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Abstract: Phytoremediation refers to the use of plants for extraction and detoxification of pollutants, providing a new and powerful 
weapon against a polluted environment. In some plants, such as Thlaspi spp, heavy metal ATPases are involved in overall metal ion 
homeostasis and hyperaccumulation. P1B-ATPases pump a wide range of cations, especially heavy metals, across membranes against 
their electrochemical gradients. Determination of the protein characteristics of P1B-ATPases in hyperaccumulator plants provides a new 
opportuntity for engineering of phytoremediating plants. In this study, using diverse weighting and modeling approaches, 2644 protein 
characteristics of primary, secondary, and tertiary structures of P1B-ATPases in hyperaccumulator and nonhyperaccumulator plants 
were extracted and compared to identify differences between proteins in hyperaccumulator and nonhyperaccumulator pumps. Although 
the protein characteristics were variable in their weighting, tree and rule induction models; glycine count, frequency of glutamine-
valine, and valine-phenylalanine count were the most important attributes highlighted by 10, five, and four models, respectively. In addi-
tion, a precise model was built to discriminate P1B-ATPases in different organisms based on their structural protein features. Moreover, 
reliable models for prediction of the hyperaccumulating activity of unknown P1B-ATPase pumps were developed. Uncovering impor-
tant structural features of hyperaccumulator pumps in this study has provided the knowledge required for future modification and 
engineering of these pumps by techniques such as site-directed mutagenesis.

Keywords: environment, heavy metals, transporter, ATPase pumps, modeling, bioinformatics

http://dx.doi.org/10.4137/BBI.S6206
http://www.la-press.com
http://www.la-press.com
http://www.la-press.com/bioinformatics-and-biology-insights-journal-j39
http://www.la-press.com
mailto:ebrahimie@shirazu.ac.ir


Ashrafi et al

60	 Bioinformatics and Biology Insights 2011:5

Introduction
Many metal ions are essential as trace elements, but at 
higher concentrations they become toxic. Nowadays, 
environmental pollution from heavy metals has 
raised great concern, because polluted soil is often 
useless for agriculture and poses a major threat to liv-
ing organisms.1 In addition, these heavy metals can 
enter the food chain and pose a high risk at the top of 
the food chain, including humans. Toxic heavy metal 
contamination accelerated dramatically at the start 
of the industrial revolution.2 The primary causes of 
this pollution are burning of fossil fuels, mining and 
smelting of metallic ferrous ores, municipal wastes, 
fertilizers, pesticides, and sewage.3 Removal of heavy 
metals from polluted soil is difficult, expensive, and 
time-consuming.

Phytoremediation has gained increasing atten-
tion as a cost-effective method for removal of heavy 
metals from contaminated sites. This method is a 
low-technological and low-cost emerging cleanup 
technology.4 It has been shown that some plants have 
the potential to detoxify heavy metals and can survive 
under metal stresses.5 High tolerance of some plants 
to heavy metal toxicity could rely either on reduced 
heavy metal uptake or increased internal sequestration, 
manifested by an interaction between the genotype 
and its environment. It is estimated that approximately 
400 plant species from different families, including 
Asteraceae, Brassicaceae, Caryophyllaceae, Poaceae, 
Violaceae, and Fabaceae, can tolerate very high lev-
els of heavy metals in the soil.6,7 The Brassicaceae 
family is best represented among these families, with 
87  species classified as metal hyperaccumulators.8 
Hyperaccumulation in plants that are endemic to met-
alliferous soils refers to their ability to tolerate and 
accumulate metals in their above-ground tissues to 
very high concentrations (approximately 100  times 
that of nonaccumulator plant species). Accumulation 
of these heavy metals in plants can occur following 
their uptake from contaminated soil.9 Specialized 
transport proteins, in the form of channels, carriers, 
and pumps, mediate the movement of heavy metals 
through membranes.10 Recent studies have shown that 
plants possess several classes of metal transporters 
that must be involved in metal uptake and homeosta-
sis, and thus could play a key role in tolerance. These 
include heavy metal transport P (CPx)-ATPases, nat-
ural resistance-associated macrophage proteins and 

cation diffusion facilitators, the zinc-iron permease 
family, and cation antiporters.11,12 Several types of 
heavy metal transporters have now been cloned 
from plants.13

CPx-ATPases are believed to act as key heavy 
metal transporters, involved not only in metal ion 
homeostasis, but also in the overall strategy for 
heavy metal tolerance.14 This superfamily includes 
five major branches and 10  subfamilies, according 
to the substrate being transported, and not according 
to the evolutionary status of the parental species.15 
Heavy metal ATPases, classified as Type IB ATPases, 
together with the closely related Type IA ATPases 
(which are thought to be involved in K transport), 
are considered to constitute a monophyletic group.16 
Type IB ATPases, which have been found in bacteria, 
archaea, and eukaryotes, are thought to have evolved 
early in the evolution process. CPx-ATPases share 
the common feature of a conserved intramembranous 
cysteine-proline-cysteine, cysteine-proline-histidine, 
or cysteine-proline-serine (CPx) motif which is 
thought to function in heavy metal transduction.17 
CPx-ATPases are characterized structurally by having 
a single subunit, ie, 8–12 transmembrane segments, 
N- and C-termini exposed to the cytoplasm, and a large 
central cytoplasmic domain, including phosphoryla-
tion and ATP binding sites.18 From our point of view, 
dissecting a large number of functional protein trough 
data mining algorithms and modeling the activity of 
protein pumps based on their structural protein attri-
butes provides a novel functional strategy for under-
standing the mechanism of phytoremediation.

Data mining problems often deal with hundreds 
or thousands of variables.19 Fitting a model, such as 
a decision tree or itemset mining, to a set of variables 
this large may require more time than is practical.20 
Usually many features determine the characteris-
tics of a protein molecule. As a result, most of the 
time and effort spent in the model-building process 
involves identifying which variables to include in 
the model. Various models, such as attribute weight-
ing (or feature selection) allow the variable set to be 
reduced in size, creating a more manageable set of 
attributes for modeling.21 A decision tree algorithm22 
predicts the value of a discrete dependent variable 
with a finite set from the values of a set of inde-
pendent variables. A decision tree is constructed by 
looking for regularities in the data, determining the 
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features to add at the next level of the tree using an 
entropy calculation, and then choosing the feature 
that minimizes entropy impurity.23 Several well-
known decision tree algorithms are available, and 
have been employed in modeling of protein ther-
mostability.24 To understand better the features that 
contribute to heavy metal transporters (ie, hyperac-
cumulators, tolerant and sensitive), it is necessary to 
identify the main features responsible for this valu-
able characteristic. Up until now, researchers have 
only considered a restricted number of protein char-
acteristics in a few selected sequences of hyperac-
cumulator pumps. It has now become obvious that 
analyzing a large number of protein characteristics 
within all available P1-ATPase pumps can provide a 
comprehensive overview of the structure and func-
tion of P1-ATPase pumps during phytoremediation. 
To achieve this goal, recent feature selection and 
modeling algorithms, generally called data mining, 
may play a central role in uncovering data patterns.

We initially calculated a large number (n = 2644) of 
protein characteristics for each P1-ATPase sequence. 
Various clustering, screening, itemset mining, and 
decision tree models were then used to determine 
and model the most important features responsible 
for P1B-ATPase pump function. Considering a large 
number of protein features enabled us to detect key 
protein characteristics in the structure of hyperaccu-
mulator heavy metal transporter pumps. The results 
showed that various bioinformatic and modeling 
tools can be exploited to identify the type and activity 
of heavy metal transporters, with a precision rate up 
to 95%. It is also reported here that feature selection 
or attribute weighting can be used to select the most 
important protein attributes of ATPase pumps, such 
as glycine count, and reduce the burden of processing 
equipments.

Methods and Materials
One hundred and sixty-eight sequences of P1B-
ATPase proteins from plants, bacteria, fungi, and 
yeasts (able to transport Cu2+, Zn2+, Cd2+, Pb2+, Cu+1, 
and Ag+) were extracted from the UniProt knowledge 
(Swiss-Prot and TrEMBL) databases and catego-
rized as hyperaccumulators, tolerant and sensitive, 
to heavy metals (Appendix 1). A total of 2643 pro-
tein characteristics, including length, weight, iso-
electric point, count, and frequency of each element 

(C, N, S, O, and H), count and frequency of each 
amino acid, count and frequency of negatively and 
positively charged ions, hydrophilic and hydrophobic 
residues, count and frequency of dipeptides, num-
ber of α-helices and β-strands and other secondary 
protein features, and bond angle, bond length, dihe-
dral angle, and other tertiary protein features were 
extracted. These features were classified as either 
continuous or categorical variables. Subsequently, 
one dataset of protein features was imported into 
Clementine software (Clementine_NLV-11.1.0.95, 
Integral Solutions Ltd, Chicago, USA). Null data for 
types of metal transporters and organisms were dis-
carded, and each time one of them was set as the out-
put variable and the other variables were set as input 
variables. The same dataset was also imported into 
RapidMiner software (RapidMiner 5.0.001, Rapid-I 
GmbH, Dortmund, Germany) and the type of metal 
transporter (categorized as hyperaccumulator or 
tolerant) was set as a target or label attribute. When 
the itemset mining model was used, no label or target 
attribute was set as required by this model.

To identify the most important characteristics of 
heavy metal transporters, we used various screening 
models (anomaly detection model, feature selection 
algorithm, or attribute weighting), clustering models 
[K-means and two-step cluster], tree induction mod-
els (with various criteria, C5.0 with 10-fold cross-
validation and classification and regression trees), 
itemset mining (FP-growth) and rule induction model 
(10-fold cross-validation through stratified sampling), 
as described by Ebrahimi et al.12 Whenever requested 
by a model, data were discretized by frequency, 
ie, data were divided into three bins (ranges) with 
nearly equal frequencies in each class (low 0–0.3, 
mid 0.3–0.5, and high .0.5). Sometimes data were 
converted to nominal datasets and, in some cases, to 
binominal datasets.

Results
The average length, weight, isoelectric point, and 
aliphatic indices of the proteins were 322.4 ± 209.9, 
36.2  ±  24.9, 7.2.4  ±  1.7, and 97.9  ±  15.2 (mean ± 
standard deviation [SD]), respectively. The aver-
age counts of S, C, N, O, and H were 11.01, 201.86, 
368.57, 383.65, and 89.55, respectively, and the aver-
age counts of hydrophobic, hydrophilic, and other 
residues were 217.1, 137.2, and 102.3, respectively. 
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The frequencies of H, C, O, N, and S in all enzymes 
were 0.504 ± 0.006, 0.316 ± 0.006, 0.092 ± 0.005, 
0.86  ±  0.005, and 0.002  ±  0.001, respectively, 
and the frequencies of hydrophobic, hydrophilic, 
and negatively and positively charged residues 
were 0.521  ±  0.067, 0.217  ±  0.45, 0.263  ±  0.065, 
3.83  ±  14.25, and 3.38  ±  12.02, respectively. 
The frequencies of amino acids ranged from low 
(0.01 ± 0.001 for cysteine) to high (0.102 ± 0.031 for 
leucine).

In 97.89% of proteins, the N-terminal amino acid 
was methionine, and in 0.85%, 0.48%, 0.31%, and 
0.17% of proteins, the same position was occupied by 
alanine, serine, threonine, and proline, respectively. 
In only 0.07% of proteins, the last amino acid was 
isoleucine, glycine, or aspartic acid, and, in 0.03%, 
the N-terminal amino acid was occupied by lysine, 
cysteine, or arginine. The average nonreduced cysteine 
extinction coefficient at 280 nm was 60.51, the nonre-
duced cysteine absorption was 0.91, the reduced 
cysteine extinction coefficient was 39.07, and the 
reduced cysteine absorption was 0.90.

Attribute weighting
As a requirement for various weighting models, 
as expected, data were normalized and all weights 
were 0–1. The comparison between different weight-
ing algorithms for the type and number of selected 
attributes in the formation of hyperaccumulator 
P1-ATPase pumps is shown in Table 1. Testing dif-
ferent weighting algorithms provided the opportunity 
for robust attribute selection.

Weighting by principal component analysis
More than 18 attributes were shown to have 
weights $0.70. The glycine-glutamine count had the 
highest weight (Table 1).

Weighting by support vector machine model
When the support vector machine model was 
applied, 22 attributes had weights $0.70, for which 
the glutamine-asparagine count showed the highest 
weight (Table 1).

Weighting by relief
As presented in Table  1, when this model was 
applied to the dataset, just four attributes showed 
a weight .0.70.

Weighting by uncertainty
Using this method, the glycine count was the sole 
attribute, with a weight of 1. The other attributes had 
weights ,0.70 (Table 1).

Weighting by Gini index
In the Gini index model, which is similar to uncer-
tainty weighting algorithms, the glycine count had a 
weight of 1.0 and the valine-phenylalanine count had 
a weight of 0.70. The other attributes showed weights 
lower than 0.70 (Table 1).

Weighting by Chi-square
Only one attribute (glycine count) had a weight .0.70. 
No other attribute gained weights .0.70 (Table 1).

Weighting by deviation
Tryptophan-asparagine and tryptophan-tyrosine counts 
showed weights .0.70 (0.88 and 0.78, respectively, 
see Table 1).

Weighting by rule
A reduced extinction coefficient at 280  nm with a 
weight of 1.0 was the sole attribute with weight .0.70 
(Table 1).

Weighting by gain ratio
When this model was applied, 61 attributes showed 
a weight .0.70. The highest weight (1.0) was for the 
valine-phenylalanine count (see Table 1).

Weighting by information gain
Glycine count, valine-phenylalanine count, fre-
quency of valine-phenylalanine, and frequency of 
glutamine-valine (values of 1.0, 0.92, 0.88, and 0.57, 
respectively) were the four most important attributes 
(Table 1).

Itemset mining
When FP-growth was run on all attributes, more than 
6000 rules were created. Support of the rules went 
up to 99% for the frequency of methionine-lysine 
when it was low (,0.3). When the frequencies of 
tryptophan-glutamine and histidine-methionine, the 
histidine-methionine and cysteine-histidine counts, 
the frequencies of tryptophan-asparagine, tryptophan-
cysteine, and arginine-cysteine, and the tryptophan-
cysteine and histidine-glutamine counts were ,0.3, 
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Table 1. Identifying the most important protein features in discrimination of hyperaccumulator pumps from nonhyper-
accumulators by different weighting algorithms (value nearer to 1 shows higher effectiveness of attribute in generating 
hyperaccumulator pump).

Attribute Weight
Weighting by PCA Gly-Glu count 1.00

Ser-Tyr count 0.91
Lys-Ser count 0.88
Lys count 0.84
Frequency of Cys-Glu, Cys count 0.83
Frequency of Lys-Ser 0.80
Lie-Cys count, frequency of Asp-Cys 0.79
Frequency of Asn-Lys 0.7
Asp-Cys count, hydrophilic residues, Gly-Asn 0.75
Frequency of Phe-Cys, Asn-Lys count 0.74
Ser count 0.73
Asp-Ser count 0.71
Frequency of Cys 0.70

Weighting by SVM Glu-Asn count 1.00
Frequency of Glu-Asn 0.92
Ser-Ala count 0.88
Gly-Asp count 0.86
Gly-Pro count 0.85
Frequency of Ser-Ala 0.83
Gln-Val count 0.79
Leu-Gln count 0.78
Frequency of Gly-Pro 0.74
Frequency of Ser-Ser; Ser-Asn Gln-Ile and Ser-Asn counts 0.73
Glu-Lys count; frequency of Gln-Val 0.72
Frequency of Ser-Cys; Val-Phe, Arg-Leu, Asp-Pro counts 0.71
Frequency of Val-Ser, Asp-Pro 0.7

Weighting by relief Frequency of Phe-His 1.00
Phe-His count 0.83
Cys-Met count, frequency of Cys-Met 0.73

Weighting by uncertainty Gly count 1.00
Weighting by Gini index Gly count 1.00

Val-Phe count 0.7
Weighting by Chi square Gly count 1.00
Weighting by deviation Trp-Asn count 0.88

Trp-Tyr count 0.78
Weighting by rule Reduced extinction coefficient at 280 nm 1.00
Weighting by info gain Gly count 1.00

Val-Phe count 0.92
Frequency of Val-Phe 0.88
Frequency of Gln-Val 0.57

Weighting by gain ratio Val-Phe count 1.00
Frequency of Val-Phe 0.98
Frequency of Lys-Ser 0.96
Lys-Ser count 0.96
Met-Lys count 0.92
Frequency of Leu-Gln; Gly-Asn count 0.88
Thr-Ser, Gly, Val-Glu, Asp-Pro, Gln-Ile, Gly-Pro, Phe-His, Asp-Phe, Arg-Gly,  
Arg-Leu, Pro-Thr counts; frequency of Gly-Arg, Asp-Phe, Arg-Leu, Val-Glu

0.83

Ser-Cys, Ala-Leu, Gly-Trp, Lys-Pro, Phe-Ala, Tyr-Pro, Ala-His, Pro-Arg  
counts; frequency of Glu-Asp, Tyr-Pro

0.77

Pro-Ile count 0.73
Gly-Leu, Sulfur, Cys-Cys, Glu, Phe-Glu, Met-Thr, Tyr-His, Cys-Gly, Asp-Thr,  
Pro-Ser, Arg-Pro, Gln-Cys counts; negatively charged residues, Leu-His,  
Cys-Pro, Ser-Thr; frequency of His-Glu, Asp, Thr-Ala; negatively charged  
residues, Pro, Cys-Cys, Trp-Lys, Asp-Thr, Gln-Cys, Trp, Leu-Trp, Pro-Thr

0.71
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their supports were 0.97–0.98. When the frequencies 
of methionine-lysine, tryptophan-glutamine, or 
histidine-methionine were low, the support reached 
97%, but when the frequencies of methionine-lysine, 
tryptophan-glutamine, and histidine-methionine, as 
well as the histidine-methionine count were low, the 
support decreased to 95%.

In all FP-growth rules generated, the values of 
some attributes were low because the low value attri-
butes dominated the dataset. Therefore, FP-growth 
was run with selected attribute properties, excluding 
low value attributes, and taking into account the attri-
butes with mid and high values. The model created 
96 rules (52 rules with one item, 36 rules with two 
times and eight rules with three items) with support 
in the 50%–85% range. The proline-cysteine count 
with mid values (0.30–0.50) gained the highest sup-
port (85%). When the protein transporter family 
was P1B-ATPase, the support was 84%. In the case 
of a mid count for proline-cysteine and the P1B-
ATPase protein family, the support was 80%, but 
when the protein family was P1B-ATPase and the 
valine-leucine count was high (.0.50), the support 
decreased to 50%.

Tree induction
Decision tree
Data were discretized, as mentioned earlier. Ten-fold 
validation with stratified sampling was used to build 
the tree and the average performances were calculated. 
The models were run with a minimal size of four for 
a node to allow a split, a minimal size of two for all 
leaves. TA minimal gain of 0.1 to produce a split, a 
maximal tree depth of 20, a confidence level of 0.25 
for the pessimistic error calculation of pruning and the 
number of alternative nodes of 3 when pre-pruning 
would prevent a split. Four different criteria were 
used to induce the decision trees as follows:

Gain ratio
This model generated a decision tree with a depth of 
8 and a total accuracy of 72.75% ± 6.25% (82.43% 
for tolerant and 62.50% for hyperaccumulator trans-
porters), and a precision of 86.34% ±  12.23%. The 
most important feature used to build this tree was 
the frequency of glutamine-valine. If the value of this 
feature was .0.5 or this value was 0.3–0.5 and the 
tryptophan-histidine count was low, or if the value 

for the frequency of glutamine-valine was low (,0.3) 
and the frequency of cysteine-glycine was high, the 
heavy metal transporter fell into the tolerant category. 
Otherwise, if the count for this feature was high and 
the alanine-histidine count was low, the metal trans-
porter fell into the hyperaccumulator group. However, 
if the value for the frequency of cysteine-glycine was 
mid, the heavy metal transporter fell into the hyperac-
cumulator group. If the value for this feature was low 
and the frequency of lysine-glycine was mid, the pro-
tein was in the tolerant group; otherwise it belonged 
to the hyperaccumulator group (Fig. 1).

Information gain
In this model, a tree with a depth of 5, an accuracy of 
72.24% ± 10.66%, and a precision of 78.55% ± 11.21 
was created. The main feature used to build the tree 
was the glycine count; if the value was ,0.445, the 
frequency of phenylalanine-arginine was high, and 
the alanine-asparagine count was high, the transporter 
fell into the tolerant group, but if the value of this 
attribute was low or mid, the heavy metal transporter 
belonged to the hyperaccumulator group. If the gly-
cine count was 0.445–0.565, the asparagine-aspartic 
acid frequency was high, and alanine-lysine count 
was high, the protein fell into the tolerant group, 
otherwise it fell into the hyperaccumulator group. 
While the frequency of asparagine-aspartic acid was 
high and the valine-tyrosine and alanine-aspartic acid 
counts were high, the protein fell into the hyperac-
cumulator group, otherwise into the tolerant group. 
Finally, when the glycine count was .0.565 and the 
methionine-serine and serine-leucine counts were 
high, the transporter fell into the hyperaccumulator 
group; otherwise it fell into the tolerant group.

Gini index
The depth of the decision tree created using this 
criterion was just 3, with 69.57%  ±  10.32% accu-
racy and 72.93% ± 13.39% precision. The cysteine-
histidine count was used as the main feature to 
create the tree branches. If the value of this attribute 
was high, the metal transporter fit into the hyper-
accumulator group. If it was low and the cysteine-
histidine count was high, the protein was allocated 
to the tolerant category. However, if the value for 
the last attribute was low and the cysteine-aspartic 
acid count was high, the protein fell into the 
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Figure 1. Tree induced by decision tree algorithm on discretized data with gain ratio criterion.
Abbreviations: H, hyperaccumulator; T, tolerant.

hyperaccumulator group. If the cysteine-histidine 
count was low, the cysteine-isoleucine count was 
mid, and the alanine-glycine and alanine-aspartic 
acid counts were high, the transporter belonged to the 
hyperaccumulator group; Otherwise, if the value for 
the alanine-aspartic acid count was mid, the protein 
belonged to the tolerant group.

Accuracy
By applying an accuracy criterion, a tree with a depth 
of 15, an accuracy of 56.86% ± 12.11%, and a pre-
cision of 70.95%  ±  17.63% was generated. If the 
cysteine-histidine count was high, the protein fell 
into the tolerant category, but if the value for this 
was low and the counts for glutamic acid-histidine, 
histidine-cysteine, histidine-aspartic acid, cysteine-
cysteine, cysteine-aspartic acid, cysteine-glycine, 
alanine-cysteine, alanine-glutamic acid, and alanine-
alanine were low and the alanine-aspartic acid count 
was high, the transporter belonged to the tolerant 
group but, with the same order of attributes; if the 
alanine-aspartic acid count was high, it belonged to 
the hyperaccumulator group.

ID3 discretized data
Data were discretized as mentioned earlier, and 
a 10-fold validation with stratified sampling was 
used to build the tree, and the average performances 

were calculated. The models run with a minimal size 
of four for a node to allow a split, a minimal size of 
two for all leaves, a minimal gain of 0.1 to produce 
a split, a maximal tree depth of 20, a confidence level 
of 0.25 for the pessimistic error calculation of prun-
ing and the number of alternative nodes of three when 
prepruning would prevent a split. Four different crite-
ria were used to induce the decision trees as follows:

Gain ratio
This model generated a decision tree with a depth 
of 16, a total accuracy of 74.00%  ±  9.73%, and a 
precision of 86.62% ± 10.67%. The most important 
feature used to build the tree was the frequency of 
glutamine-valine. If the value of this feature was high 
and the proline-glutamine count was either high or 
mid, the heavy metal transporter fell into the hyper-
accumulator category, otherwise it fell into the toler-
ant group. If the frequency of glutamine-valine was 
low, the frequency of cysteine-glycine was high, and 
the alanine-phenylalanine count was low, the trans-
porter belonged to the tolerant group; otherwise if the 
value for alanine-phenylalanine was mid, it belonged 
to the hyperaccumulator group. If the frequency of 
glutamine-valine was mid, the glycine-proline count 
was low, and the arginine-tyrosine count was high, 
the protein fell into the hyperaccumulator group, 
but if the arginine-tyrosine count was low, the 
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tryptophan-arginine count was high, and the alanine-
glutamic acid count was low, the transporter belonged 
to the tolerant category, and otherwise belonged to 
the hyperaccumulator category.

Information gain
In this model, a complex tree with a depth of 3, an 
accuracy of 80.86%  ±  9.94%, and a precision of 
89.74% ± 10.23% was created. The main feature to 
build the tree was the type of organism. If the organism 
was Anabaena, Penicillium, Podospora, Rizobium, 
or Thlapsi, the transporter fell into a hyperaccumu-
lator group, but when the organism was Bacillus, 
Bdellovibrio, Brassica, Cryptococcus, Debaerymo-
myces, Enterococcus, Kluyveromyces, Leptopspira, 
Listeria, Lodderomyces, Neisseria, Neosartorya, Neu-
rospora, Oscillatoria, Postia, Ralstonia, Schizosa-
charomyces, Triticum, Ustilago, Salmonella, or Zea, 
the metal transporter belonged to the tolerant group.

If the organism was Arabidopsis and the aspartic 
acid-glutamic acid count was high or low, the protein 
fitted into the tolerant group, otherwise it fell into the 
hyperaccumulator group. If the organism was Asper-
gillus and the histidine-valine count was high or mid, 
the heavy metal transporter belonged to the hyperac-
cumulator category; if not, it belonged to the tolerant 
category. If the organism was Candida and the aspartic 
acid-methionine count was either high or low, the 
transporter belonged to the tolerant group, otherwise 
to the hyperaccumulator category. However, if the 
organism was Oryza and the asparagine-tryptophan 
count with low, the protein fit into the tolerant group; 
if not, it fitted into the hyperaccumulator group. If the 
organism was Pichia and the glutamic acid-aspartic 
acid count was either low or mid, the protein fell into 
the hyperaccumulator group, otherwise into the toler-
ant group. If the organism was Pseudomonas and the 
alanine-methionine count was high, the heavy metal 
transporter belonged to the tolerant category; if the 
value was mid, the category was hyperaccumulator. 
If the organism was Saccharomyces, a glutamine-
arginine count with a high or low value denoted that 
the transporter fell into the tolerant group. When the 
organism was Sorghum and the alanine-alanine count 
was low, the transporter fitted into the tolerant group, 
but if the value was mid, it belonged to the hyperaccu-
mulator group. Finally, if the organism was Staphylo-
coccus and the alanine-alanine count was either high 

or low, the protein fell into the tolerant category, and 
if not, it fell into the hyperaccumulator category.

Gini index
The depth of the decision tree created using this criterion 
was over 200, with an accuracy of 69.57% ± 10.32% 
and a precision of 72.93% ± 13.39%. The cysteine-
histidine count was used as the main feature to create 
the tree branches, but the tree was too complicated to 
be able to draw meaningful rules.

Accuracy
Applying an accuracy criterion also generated a deci-
sion tree with a depth of more than 200, an accuracy of 
65.10% ± 8.90%, and a precision of 84.57% ± 11.24%. 
The cysteine-histidine count was used to create the 
main tree branches, but again the tree was so compli-
cated that no rules could be extracted.

Decision tree (numerical data)
No discretization was applied on the data, but strati-
fied sampling was used to build the tree and the aver-
age performances were calculated. The models were 
run with the minimal size of 4 for a node to allow a 
split, a minimal size of 2 for all leaves, a minimal 
gain of 0.1 to produce a split, a maximal tree depth of 
20, and a confidence level of 0.25 for the pessimistic 
error calculation of pruning and the number of alter-
native nodes of 3 when prepruning would prevent 
a split. Four different criteria were used to induce the 
decision trees as follows:

Gain ratio
This model generated a decision tree with a depth 
of 8, an accuracy of 80.10% ± 10.34%, and a preci-
sion of 91.89% ± 10.81%. The most important feature 
used to build the tree was the valine-phenylalanine 
count: if the value was ,0.115, the protein belonged 
to the tolerant group; if the valine was .0.115, the 
valine-valine count was .0.205, and the frequency 
of histidine-glutamic acid was .0.208, the trans-
porter fell into the tolerant group. However, if the 
value was #0.208, the asparagine-threonine and 
valine-proline counts were #0.648 and #0.812, 
respectively, the frequency of proline-glutamic acid 
was #0.500, the frequency of leucine-threonine 
was .0.125, the glycine-lysine count was #0.909, 
and the frequency of methionine-valine was #0.833, 
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the metal transporter belonged to the hyperaccumula-
tor group, otherwise it fitted into the tolerant group.

Information gain
In this model, a tree with a depth of 6, an accuracy of 
81.38% ± 8.93%, and a precision of 86.84% ± 9.56% 
was created. The main feature used to build the tree 
was the glycine count. If its value was .0.505 and the 
frequency of histidine-serine was .0.192, the metal 
transporter fell into the tolerant category. If the fre-
quency of histidine-serine was #0.192, the frequency 
of glycine-phenylalanine was .0.318, and the lysine-
valine count was #0.227, the protein fell into the hyper-
accumulator group, otherwise it belonged to the tolerant 
group. If the frequency of glycine-phenylalanine 
was #0.318 and the weight of protein was .0.896 and 
the glutamine-leucine count was .0.375, the protein 
fit into the hyperaccumulator group; if not it fitted into 
the tolerant group. If the glycine count was #0.50, the 
frequency of phenylalanine-arginine was .0.500, and 
the glutamine-glutamic acid count was .0.250, the 
transporter fell into the tolerant category; otherwise if 
the glutamine-glutamic acid count was #0.250 and the 
alanine-phenylalanine count was #0.500, the protein 
belonged to the hyperaccumulator category. Finally, if 
the frequency of phenylalanine-arginine was #0.500 
and the proline-arginine count was .0.583, it fit-
ted into the hyperaccumulator group, and if the 
proline-arginine count was #0.583, it fell into the 
tolerant group.

Gini index
The depth of decision tree created with this crite-
rion was 6, with an accuracy of 73.05 ± 8.60 and a 
precision of 78.58% ± 11.65%. If the glycine count 
was .0.505, the group was “animal”, the organism 
was “fungus”, the protein family was Postia, the 
serine-tyrosine count was .0.100, and the aspartic 
acid-valine count was .0.409, the transporter fit into 
the hyperaccumulator group, otherwise it fitted into 
the tolerant group. If the organism was a plant and the 
isoleucine-asparagine count was .0.206, it fell into 
the tolerant group; if not, it fitted into the hyperac-
cumulator group. If the organism was yeast, the pro-
tein family was Postia, and the asparagine-asparagine 
count was .0.083, the transporter was in the toler-
ant group, and if not, it was in the hyperaccumulator 
group. If the group was “bacteria”, the histidine-serine 

count was .0.250, the transporter was in the tolerant 
group, otherwise it fitted into the hyperaccumula-
tor group. If the glycine count was ,0.505 and the 
alanine-leucine count was .0.833, the protein fell into 
the hyperaccumulator group. If the proline-arginine 
count was #0.583 and the tryptophan-histidine count 
was .0.750, the heavy metal transporter was from 
the hyperaccumulator group.

Accuracy
For a tree with a depth of 5, an accuracy of 
74.62% ± 9.21% and a precision of 81.13% ± 5.66% 
were generated. The type of organism was the main 
feature used to build the tree. If the organism was a 
bacterium and the alanine-leucine count was .0.810, 
the transporter was from the hyperaccumulator group, 
otherwise it was from the tolerant group. If the organ-
ism was a fungus, the group was animal, and the 
asparagine count was .0.307, the protein fell into the 
tolerant group; otherwise, if the count was #0.250, 
it belonged to the tolerant group. If the organism 
was yeast, the group was animal, the protein fam-
ily was Postia, and the aspartic acid-phenylalanine 
count was .0.917, the protein belonged to the 
hyperaccumulator group; if not, it belonged to the 
tolerant group.

ID3 (numerical data)
No discretization was applied to the data, and strati-
fied sampling was used to build the tree, with aver-
age performances calculated. For models run with a 
minimal size of 4 for a node to allow a split, a mini-
mal size of 2 for all leaves, a minimal gain of 0.1 
to produce a split, and a maximal tree depth of 20, 
the confidence level of 0.25 for the pessimistic error 
calculation of pruning and the number of alternative 
nodes of 3 when prepruning would prevent a split. 
The criteria used to induce the decision trees were as 
follows:

Gain ratio criterion
This model generated a decision tree with a depth 
of 13, an accuracy of 82.14% ± 9.69%, and a preci-
sion of 90.54% ± 6.84%. The most important feature 
of this tree was the frequency of glutamine-valine. If 
the value was .0.312 and the glutamic acid-glycine 
count was .0.636, the heavy metal transporter 
fell into the hyperaccumulator category, otherwise 

http://www.la-press.com


Ashrafi et al

68	 Bioinformatics and Biology Insights 2011:5

it fell into the tolerant group. If the frequency of 
glutamine-valine was #0.312, the frequency of 
isoleucine-isoleucine was .0.036, and the glu-
tamic acid-asparagine count was .0.643, the trans-
porter belonged to the tolerant group, Otherwise, if 
the value for glutamic acid-asparagine was #0.643 
and the valine-phenylalanine count was .0.115, the 
alanine-methionine count was #0.611, and the fre-
quency of glutamic acid-histidine was .0.318, the 
protein fell into the tolerant group. If the frequency of 
glutamine-valine was mid, the glycine-proline count 
was low, and the arginine-tyrosine count was high, 
the protein fell into the hyperaccumulator group. If 
the arginine-tyrosine count was low, the tryptophan-
arginine count was high, and the alanine-glutamic 
acid count was low, the transporter belonged to the 
tolerant category, otherwise it belonged to the hyper-
accumulator category.

Information gain
In this model, a tree with a depth of 2 and a com-
plex character at the second level, ie, an accuracy of 
80.10% ± 9.51% and a precision of 88.38% ± 8.0% 
were created. The main feature used to build this 
tree was the type of organism. If the organism was 
Anabaena, Brassica, Helicobacter, Listeria, Penicil-
lium, Podospora, Rhizobium, or Thlapsi, the trans-
porter fell into the hyperaccumulator group, but if 
the organism was Bacillus, Bdellovibrio, Brassica, 
Cryptococcus, Debaerymomyces, Enterococcus, 
Kluyveromyces, Leptopspira, Listeria, Lodderomy-
ces, Neisseria, Neosartorya, Neurospora, Oscillato-
ria, Postia, Ralstonia, Schizosacharomyces, Triticum, 
Ustilago, Salmonella, or Zea, the metal transporter 
belonged to the tolerant group.

If the organism was Arabidopsis and the glutamic 
acid-phenylalanine count was .0.417, the protein 
fit into the hyperaccumulator group, otherwise into 
the tolerant group. If the organism was Aspergillus 
and the histidine-valine count was .0.375, the heavy 
metal transporter belonged to the hyperaccumulator 
category; if not, it belonged to the tolerant category. 
If the organism was Candida and the phenylalanine-
valine count was .0.409, the transporter belonged to 
the hyperaccumulator group, otherwise to the tolerant 
category. However, if the organism was Oryza and 
the phenylalanine-valine count was .0.136, the pro-
tein fit into the hyperaccumulator group; if not it fitted 

into tolerant group. If the organism was Pichia and 
the alanine-methionine count was .0.389, the protein 
fell into hyperaccumulator group, otherwise into the 
tolerant group. If the organism was Pseudomonas 
and the alanine-glutamic acid count was .0.382, the 
heavy metal transporter belonged to hyperaccumula-
tor category; if the value was #0.382, the category 
was tolerant. The phenylalanine-isoleucine count 
with a value .0.167 denoted that transporter fell 
into the tolerant group, if the organism was Saccha-
romyces. When the organism was Sorghum and the 
alanine-alanine count was .0.318, the transporter fit-
ted into the hyperaccumulator group, but if the value 
was lower than that, it belonged to the tolerant group. 
Finally, if the organism was Staphylococcus and the 
alanine-glutamic acid count was .0.412, the protein 
fell into the hyperaccumulator category, and if not, 
into the tolerant category.

Gini index
The depth of the decision tree was 5, with 
82.24%  ±  7.52% accuracy and 90.32%  ±  7.49% 
precision. The type of organism was used as the 
main feature to create the tree branches. When it 
was Anabaena, Brassica, Helicobacter, Penicillium, 
Podospora, Rhizobium, or Thlaspi, the metal trans-
porter belonged to the hyperaccumulator group, but 
when the organism was Bacillus, Bdellovoibrio, Cryp-
tococcus, Debaryomyces, Enterococcus, Kluyvero-
myces, Leptospira, Listeria, Lodderomyces, Nisseria, 
Neosartorya, Neurospora, Oscillatoria, Postia, Ral-
stonia, Salmonella, Schizosaccharomyces, Triticum, 
Ustilago, or Zea, it belonged to the tolerant group.

If the organism was Arabidopsis and the group 
was animal, the protein fitted into the tolerant group; 
otherwise, if the group was bacteria and the cysteine-
histidine count was #0.150, the metal transporter 
belonged to the hyperaccumulator group. If the 
organism was Aspergillus the organism was fun-
gus, the group was animal, and the histidine-valine 
count was .0.375, the protein fell into the hyper-
accumulator group; if not, it fell into the tolerant 
category. If the organism was Candida, the group 
was animal, the protein family was Postia, and the 
phenylalanine-valine count was .0.409, the trans-
porter belonged to the hyperaccumulator group, oth-
erwise to the tolerant category. If the organism was 
Oryza and the group was animal, the transporter fell 
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into in the hyperaccumulator category; if the group 
was either bacteria or animal, it belonged to the tol-
erant group. If the organism was Pichia, the group 
was animal, the protein family was Postia, and the 
alanine-methionine count was .0.389, the protein 
fell into the hyperaccumulator group, otherwise into 
the tolerant group. If the organism was Pseudomonas, 
the group was bacteria, the protein family was Postia, 
and the alanine-alanine count was .0.576, the heavy 
metal transporter belonged to the tolerant category. 
If the value was #0.576, the category was the hyper-
accumulator group. If the group was animal and the 
organism was Saccharomyces, the protein fell into 
the tolerant group, otherwise into the hyperaccumu-
lator group. When the organism was Sorghum, the 
protein family was Postia, and the alanine-alanine 
count was .0.318, the transporter fitted into the 
hyperaccumulator group, but if the value was lower 
than that, it belonged to the tolerant group. Finally, 
if the organism was Staphylococcus, the group was 
animal, the protein was of the Type IB subfamily, and 
the alanine-alanine count was .0.273, the protein 
fell into the hyperaccumulator category; if not into 
the tolerant category.

Accuracy
Applying an accuracy criterion also generated a 
decision tree with a depth of .5, an accuracy of 
80.29% ± 9.94% and a precision of 90.97% ± 8.02%. 
The main feature used to build this tree was the type 
of organism. If the organism was Anabaena, Bras-
sica, Helicobacter, Listeria, Penicillium, Podospora, 
Rhizobium, or Thlapsi, the transporter fell into the 
hyperaccumulator group, but if the organism was 
Bacillus, Bdellovibrio, Cryptococcus, Debaerymo-
myces, Enterococcus, Kluyveromyces, Leptopspira, 
Listeria, Lodderomyces, Neisseria, Neosartorya, Neu-
rospora, Oscillatoria, Postia, Ralstonia, Schizosa-
charomyces, Triticum, Ustilago, Salmonella, or Zea, 
the metal transporter belonged to the tolerant group.

If the organism was Arabidopsis and the group 
was animal, the protein fitted into the tolerant group; 
otherwise, if the group was bacteria and the alanine-
lysine count was #0.850, it fell into the hyperaccu-
mulator group. If the organism was Aspergillus, the 
group was animal, the protein family was Postia, and 
the histidine-valine count was ,0.375, it belonged 
to the hyperaccumulator group; if not, it belonged to 

the tolerant category. If the organism was Candida, 
the group was animal, and the phenylalanine-valine 
count was .0.409, the transporter belonged to the 
hyperaccumulator group, otherwise to the tolerant 
category. However, if the organism was Oryza and the 
group was animal, the protein fitted into the hyperac-
cumulator group; if the group was bacteria or animal, 
it fitted into the tolerant group. If the organism was 
Pichia, the protein family was Postia, and the count 
of alanine-arginine was .0.125, the protein fell into 
the tolerant group, otherwise into the hyperaccumula-
tor group. If the organism was Pseudomonas, the pro-
tein family was Postia, and the alanine-alanine count 
was .0.576, the heavy metal transporter belonged to 
the tolerant category; if the value was ,0.576, the cat-
egory was the hyperaccumulator group. If the group 
was animal and the organism was Saccharomyces, 
the transporter fell into the tolerant group. When the 
organism was Sorghum, the alanine-alanine count 
was .0.318, and the protein family was Postia, the 
transporter fit into the hyperaccumulator group, but if 
the value was lower than that, it belonged to the toler-
ant group. Finally, if the organism was Staphylococcus, 
the alanine-glutamic acid count was .0.273, and the 
protein family was type IB subfamily, the protein fell 
into the hyperaccumulator category, and if not, into 
the tolerant category.

Classification and regression tree
When the classification and regression tree node was 
run on numerical data, a tree with a depth of 5 was cre-
ated, and the most important feature used to build this 
tree was the frequency of glutamine (value #0.028 
for tolerant and .0.028 for false). The frequency of 
other charged residues was used to create the second 
level for both subgroups (0.822 for tolerant and 0.732 
for false). The same results were obtained when 
feature selection was used.

Rule induction
The model was executed on discretized and nondis-
cretized (numerical) data with two criteria, ie, infor-
mation gain and accuracy.

Discretized data
Information gain
This model generated six rules, with an accuracy of 
66.62% ± 10.24% and a precision of 69.24% ± 9.35%. 
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If the glycine count was ,0.445, the transporter fell 
into the tolerant group. If the leucine-leucine count 
was high and the frequency of valine-proline was 
mid, then the group was hyperaccumulator. If the 
arginine-alanine count was mid and the glutamic 
acid-tyrosine count was mid, then the group was 
tolerant. If the valine-tyrosine count was low and the 
threonine-glutamic acid count was mid, then the pro-
tein belonged to the tolerant group, otherwise to the 
hyperaccumulator group.

Accuracy
This model generated 15 rules, with an accuracy of 
61.33% ± 14.26% and a precision of 72.98% ± 14.64%, 
respectively. The rules showed that if the frequency 
of leucine-arginine was high, cysteine-glycine was 
mid, glycine-glutamic acid was mid, leucine-leucine 
was low, and arginine-valine was low, then the pro-
tein belonged to the tolerant group. If the glutamic 
acid-methionine, glutamine-histidine, and histidine-
leucine counts were high, then the protein again 
belonged to the tolerant group. If the frequency of 
cysteine-glycine was mid, and the phenylalanine-
glutamic acid, methionine-arginine, alanine-glutamic 
acid, and phenylalanine-histidine counts were high, 
the tryptophan-phenylalanine count was mid, and 
the frequency of arginine-valine was low, then the 
heavy metal transporter fitted into the hyperaccumu-
lator group.

Numerical data
Information gain
When information gain was run on numerical data, a 
model with six rules, an accuracy of 70.67% ± 8.27%, 
and a precision of 77.18% ± 9.24% was created. If 
the glycine count was #0.505, the protein fell into 
the tolerant group. When the hydrophobic residue 
count was #0.808 and the arginine-leucine count 
was .0.375, the protein was in the hyperaccumu-
lator group. If the leucine count was #0.752 and 
the frequency of aspartic acid was #0.603, then 
the protein was from the tolerant category. If the 
asparagine-asparagine count was #0.803 or the 
asparagine-cysteine count was #0.417, the trans-
porter protein belonged to the hyperaccumula-
tor group. Finally, if the leucine-threonine count 
was .0.500, the transporter fitted into the tolerant 
group.

Accuracy
This model generated nine rules with 71.29% ± 11.52% 
and 79.31%  ±  13.25% for accuracy and precision, 
respectively. The rules showed if the valine-phenylala-
nine count was #0.115, the lysine-glutamic acid count 
was .0.393, the valine-valine count was #0.205, 
and the frequency of histidine-serine was .0.192, 
the transporter protein fell into the tolerant group. In 
contrast, when the lysine-lysine count was .0.441, 
the leucine-histidine was .0.750, the frequency of 
lysine-valine was .0.417 or was .0.312 for glycine-
proline, the transporter belonged to the hyperaccumu-
lator category.

Generalized rule induction
Generalized rule induction node analysis created 
100 rules for 2947 valid transactions, with mini-
mum and maximum support of 15.82% and 27.12%, 
respectively. Maximum confidence reached 97.42% 
and minimum confidence decreased to 85.86%. When 
feature selection was used, minimum support, maxi-
mum support, maximum confidence, and minimum 
confidence changed to 15.17%, 27.12%, 97.42%, 
and 84.81%, respectively. The highest confidence 
(97.42%) for both methods (with/without feature 
selection filtering) occurred when the frequency of 
glutamine was lower than 0.028, the valine count 
was .14.5, and the frequency of glutamic acid was 
greater than 0.086 (Table 3).

Screening models
Anomaly detection model
When the anomaly detection model was used, the 
records were divided into two peer groups, with an 
anomaly index cutoff of 1.760. In the first peer group 
of 173 records, only one record was found to be 
anomalous. In peer groups 2, there were 21 records 
with none being anomalous. The highest anomaly 
index was 67598.5 ± 27670.5 (for the sulfur count) 
followed by 6451.1 ± 2077.1 for the hydrogen count.

Clustering models
K-means
In this clustering model, more than 76% of the records 
(n = 148) were put into the first cluster and four, 15, 
one, and 26 records were put into the second, third, 
fourth, and fifth clusters, respectively, with the start-
ing iteration of 9.42. When the K-means model was 
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Table 2. Rule sets (with supports .50%) induced by FP-growth itemset mining on discretized data (Pt was cation transport 
ATPase (P-type) family; group was animal was cu transporter (low 0–0.35, mid 0.35–0.5, high .0.5)).

Support Item 1 Item 2 Item 3
0.856 Pro-Cys count was mid
0.842 Protein family was Pt
0.801 Frequency of Pro-Cys was mid
0.801 Pro-Cys count was mid Frequency of Pro-Cys was mid
0.705 Pro-Cys count was mid Protein family was Pt
0.685 Frequency of Gly-Ile was mid
0.664 Group was animal
0.664 Protein family was Pt Frequency of Pro-Cys was mid
0.664 Pro-Cys count was mid Protein family was Pt Frequency of Pro-Cys was mid
0.630 Leu-Val count was mid
0.623 Val-Leu count was high
0.616 Frequency of Gly-Thr was mid
0.589 Pro-Cys count was mid Frequency of Gly-Ile was mid
0.589 Protein family was Pt Group was animal
0.582 Frequency of Thr-Gly was hiigh
0.582 Frequency of Leu-Lie was mid
0.582 Gly-Lie count was high
0.575 Frequency of Lie-Val was high
0.575 Frequency of Lys-Arg was mid
0.575 Frequency of His- Pro was mid
0.575 Frequency of Pro-Cys was mid Frequency of Gly-Ile was mid
0.575 Pro-Cys count was mid Frequency of Pro-Cys was mid Frequency of Gly-Ile was mid
0.568 Frequency of Leu-Val was mid
0.568 Leu-Lie count was mid
0.568 Pro-Cys count was mid Group was animal
0.568 Protein family was Pt Frequency of Gly-Ile was mid
0.562 Thr-Leu count was mid
0.562 Pro-Cys count was mid Leu-Val was mid
0.562 Frequency of Pro-Cys was mid group was A
0.562 Pro-Cys count was mid Frequency of Pro-Cys was mid Group was animal
0.555 Thr-Val count was high
0.555 Thr-Gly count was high
0.555 Lys-Arg count was mid
0.548 Frequency of Val-Leu was high
0.548 Frequency of Thr-Arg was mid
0.548 Pro-Cys count was mid Frequency of Gly-Thr was mid
0.541 Frequency of Lie-Gly was mid
0.541 Lie-Pro count was mid
0.541 Leu-Met count was mid
0.541 Protein family was Pt Val-Leu count was high
0.534 Frequency of Val-Val was mid
0.534 Frequency of Gly-Leu was mid
0.534 Lie-Val count was high
0.527 Frequency of Thr-Val was mid
0.527 Frequency of Leu-Ala was mid
0.527 His-Pro count was mid
0.527 Pro-Cys count was mid Val-Leu count was high
0.527 Pro-Cys count was mid Frequency of Lie-Val was high
0.521 Lie-Gly count was mid
0.521 Phe-Gly count was mid
0.521 Pro-Cys count was mid Frequency of His-Pro was mid
0.521 Protein family was Pt Frequency of His-Pro was mid
0.521 Frequency of Pro-Cys was mid Leu-Val count was mid
0.521 Pro-Cys count was mid Frequency of Pro-Cys was mid Leu-Val count was mid

(Continued)
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Table 2. (Continued)

Support Item 1 Item 2 Item 3
0.514 Frequency of Pro-Val was mid
0.514 Ala-Gln count was mid
0.514 Pro-Cys count was mid Frequency of Thr-Gly was high
0.514 Pro-Cys count was mid Gly-Ile count was high
0.514 Frequency of Pro-Cys was mid Val-Leu count was high
0.514 Pro-Cys count was mid Frequency of Pro-Cys was mid Val-Leu count was high
0.507 Frequency of Val-Ser was mid
0.507 Frequency of Thr-Cys was mid
0.507 Frequency of Phe-Gly was mid
0.507 Val-Gly count was mid
0.507 Val-Glu count was mid
0.507 Thr-Ala count was high
0.507 Leu-Gly count was mid
0.507 Leu-Ala count was high
0.507 Ala-Thr count was mid
0.507 Pro-Cys count was mid Frequency of Leu-lie was mid
0.507 Protein family was Pt Leu-Val count was mid
0.507 Protein family was Pt Frequency of Lie-Val was high
0.507 Frequency of Pro-Cys was mid Frequency of Gly-Thr was mid
0.507 Frequency of Pro-Cys was mid Frequency of lie-Val was high
0.507 Frequency of Lie-Val was high Lie-Val count was high
0.507 Frequency of Lys-Arg was mid Lys-Arg count was mid

applied on the dataset with feature selection filtering, 
again five clusters (with starting iteration of 6.44) 
were generated, with 173, 13, five, two, and one 
records in each cluster, respectively.

Two-step cluster
This method clustered records into two groups, with 
81 and seven records in each. Only two clusters (with 
85 and nine records in each) were created for the data-
set filtered using feature selection criteria. Mean ± 
standard error of the mean for performances of rule 
induction and tree induction models are presented in 
Table 2.

Discussion
Metal cation homeostasis is essential for plant nutri-
tion and tolerance to toxic heavy metals.25 As a result, 
heavy metal transport is a very exciting and develop-
ing field in plant biology. Although there is no direct 
evidence for the role of plasma membrane efflux 
transporters in heavy metal tolerance in plants, recent 
research shows that plants possess several classes 
of metal transporters that must be involved in metal 
uptake and homeostasis in general, probably playing a 
key role in tolerance.26–28 These include CPx-ATPases, 
that are involved in overall metal ion homeostasis and 

tolerance in plants, the natural resistance-associated 
macrophage protein family of proteins and cation 
diffusion facilitator family proteins,29 and the zinc-
iron permease family.30 It is obvious that many plant 
metal transporters remain to be identified at the 
molecular level. Type 1B heavy metal-transporting 
P-type ATPases have been identified in prokaryotes 
and eukaryotes, including yeasts, insects, plants, and 
mammals.31 In prokaryotes, the metal substrates of 
these transporters include Cu, Zn, Cd, Ag, Pb, and Co 
ions, and, in most cases, individual transporters con-
fer tolerance to the metal ion substrate by acting as an 
efflux pump.32,33 However, some types of 1B-ATPases 
in bacteria appear to be involved in metal uptake and 
homeostasis.34,35

P1B-type CPx-ATPases are transmembrane  
metal-transporting proteins which play a major role 
in metal homeostasis.34 Despite their importance, 
very little is known about their functions in plants. 
P1B-type CPx-ATPases have been implicated in 
the transport of a range of essential, as well as 
potentially toxic, metals across cell membranes.36,37 
Emergency mechanisms, such as reduced uptake, 
facilitated efflux, sequestration, and modification, 
are commonly utilized by organisms to achieve 
resistance to the toxicity of heavy metals. It has 
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been suggested that CPx-ATPases act as a poten-
tial key heavy metal transporter involving not only 
metal ion homeostasis but also the overall strat-
egy for heavy metal tolerance.38 Bioinformatics 
analysis of P-type ATPases in eukaryotic genomes 
extended the organismal distributions of the pre-
viously recognized families (families 1–9) to 13 
new families (families 10–22), and three novel 
topological types of P-type ATPases have been 
reported.39 Another study suggested that conforma-
tional changes in the catalytic cycle of these pumps 
imply secondary-structure rearrangements of small 
hinge regions impacting on large domain reor-
ganizations.40 Modeling was used to find similar 
structures between P-type ATPases, indicating an 
extended C-terminal region in some pumps, which 
are involved in enzyme regulation.41

Data mining tools can be used for data analy-
sis and can efficiently uncover important data pat-
terns, contributing greatly to business strategies, 
knowledge bases, and scientific research. To date, 
various methods have been employed to study the 
metal transporters in plants (see Introduction). Here 
we applied different modeling techniques (screen-
ing, clustering, itemset mining, and decision trees) 
to study more than 2000 features of 168 transporters, 
in an attempt to determine the main protein features 
that contribute to the ability of transporters to relo-
cate heavy metals.

Although the number of attributes with 
weights $0.70 varied from 1 (in Chi-square and 
uncertainty weighting) to 62 (in gain ratio weight-
ing), the glycine count was chosen by 10 models (five 
attribute weighting, tree rule induction, and two rule 
induction) as one of the most important attributes. 
The residues forming the nucleotide-binding site 
in Ca2+ and Na+/K+-ATPases are conserved in most 
P-type ATPases, and there are two motifs specified 
only to members of this subfamily. Both of these are 
located in the N domain. The HP motif is present 
in 34–43 residues from phosphorylatable aspartate, 
and a protein kinase-like GxGxxG/A motif is found 
downstream in the same domain.

As shown in the Results section, the dipeptide 
frequency and count play a major role in attribute 
weighting models, confirming the importance of 
dipeptide bonds in the function of hyperaccumulator 
pumps, as suggested by Abdelmagid and Too.42 The 

frequency of glutamine-valine was the next impor-
tant protein attribute selected by five models (one 
attribute weighting and four tree induction models). 
In three attribute weightings and one tree induction 
model, the valine-phenylalanine count was shown to 
be the third most important protein feature regarding 
the type of heavy metal transporter.

The best and worst performances were gained 
when rule induction was applied on discretized 
data with area under curve (AUC) (optimistic, 
84.0%  ±  12.4%) and AUC (pessimistic) criteria, 
respectively. The figures generally were higher when 
numerical data (nondiscretized data) was used. The 
numbers of rules generated from 6–15 have the abil-
ity to distinguish between hyperaccumulator pumps 
and tolerant pumps. When tree induction model was 
run on a numerical dataset, the highest performance 
was gained on the Gini index criterion of the deci-
sion tree (96.0% ± 6.7%) and the lowest performance 
(47.9% ± 16.6%) was obtained when tree induction 
was applied on discretized data of the decision tree 
with the Gini index criterion.

Although some trees generated by tree induction 
models had just two branches, as seen in the infor-
mation gain of ID3 in the numerical data, the depth 
of trees in some models was so complicated (more 
than 200 branches in ID3 run on discretized dataset 
with the Gini index and accuracy criteria) that it was 
difficult to extract results. Generally, decision tree 
algorithms provide a very useful tool for manipulat-
ing huge amounts of data. They have been used for 
P glycoprotein pump classification using three data-
sets for substrate, inhibitor, and inducer activities, with 
predictive accuracies of up to 90% in CHAID, CART, 
and C4.5  models,43 although other models, such as 
support vector machine or K-NN have also been pro-
posed for prediction of P glycoprotein pumps, with an 
accuracy of up to 81%.44 The decision tree method for 
classification problems has been extended to accom-
modate multiple dependent properties. When applied 
to drug discovery efforts, this means a separate activ-
ity class that can be predicted for each of several 
targets with a single tree model. A new tree repre-
sentation and growth procedure, PUMP-RP, has been 
developed. The final architecture of the tree provides 
easy interpretation as to which independent vari-
ables and split values are important for all targets and 
which are specific for a given target. An additional 
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advantage of the new method is using of data with 
missing (or even sparse) dependent property values. 
This has the potential to leverage copious data from 
an older, well-studied target while beginning to study 
a newer target for which only a small amount of data 
are available.45 In another study, a support machine 
vector-based method is used for the identification 
of lipocalin protein sequences with high predictive 
accuracy (.90% in leave-one-out). The model used 
both position-specific scoring matrix (PSSM), and 
secondary structure emerged as the best model in 
this study.46

Cysteine was one of the contributing protein attri-
butes assigned by many algorithms, either in a single 
or dipeptide form with other amino acids. Cysteine 
easily combines with oxygen and makes a covalent 
bond with another cysteine (disulfide bond), resulting 
in a highly hydrophilic and nonpolar molecule, and 
plays an important role in the structural conformation 
of heavy metal transporters. It has been shown that 
cysteine and histidine participate in binding of several 
transition metals and iron complexes. The method 
predicted histidine as being in either of two states 
(free or metal-bound) and cysteine in either of three 
states (free, metal-bound, or in disulfide bridges). 
The method used only sequence information by uti-

lizing position-specific evolutionary profiles, as well 
as more global descriptors, such as protein length 
and amino acid composition.47 In another study, two 
mutant versions of the metallothionein gene were 
constructed and tested for their ability to confer metal 
resistance. The results demonstrated that there is 
significant flexibility in the structural requirements 
for metallothionein to function in copper detoxifica-
tion, and that yeast metallothionein is also capable of 
detoxifying cadmium under conditions of constitu-
tive expression.48

There were two peer groups with anomalies, 
with the count of sulfur as the most anomalous 
attribute, and the positive effects of feature selec-
tion filtering for removing outliers was confirmed 
here, as previously demonstrated.49 The number of 
clusters generated by K-means modeling did not 
change between the models with and without fea-
ture selection, although the number of records in 
the clusters changed. An unsupervised, two-phase 
clustering approach that combined K-means and 
hierarchical clustering with knowledge-informed 
cluster selection and annotation methods was used 
in approximately 20,000 cysteine-based protein 
microenvironments, and identified 70  interesting 
clusters, some of which represented known motifs 

Table 3. Mean ± standard error of the mean for performances of rule induction and tree induction models.  
Horizontal continuation of this table is placed on page 17.

Accuracy Precision Recall AUC (optimistic) AUC [neutral] AUC [pessimistic]
Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE

Rule induction Discretized
Numerical

66.62
70.67

10.24
8.27

69.24
77.18

9.35
9.24

82.78
74.94

13.65
7.12

84.0
83.1

12.4
0.08

62.9
68.1

12.1
11.7

49.2
59.3

21.9
11.6

D
is

cr
et

iz
ed

Decision tree Gain ratio 72.57 6.25 86.34 12.23 69.11 16.48 0.847 0.044 0.745 0.058 0.685 0.069
Information gain 75.24 10.66 78.55 11.21 81.47 13.61 0.870 0.105 0.679 0.165 0.649 0.180
Gini index 69.57 10.32 72.93 13.36 87.22 14.24 0.787 0.216 0.628 0.168 0.479 0.166
Accuracy 56.86 12.11 70.95 17.63 51.00 16.76 0.774 0.110 0.677 0.129 0.617 0.137

ID3 Gain ratio 74.00 9.73 84.62 10.67 71.44 10.59 0.889 0.109 0.654 0.181 0.569 0.212
Information gain 80.86 8.94 89.74 10.23 78.28 12.83 0.936 0.092 0.716 0.179 0.718 0.139
Gini index 74.00 17.05 84.94 15.07 70.14 19.04 0.769 0.119 0.633 0.168 0.519 0.222
Accuracy 65.10 8.90 84.57 11.24 53.50 14.22 0.808 0.082 0.612 0.153 0.526 0.146

Tree induction

N
um

er
ic

al

Decision tree Gain ratio 80.10 10.34 91.89 10.81 75.53 17.07 0.960 0.067 0.524 0.065 0.658 0.166
Information gain 81.38 8.93 86.84 9.56 82.47 12.39 0.917 0.073 0.750 0.144 0.693 0.152
Gini index 73.05 8.60 78.58 11.65 78.28 6.79 0.861 0.079 0.705 0.140 0.641 0.124
Accuracy 74.62 9.21 81.31 5.66 74.97 15.92 0.863 0.042 0.771 0.075 0.711 0.088

ID3 Gain ratio 80.14 10.08 86.17 10.08 80.67 14.96 0.950 0.066 0.507 0.022 0.638 0.161
Information gain 80.10 8.80 88.38 8.80 77.17 13.30 0.930 0.103 0.706 0.183 0.705 0.151
Gini index 82.24 7.52 90.32 7.49 79.56 12.93 0.917 0.116 0.684 0.159 0.703 0.122
Accuracy 80.29 9.94 90.97 8.02 75.22 16.14 0.931 0.075 0.843 0.085 0.761 0.113

Abbreviations: SE, standard error of the mean; AUC, area under curve.
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(eg, metal binding and phosphatase activity), and 
some of which were novel, including several zinc 
binding sites. These results showed that clustering 
may be helpful in the functional characterization of 
novel proteins and to help us understand the protein 
structure-function relationship better.50

The model put more than two-thirds of records 
into one cluster, showing the relative homogeneity 
between the records (no significant differences at 
P . 0.05 found with and without feature selection). 
In the two-step model, the number of clusters was 
the same with or without feature selection, and the 
numbers of records in each cluster showed little 
variation.

The results showed that various bioinformatics 
tools and modeling facilities can be used to identify 
types of heavy metal transporter proteins, with a pre-
cision rate up to 95%. To our knowledge, this is the 
first time that primary or secondary attributes have 
been shown to play an important role in the extent of 
heavy metal tolerance in these transporters, and the 
glycine count to be the most important protein fea-
ture in this regard. In addition, feature selection, or 
attribute weighting, can be used to select the most 
important protein attributes and reduce the burden on 
processing equipment. The new findings, presented 

here, open up new avenues for understanding the 
structure of heavy metal transporters, modeling, and 
prediction of the amount of unknown P1B-ATPase 
pump accumulation activity. This work lays the foun-
dation for engineering new super hyperaccumulator 
pumps in the laboratory using various mutagenesis 
tools, such as site-directed mutagenesis based on 
critical protein and amino acid features discovered in 
this research.
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Appendix 1. Accession, metals, type of pump, and organism of each amino acid sequence of P1-ATPase.

Accession Metal Type of pump Organism
Q70Q04 Zn/Cd H Arabidopsis halleri subspecies halleri
Q9UVL6 Cu H Candida albicans (yeast)
Q9P983 Cd H Saccharomyces cerevisiae (Baker’s yeast)
Q9P458 Cu H Candida albicans (yeast)
Q96WX2 Cu H Candida albicans (yeast)
Q941L1 Cu H Brassica napus (rape)
Q92T56 Zn/Cd/Pb H Rhizobium meliloti (Sinorhizobium meliloti)
Q8ZS90 Cu/Ag H Anabaena sp. (strain PCC 7120)
Q8H028 Cu H Oryza sativa subspecies japonica (rice)
Q88CP1 Cd H Pseudomonas putida (strain KT2440)
Q7XU05 Cu H Oryza sativa subspecies japonica (rice)
Q70LF4 Zn/Cd H Thlaspi caerulescens (Alpine penny-cress)
Q6ZDR8 Cu H Oryza sativa subspecies japonica (rice)
Q6JAg2 Cu H Sorghum bicolor (sorghum, Sorghum vulgare)
Q6H7M3 Cu H Oryza sativa subspecies japonica (rice)
Q6H6Z1 Cu H Oryza sativa subspecies japonica (rice)
Q69AX6 Zn/Cd/co H Thlaspi caerulescens (Alpine penny-cress)
Q655X4 Cu H Oryza sativa subspecies japonica (rice)
Q5AQ24 Cu H Candida albicans (yeast)
Q5API0 Cu H Candida albicans (yeast)
Q59465 Zn/Cd/co H Helicobacter pylori (Campylobacter pylori)
Q59385 Cu H Escherichia coli (strain K12)
Q4WQF3 Cu H Aspergillus fumigatus (Sartorya fumigata)
Q3ZDL9 Zn/Cd H Arabis gemmifera
Q2I7E8 Cd H Arabidopsis halleri
Q10QZ3 Cu H Oryza sativa subspecies japonica (rice)
Q10QZ2 Cu H Oryza sativa subspecies japonica (rice)
Q0JB51 Cu H Oryza sativa subspecies japonica (rice)
Q0E3J1 Cu H Oryza sativa subspecies japonica (rice)
Q0DAA4 Cu H Oryza sativa subspecies japonica (rice)
P38360 Cd H Saccharomyces cerevisiae (Baker’s yeast)
B8BBV4 Cu/Ag H Oryza sativa subspecies indica (rice)
B8B185 Cu/Ag H Oryza sativa subspecies indica (rice)
B8APM8 Cu/Ag H Oryza sativa subspecies. indica (rice)
B8AIJ3 Cu/Ag H Oryza sativa subspecies. indica (rice)
B8ADR7 Cu/Ag H Oryza sativa subspecies indica (rice)
B6HT11 Cu H Penicillium chrysogenum (strain ATCC 28089/DSM  

1075/Wisconsin 54-1255)
B6HC49 Cu H Penicillium chrysogenum (strain ATCC 28089/DSM  

1075/Wisconsin 54-1255)
B6H689 Cu H Penicillium chrysogenum (strain ATCC 

28089/DSM 1075/Wisconsin 54-1255)
B6H165 Cu H Penicillium chrysogenum (strain ATCC 28089/DSM  

1075/Wisconsin 54-1255)
B6GWG5 Cu H Penicillium chrysogenum (strain ATCC 28089/DSM  

1075/Wisconsin 54-1255)
B5VEN9 Cd H Saccharomyces cerevisiae (strain AWRI1631, Baker’s yeast)
B3LML9 Cd H Saccharomyces cerevisiae (strain RM11-1a, Baker’s yeast)
B2Y4P1 Zn/Cd H Arabidopsis halleri subspecies halleri
B2Y4N2 Zn/Cd H Arabidopsis halleri subspecies halleri
B2Y4N1 Zn/Cd H Arabidopsis halleri subspecies halleri
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Appendix 1. (Continued)

Accession Metal Type of pump Organism

B2APT4 Cu H Podospora anserina
B2AAH3 Cu H Podospora anserina
B0Y4L9 Cu H Aspergillus fumigatus (strain CEA10/CBS 144.89/FGSC A1163)
B0XWU3 Cu H Aspergillus fumigatus (strain CEA10/CBS 144.89/FGSC A1163)
A6ZLN2 Cd H Saccharomyces cerevisiae (strain YJM789, Baker’s yeast)
A5DRE2 Cu H Pichia guilliermondii (yeast, Candida guilliermondii)
A5DHC6 Cu H Pichia guilliermondii (yeast, Candida guilliermondii)
A3BU99 Cu H Oryza sativa subspecies japonica (rice)
A3BEE3 Cu H Oryza sativa subspecies japonica (rice)
A3AWA4 Cu H Oryza sativa subspecies indica (rice)
A1CL19 Cu H Aspergillus clavatus
A1CII4 Cu H Aspergillus clavatus
Q60048 Cd S Listeria monocytogenes
Q31HQ5 Cu/Ag S Thiomicrospira crunogena (strain XCL-2)
Q31H35 Cu2+/Cu/mg S Thiomicrospira crunogena (strain XCL-2)
Q31E73 Cu/Ag S Thiomicrospira crunogena (strain XCL-2)
Q31DS4 Cu/Ag S Thiomicrospira crunogena (strain XCL-2)
B5AXL4 Cu S Arabidopsis thaliana (Mouse-ear cress)
Q9ZHC7 Cu T Salmonella typhimurium
Q9SZW4 Zn/Cd T Arabidopsis thaliana (Mouse-ear cress)
Q9SH30 Cu T Arabidopsis thaliana (Mouse-ear cress)
Q9S7J8 Cu T Arabidopsis thaliana (Mouse-ear cress)
Q9JZI0 Cu T Neisseria meningitidis serogroup B
Q9I147 Zn/Cd/Pb T Pseudomonas aeruginosa
Q9C594 Cu T Arabidopsis thaliana (Mouse-ear cress)
Q94KD6 Cu T Arabidopsis thaliana (Mouse-ear cress)
Q8ZRG7 Cu/Ag T Salmonella typhimurium
Q8VPE6 Cu2+/Cu/Ag T Enterococcus faecium (Streptococcus faecium)
Q8RVG7 Cd T Arabidopsis thaliana (Mouse-ear cress)
Q8LPW1 Zn/Cd T Arabidopsis thaliana (Mouse-ear cress)
Q8L158 Zn/Cd T Oscillatoria brevis
Q8H384 Zn/Cd T Oryza sativa subspecies japonica (rice)
Q88RT8 co T Pseudomonas putida (strain KT2440)
Q830Z1 co T Enterococcus faecalis (Streptococcus faecalis)
Q7Y051 Cu T Arabidopsis thaliana (Mouse-ear cress)
Q7SGS2 Cu T Neurospora crassa
Q7S316 Zn/Cd/pb T Neurospora crassa
Q7RZE4 Cu T Neurospora crassa
Q7A3E6 Cu T Staphylococcus aureus (strain N315)
Q75C31 Cu T Ashbya gossypii (yeast, Eremothecium gossypii)
Q750J2 Cu T Ashbya gossypii (yeast, Eremothecium gossypii)
Q72N56 Cu/Ag T Leptospira interrogans serogroup
Q6MK07 Cu/Ag T Bdellovibrio bacteriovorus
Q6JAH7 Cu T Zea mays (maize)
Q6JAg3 Cu T Sorghum bicolor (Sorghum, Sorghum vulgare)
Q6CS43 Cu T Kluyveromyces lactis (yeast, Candida sphaerica)
Q6CKX1 Cu T Kluyveromyces lactis (yeast, Candida sphaerica)
Q6BVG6 Cu T Debaryomyces hansenii (yeast, Torulaspora hansenii)
Q6BIS6 Cu T Debaryomyces hansenii (yeast, Torulaspora hansenii)
Q654Y9 co T Oryza sativa subspecies Japonica (rice)
Q5K722 Cu T Cryptococcus neoformans (Filobasidiella neoformans)
Q58AE3 Cu/Ag/Zn/Cd/pb T Ralstonia metallidurans (strain CH34/ATCC 43123/DSM 2839)
Q4WYE4 Cu T Aspergillus fumigatus (Sartorya fumigata)

(Continued)
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Appendix 1. (Continued)

Accession Metal Type of pump Organism

Q4PI36 Cu T UstilAgo maydis (Smut fungus)
Q4PFU4 Cu T UstilAgo maydis (Smut fungus)
Q3MNJ6 Cu/Ag T Enterococcus faecium (Streptococcus faecium)
Q3E9R8 Cu T Arabidopsis thaliana (Mouse-ear cress)
Q12685 Cu T Saccharomyces cerevisiae (Baker’s yeast)
Q0WUP4 Cd T Arabidopsis thaliana (Mouse-ear cress)
Q0WPL5 Cu T Arabidopsis thaliana (Mouse-ear cress)
Q0D7L9 Zn/Cd/pb T Oryza sativa subspecies Japonica (rice)
P37617 Zn/Cd/pb/Au T Escherichia coli (strain K12)
P32113 Cu T Enterococcus hirae
P20021 Cd T Staphylococcus aureus
P0A503 Zn/Cd/pb T Mycobacterium bovis
P05425 Cu2+/Cu/Ag T Enterococcus hirae
O67432 Cu/Ag T Aquifex aeolicus
O67203 Cu2+ T Aquifex aeolicus
O64474 Zn/Cd T Arabidopsis thaliana (Mouse-ear cress)
O32220 Cu T Bacillus subtilis
O32219 Zn/Cd/co T Bacillus subtilis
O31688 Co T Bacillus subtilis
B9WHL7 Cu T Candida dubliniensis (strain Cd36/CBS 7987/NCPF 3949/

NRRL Y-17841)
B9W8U7 Cu T Candida dubliniensis (strain Cd36/CBS 7987/NCPF 3949/

NRRL Y-17841)
B8PIS7 Cu T Postia placenta (strain ATCC 44394/Madison 698-R, Brown  

rot fungus)
B8PD13 Cu T Postia placenta (strain ATCC 44394/Madison 698-R, Brown  

rot fungus)
B8B248 Zn/Cd/pb T Oryza sativa subspecies indica (rice)
B8B1T9 co T Oryza sativa subspecies indica (rice)
B6TVS8 Cu T Zea mays (maize)
B6K2D1 Cu T Schizosaccharomyces japonicus (strain yFS275/FY16936)
B5AXM3 Cu T Arabidopsis thaliana (Mouse-ear cress)
B5AXJ3 Cu T Arabidopsis thaliana (Mouse-ear cress)
B5AXJ0 Cu T Arabidopsis thaliana (Mouse-ear cress)
B5AXI8 Cu T Arabidopsis thaliana (Mouse-ear cress)
B5AXI7 Cu T Arabidopsis thaliana (Mouse-ear cress)
B5AXI6 Cu T Arabidopsis thaliana (Mouse-ear cress)
B4FW89 co T Zea mays (maize)
B3LG21 Cu T Saccharomyces cerevisiae (strain RM11-1a, Baker’s yeast)
A9NIX0 Zn/Cd/pb T TritiCum aestivum (wheat)
A8FHF8 Cu/Ag T Bacillus pumilus (strain SAFR-032)
A8FHE7 Zn/Cd/co T Bacillus pumilus (strain SAFR-032)
A8FCJ1 co T Bacillus pumilus (strain SAFR-032)
A7ISW5 Cu T Glycine max (soybean)
A6ZYM2 Cu T Saccharomyces cerevisiae (strain YJM789, Baker’s yeast)
A5E2U1 Cu T Lodderomyces elongisporus (yeast)
A5E1L1 Cu T Lodderomyces elongisporus (yeast)
A3LVL5 Cu T Pichia stipitis (yeast)
A3LRS8 Cu T Pichia stipitis (yeast)
A3GG72 Cu T Pichia stipitis (yeast)
A3BI12 Zn/Cd/pb T Oryza sativa subspecies japonica (rice)
A3BF39 Zn/Cd/pb T Oryza sativa subspecies. japonica (rice)
A2YJN9 Zn/Cd/pb T Oryza sativa subspecies indica (rice)
A2YED2 Zn/Cd/pb T Oryza sativa subspecies indica (rice)
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Appendix 1. (Continued)

Accession Metal Type of pump Organism

A1D6E8 Cu T Neosartorya fischeri (strain ATCC 1020/DSM 3700/FGSC 
A1164/NRRL 181)

A1CW79 Cu T Neosartorya fischeri (strain ATCC 1020/DSM 3700/FGSC 
A1164/NRRL 181)

Q8J286 Cu Colletotrichum lindemuthianum (bean anthracnose fungus)
Q0WXV8 Cu Glomerella lagenarium (anthracnose fungus)
Q0SAU6 Cu/Ag Rhodococcus species (strain RHA1)
B8PCW0 Zn/Cd/pb Postia placenta (strain ATCC 44394/Madison 698-R)
B2WP89 Cu Pyrenophora tritici-repentis (strain Pt-1C-BFP, Wheat tan spot 

fungus)
B2WCY5 Cu Pyrenophora tritici-repentis (strain Pt-1C-BFP, Wheat tan spot 

fungus)
B2W577 Cu Pyrenophora tritici-repentis (strain Pt-1C-BFP, Wheat tan spot 

fungus)
B0STR2 Cu Leptospira biflexa serovar Patoc (strain Patoc 1/ATCC 23582/

Paris)
A7TLU7 Cu Vanderwaltozyma polyspora (strain ATCC 22028/DSM 70294)
A7JVC8 Cu Mannheimia haemolytica PHL213
A6SEF3 Cu Botryotinia fuckeliana (strain B05.10, Noble rot fungus) (Botrytis 

cinerea)
A6SAI2 Cu Botryotinia fuckeliana (strain B05.10, Noble rot fungus) (Botrytis 

cinerea)
A6RXG0 Cu Botryotinia fuckeliana (strain B05.10, Noble rot fungus) (Botrytis 

cinerea)
A6RAT8 Cu Ajellomyces capsulata (strain NAm1/WU24) (Darling’s disease 

fungus)
A6R8J5 Cu Ajellomyces capsulata (strain NAm1/WU24, Darling’s disease 

fungus)
A4RDM4 Cu Magnaporthe grisea (Rice blast fungus, PyriCularia grisea)
A4QR04 Cu Magnaporthe grisea (Rice blast fungus, PyriCularia grisea)
Abbreviations: H, hyperaccumulator; T, tolerant; S, Sensitive
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Appendix 2. Standard amino acid abbreviations.

Amino acid Letter Letter
Alanine Ala A
Arginine Arg R
Asparagine Asn N
Aspartic acid Asp D
Cysteine Cys C
Glutamic acid Glu E
Glutamine Gln Q
Glycine Gly G
Histidine His H
Isoleucine Ile I
Leucine Leu L
Lysine Lys K
Methionine Met M
Phenylalanine Phe F
Proline Pro P
Serine Ser S
Threonine Thr T
Tryptophan Trp W
Tyrosine Tyr Y
Valine Val V
Abbreviations: H, hyperaccumulator; T, tolerant; S, sensitive.
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