models sufficiently to be suitable as search models for

MR. Other groups including BAKER and FEIG were able to increase

their success rate with the extra time. However, the overall results

were mixed. For three of the four targets, the total number of models

succeeding in MR declined following the extra refinement (Table 2).

Only in the case of T1067 did numbers improve from 21 to 24. For

the double-barrelled cases, it is clear that the high accuracy of the

AlphaFold2 starting models made them very difficult to improve upon

with refinement. Although the level of success for refined models pro-

duced from these was very high, the overwhelming majority of the

models scored lower LLG and MLAD values in MR than the original

AlphaFold2 predictions.

F IGURE 8 The plot shows the success of the group's refined models in MR for each of the 20 refinement cases where experimental
diffraction data were available. Groups are ordered from left to right by the number of cases where they produced at least one successful
solution. Refinement cases involving the extended extra 6 weeks of refinement are shown in italics. The three cases where an AlphaFold2
prediction was used as the starting model are R1053v2, R1067v2, and R1074v1. Points are encircled in red where the starting model was also
successful in MR
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There were only four refinement targets for which none of the

starting models or refined models succeeded in these MR tests:

R1052-D2, R1053v1, R1082, and R1091-D2. However, in each of

these cases either the Ample MR pipeline36 or the Phaser-voyager

pipeline37 was able to succeed using AlphaFold2 models.

3.3 | Assessment of progress

As seen with many other CASP metrics, the quality of the AlphaFold2

models for MR represents a step change in what can be achieved. It is

difficult to attach a numerical value to quantify progress in MR, but

F IGURE 9 (A) Starting model (gold) superimposed onto the target structure (blue). (B) Refined model #1 from FEIG-S group (gold)
superimposed onto the target (blue). Unlike the original refinement target (A), the FEIG-S refinement succeeded in MR and achieved an LLG of
145 and a local map correlation of 0.44. Panels (C) and (D) compare the quality of the map in the region around residue 153 from the phases
generated from the placed refinement target (by superposition onto the placed FEIG-S model) and the MR-placed FEIG-S refinement. The phases
generated by the model and the resulting electron density map are much improved by the refinement

TABLE 2 Results for the “extended” models allowed an additional 6 weeks for refinement

Target

3 weeks 6 weeks

Models successful in MR Unique to 3 weeks Models successful in MR Unique to 6 weeks

T1034 110 23 100 13

T1056 54 17 51 14

T1067 21 10 24 13

T1074 12 6 8 2

Note: The table shows the number of successes achieved in MR across all of the models for those groups that participated. The number of unique solutions

at each stage of the refinement is also shown.
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there is strong qualitative evidence. In previous rounds of CASP, the

quality of models for MR was only measured for the easy and hard

subsets of template-based-modeling (TBM), but not for the most diffi-

cult free-modeling (FM) and borderline FM/TBM categories, because

almost none of the FM and FM/TBM models were judged to bear suf-

ficient resemblance to the targets to make that a meaningful exercise.

In addition, this is the first occasion in which targets contributed to

CASP were actually solved using submitted models.

Target difficulty in CASP has traditionally been measured using

the mean of target rankings by sequence coverage and sequence

identity to the closest homologue of known structure.38 Figure 10a

shows that model quality for MR, measured by the reLLG score, still

has some dependence on target difficulty by this measure, but there

are useful models across the spectrum. In almost all cases, the best

models are those produced by AlphaFold2. One striking example is

their model #2 of T1078-D1, which achieves an reLLG score of 0.648,

the highest seen for any of the targets; this is in spite of the best tem-

plate in the PDB having a sequence identity of only 9.8% and a cover-

age of 71% of the target length. AlphaFold2 model #1 for T1053-D1

is a very good model for an even more difficult target by the tradi-

tional criteria, where the closest homologue (chain A of PDB entry

3akk39) has a sequence identity of only 7.2% and a coverage of

47.8%. Figures 10b,c show the striking improvement over the best

template. Where the AlphaFold2 algorithm still has difficulties, indi-

cating room for improvement, can be seen from cases where low

scores were obtained in spite of apparently modest difficulty levels;

these are outlined in a dashed blue box at the bottom of Figure 10a.

The blue points in this box represent the best AlphaFold2 models for

(from left to right) T1093-D2, T1100-D1, T1092-D1, T1083-D1,

T1095-D1, and T1099-D1. These all represent cases of targets

extracted from subunits of larger assemblies: T1083-D1 is a subunit

of a homotetramer stabilized by coiled-coil interactions, T1092-D1,

T1093-D2, and T1095-D1 correspond to three subunits of H1097,

the phage AR9 RNA polymerase, T1099-D1 is a single subunit of the

duck hepatitis B virus capsid and T1100-D1 is a subunit of a homo-

dimer stabilized by a long coiled-coil interaction. Clearly the prediction

of structure in the absence of the structural context is still a difficult

problem. In spite of this, remarkably, the models of subunits of the

phage AR9 RNA polymerase were good enough to play a pivotal role

in solving the structure of this complex.40

The relatively poor correlation between the traditional difficulty

score and performance suggests that improved difficulty measures are

required for the newer prediction methods, which depend more on

multiple sequence alignments but less on identifying and improving

the best template or templates. In addition to the increased difficulty

of predicting structures of proteins in multimers or domains in multi-

domain proteins, Kinch et al.41 point out that prediction is harder for

proteins with large insertions, those with shallow multiple sequence

alignments or those under strong evolutionary pressure, such as viral

proteins, but easier for proteins composed of simple or common com-

binations of secondary structure elements.

Methods of similar power to AlphaFold2, when they become

readily available to the structural biology community, can be expected

to play an increasing role in structure determination. We note that the

development of the RoseTTAFold algorithm, inspired in part by fea-

tures of AlphaFold2, has already enabled the determination of several

structures that evaded previous efforts.42

4 | DISCUSSION AND CONCLUSIONS

Crystallographers have a great deal of experience carrying out MR

with models derived from homologues with different levels of

sequence identity. Although success in MR involves a combination

of factors (quality and completeness of model, quality and resolution

of diffraction data), a commonly used rule of thumb is that MR is likely

to succeed if there is a homologue with at least 30% sequence iden-

tity (for 100% sequence coverage). It is useful to also relate the reLLG

directly to solvability.

Sequence identity correlates with solvability because there is a

relationship between sequence identity and the effective RMS error,

termed the VRMS in Phaser, which is an important parameter in LLG

calculations in the MR search. The VRMS can be estimated from

sequence identity, taking into account perturbations introduced by

molecule size.19 For a complete model of a 175-residue protein

(a typical globular protein/domain size) with 100% identity to the

F IGURE 10 (A) Model quality, measured by the reLLG score
weighted by estimated RMS error, as a function of target difficulty.
The points in blue represent the best AlphaFold2 model for each
target, and the points in orange represent the best non-AlphaFold2
model for each target. (B) Superposition of chain A of PDB entry 3akk
(brown) on the structure of T1053-D1 (gray). (C) Superposition of
model #1 from AlphaFold2 (blue) on T1053-D1 (gray)
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target, the formula yields a VRMS of approximately 0.4 Å, the value

assumed for the ideally imperfect model in the reLLG calculation

(reLLG = 1.0). As sequence identity degrades, the VRMS increases as

predicted by the Oeffner et al. formula,19 and this can be translated

into a reduced reLLG, as shown in Figure 11. A sequence identity of

30% thus translates into an reLLG value of slightly <0.1. The majority

of AlphaFold2 structures across the difficulty scale reach this value, as

well as a substantial fraction of the best models from other groups

(Figure 10a).

In this study, we have not validated whether or not a reLLG over

0.1 is sufficient to solve the structures for which diffraction data are

available. However, MR trials have been carried out as part of the

high-accuracy assessment,36 addressing 32 targets and solving 30.

Twenty-six of those required no editing in the Ample truncation

procedure,4 while a further three succeeded with truncated search

models automatically generated by consideration of predicted residue

errors. One required manual splitting of model domains. In a separate

study,37 in depth MR trials using only the AlphaFold2 models were

carried out when data had become available for 34 crystal structures,

from which 72 EUs had been defined. Of the 34 structures, 31 could

be solved with AlphaFold2 models, two could be solved partially and

one could not (though it could be solved with generic helix models), at

least confirming the result for AlphaFold2 models.

4.1 | Relevance of refinement category in CASP

The CASP refinement category was instigated to encourage the devel-

opment (and allow the evaluation) of expensive computational

methods, ones for which most groups do not have the resources to

apply to the large number of targets in the prediction round. How-

ever, there has been a trend for methods pioneered by refinement

groups to be incorporated into the initial models in subsequent CASP

rounds, raising the bar for current refinement groups. In this category,

a number of server-generated models are traditionally provided for

further improvement. In CASP14, this pool of models was sup-

plemented with seven (non-server) AlphaFold2 models. Although the

best refinement groups were consistently able to improve the server-

generated refinement targets, most refinement methods degrade the

AlphaFold2 models, as seen here for MR as well as for other CASP

assessment measures.30 This is in spite of the lack, in the AlphaFold2

algorithm,10 of the explicit physics-based knowledge employed by the

most successful refinement groups (e.g., Heo et al.31). Figure 12 shows

that, with one marginal exception (a slight improvement on an

AlphaFold2 starting model), the AlphaFold2 model would have scored

equal or higher on the reLLG score compared to the best refined

model, even including the double-barrelled targets starting from

AlphaFold2 models. If the initial AlphaFold2 predicted models had

simply been resubmitted for each refinement target then AlphaFold2

would have topped the refinement rankings as well. In light of the

highest quality predictions, the refinement category as it currently

stands appears to have become redundant. Some consideration of

potential future changes can be found elsewhere in this issue.30,31

In conclusion, we have shown that the reLLG is a useful addition

to the assessment metrics for CASP and should replace the metrics

based on dLLG used in previous rounds. Although developed in the

context of MR, it can be evaluated for models of structures deter-

mined by NMR, cryo-EM or with other structural restraints. It has a

broad advantage over other metrics by combining assessment of coor-

dinate accuracy with the assessment of the accuracy of the estimates

of RMSD in coordinates. To further improve the reLLG of predicted

models (and thus their utility in MR), groups should target estimates

of individual atomic accuracy rather than grouped residue accuracy. It

should also be understood by predictors that optimization of the

reLLG ideally requires optimization as well of the predicted atomic B-

factors. To optimize the reLLG for a nearly perfect model, the B-factor

field of the PDB file should be equal to the B-factor in the target

F IGURE 11 Translation of fractional sequence identity of a
175-residue protein into an equivalent reLLG value, assuming that the
coordinate errors are all drawn from the same 3D Gaussian
distribution inferred from the sequence identity. The dashed red lines
show that a sequence identity of 0.3 would translate into an reLLG of
about 0.091

F IGURE 12 Scatter plot comparing reLLG scores of best
AlphaFold2 model from the prediction round with the best model
from the refinement round for each refinement target
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structure, whereas for a model with errors the optimal B-factor should

add to that the B-factor equivalent of the predicted RMSD. Optimiz-

ing reLLG in the current format, where there is one B-factor field in

the submitted PDB file, would actually require submitting “error”
values that, when translated into B-factors, produce the sum of the

actual B-factor of the atom and the B-factor corresponding to the

coordinate error. Since this would conflate more than one phenome-

non in one number, CASP should facilitate the submission of separate

B-factor and error estimates, by replacing the current PDB submission

format with the flexible and extensible mmCIF format.
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