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Abstract: Rheumatic diseases constitute a diversified group of diseases distinguished by arthritis
and often involve other organs. The affected individual has low quality of life, productivity even
life-threatening in some severe conditions. Moreover, they impose significant economic and social
burdens. In recent years, the patient outcome has been improved significantly due to clearer compre-
hension of the pathology of rheumatic diseases and the effectiveness of “treat to target” therapies.
However, the high cost and the adverse effects are the concerns and full remissions are not often
observed. One of the main processes that contributes to the pathogenesis of rheumatic diseases is
angiogenesis. Vascular endothelial growth factor (VEGF), a central mediator that regulates angiogen-
esis, has different isoforms and functions in various physiological processes. Increasing evidence
suggests an association between the VEGF system and rheumatic diseases. Anti-VEGF and VEGF
receptor (VEGFR) therapies have been used to treat several cancers and eye diseases. This review
summarizes the current understanding of VEGF biology and its role in the context of rheumatic
diseases, the contribution of VEGF bioavailability in the pathogenesis of rheumatic diseases, and the
potential implications of therapeutic approaches targeting VEGF for these diseases.

Keywords: VEGF; rheumatic diseases; therapeutic target

1. Introduction

The most common rheumatic diseases are characterized by joint inflammation and
may involve peri-articular tissues, including tendons, ligaments, bones, and muscles. Other
organs, such as the skin, heart, vasculature, eyes, lungs, brain, and intestinal tract may
also be affected [1,2]. There are more than 200 degenerative, inflammatory, and autoim-
mune conditions [3]. Musculoskeletal diseases are one of the top reasons of disability
worldwide [4]. The quality of life of affected individuals is lowered significantly. The
etiology of rheumatic diseases is often unclear. Additionally, there are many things that
need to be clarified in the pathogenesis of rheumatic diseases. So, the therapy treatment in
rheumatic diseases has many challenges. Although, in recent decades, the new biologic
agents have dramatically changed the prognosis and outcome of some autoimmune arthri-
tis diseases [3]. A clearer understanding of the role of VEGF in skeletal development and
growth, also its role of the pathogenesis of rheumatic diseases, may contribute to the devel-
opment of potentially effective therapies. In this review, we focus on rheumatoid arthritis
(RA), osteoarthritis (OA), ankylosing spondyloarthritis (AS), systemic lupus erythematosus
(SLE), systemic sclerosis (SSc), and Sjögren syndrome (SS).

Angiogenesis, the development of new vessels from the current ones, is the principal
driver of synovitis, the prominent hallmark of rheumatic diseases [5,6]. Nutrients and
oxygen supplied via the new vessels augment the inflammatory mass. New vessels
forming include several steps. This process occurs when endothelial cells are activated
by angiogenic factors that are released during angiogenesis. Subsequently, a series of

Int. J. Mol. Sci. 2021, 22, 5387. https://doi.org/10.3390/ijms22105387 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://www.mdpi.com/article/10.3390/ijms22105387?type=check_update&version=1
https://doi.org/10.3390/ijms22105387
https://doi.org/10.3390/ijms22105387
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22105387
https://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2021, 22, 5387 2 of 17

events happen including proteolytic enzyme secretion, extracellular matrix degradation,
endothelial cell migration, and new basement formation, respectively [7].

VEGF participates in almost all steps of angiogenesis [8]. Emerging evidence has
shown that VEGF contributes significantly to the pathogenesis of many disorders such as
RA, autoimmune diseases because of its role in angiogenesis [5]. Several therapies targeting
the VEGF pathway have been used in cancers and diabetic retinopathy treatment [9].
In several rheumatic diseases, anti-VEGF therapies or in the combination with current
treatment are experimented in the animal disease model and the results of these studies are
promising. We reviewed our present knowledge of VEGF biology and its relationship with
the pathogenesis of rheumatic diseases by collecting some data sources, including basic
studies, clinical studies, and clinical trials with a particular focus on RA, AS, OA, SLE, SSc,
and SS.

2. VEGF Biology and Its Role in Musculoskeletal Physiology
2.1. VEGF Biology

In 1983, Senger et al. first isolated and defined VPF (vascular permeability factor),
an original name of VEGF. VEGF is a homodimeric protein with 34–42 kDa in molecular
weight [10]. From this, many studies contribute to a clearer understanding of the structure,
physiological activities, and its role in pathological conditions. Vascular endothelial growth
factor (VEGF, also known as VPF) function as a mitogen specifies in endothelial cells [11].
The role of VEGF in physiological and pathological activities is no doubt. VEGF activity is
not limited to the vascular system; VEGF also participates in other physiological activities
related to the growth of the fetus, bone, and reproductive system [12,13]. Moreover, VEGF
plays an important role in the development of various diseases including tumors forming,
hematologic cancer, ocular diseases in diabetes, inflammation, brain edema, and a group of
obstetrics and gynecology diseases such as polycystic ovary syndrome, endometriosis, and
preeclampsia [12].

In mammals, VEGF-A, -B, -C, -D, and placental growth factor (PlGF) are the members
of the VEGF family. VEGF-A has been described as a central regulator of angiogenesis
and currently its data are the largest compared to other VEGF members [12]. VEGF121,
VEGF165 (VEGF164 in mice), VEGF189, and VEGF206 are its various isoforms, and the
major characteristic that differentiates the isoforms is their affinity for heparin [13–15].
VEGF-B strongly expresses in the heart and muscle and contributes to the proliferation of
endothelial cells [16], while lymphangiogenesis is regulated by VEGF-C and -D [17].

VEGF receptors consist of distinguished tyrosine kinases (RTKs), VEGFR-1 (Flt-1),
VEGFR-2 (KDR/Flk-1), and VEGFR-3 (Flt-4). Their expression varies in various tissues, a
pathological condition. There is a difference in the binding position of every isoform. VEGF-
A binds to VEGFR-1 and VEGFR-2. VEGF-B and PlGF bind to VEGFR-1. VEGF-C and
VEGF-D bind to VEGFR-2 and VEGFR-3 [12]. VEGF-A was initially described as a VPF [10]
and shows the role in angiogenesis and mitogenesis [18]. Neuropilin-1 (NRP1) and -2
(NRP2) are co-receptors of VEGFR-1. NRP1 serves as a receptor and binds to the collapsin-
semaphorin family, and is required for vascular development [19]. Soker et al. showed
that NRP1 is found on endothelial cells and tumor cell surfaces and binds to VEGF165.
NRP-1 null mice showed embryonic lethality, suggesting that NRP1 is an essential factor in
the growth of the vascular system [20].

VEGF is produced by many types of cells, including fibroblasts [21], macrophages [22],
endothelial cells [23], neutrophils [24] and T cells [25]. Various factors regulate VEGF
expression including oxygen tension, growth factors, oncogenes, cytokine and cell-bound
stimuli, and in turn by VEGF-driven signaling [26–28]. Low oxygen tension induces VEGF
mRNA expression in various pathophysiological conditions. Subsequently, HIF-1, a central
regulator of hypoxia response, regulates the VEGF expression [29]. Several growth factors
provoke VEGF mRNA expression including epidermal growth factor (EGF), transforming
growth factor-α, transforming growth factor-β (TGF-β), keratinocyte growth factor, insulin-
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like growth factor, and cytokines such as interleukin (IL)-1 and IL-6 also contribute to the
VEGF regulation [13,26].

The understanding of VEGF has seen significant achievement in recent decades,
contributing to the development of new therapies in some special diseases such as cancer
or retinopathy. To date, many drugs targeting VEGF pathways have been indicated in a
variety of disease conditions with desired effects. In 2004, the first agent approved by the
FDA was bevacizumab, a humanized form of anti-VEGF Ab, indicated in metastatic colon
cancer [30], and 2 years later, ranibizumab, a recombinant antibody fragment from human,
showed the effectiveness in intraocular for age-related macular degeneration treatment [31],
Ziv-aflibercept (targets: VEGF-A, VEGF-B, and PlGF), ramucirumab (target: VEGFR-2), and
multiple tyrosine kinase inhibitors are indicated in combination with other therapies for
various cancers [32]. Pegaptanib, an RNA aptamer, directs against VEGF with a high affinity
with the target molecule [33]. In a recent study, faricimab, an antibody that inhibits both
VEGF-A and Ang-2, was also shown to be effective and safe in diabetic macular edema in
phase II clinical trials [34]. The barrier of anti-VEGF therapies is the concerns about the side
effect. The adverse effect of this therapy also reduces considerably by local administration
because of the dramatically lower dose compared to systemic administration. Thus, this is
a crucial suggestion for various disease studies such as arthritis [30,35]. Currently, several
ongoing studies and human clinical trials have focused on VEGF pathways and their
combination with other therapies in numerous diseases.

2.2. VEGF in the Musculoskeletal System

Rheumatic diseases are inflammatory diseases that involve various organs and present
articular and extra-articular manifestations. Many studies have shown the role of VEGF in
various activities of the musculoskeletal system in physiology, pathology condition, and
other processes related to the pathogenesis of rheumatic diseases. Besides the uncontrover-
sial role of VEGF in angiogenesis during fetus, organ development, VEGF also showed its
crucial role in other aspects of synoviocytes, bone development including endochondral
ossification, osteoblast, and osteoclast differentiation. Synovium is a part of the structure of
a joint that is a remarkable injury position in rheumatic diseases. VEGF-NRP1 axis regulates
the synoviocyte apoptotic process [36]. One of the fundamental processes in the bone devel-
opment and growth is the process that cartilage is replaced by bone, called endochondral
ossification. VEGF also showed the material regulator of this process [37]. In mice, chondro-
cytes survival and differentiation require the role of VEGF [38]. VEGF expression increases
during osteoblast differentiation. VEGF enhances the proliferation of osteoblast [39,40].
Increased bone resorption, one of the characteristics of almost all rheumatic diseases,
causes permanent injuries in the bone. VEGF may increase bone resorption by increasing
osteoclast activity through its action on VEGFR-1 [41], VEGFR-2 signaling [42,43]. This
may be mediated via the interaction of VEGFR and receptor activator of nuclear factor
kappa-B ligand [41]. Nakagawa et al. showed that mature osteoclast survival requires
the VEGF [43]. Immune cells play an important role in the pathology of autoimmune
arthritis, and dysregulation of the immune response is a prominent feature. VEGF directly
affects immune cells [44]. VEGF affects inflammatory processes in various ways. In lym-
phatic endothelial cells, this study observed VEGFR-3 expression and it generates the main
signal for lymphangiogenesis. VEGFR1 also exist in the macrophages that produce the
cytokine/chemokine. This VEGFR-1-macrophage axis stimulates non-inflammatory and
inflammatory responses in arthritis [45]. In RA and OA, synovium showed that HIF-1 and
HIF-2, the essential regulators of VEGF signaling, express abundantly [46]. Taken together,
VEGF appears to be a considerable factor that contributes to the pathogenesis and various
aspects of rheumatic diseases.

3. VEGF in RA

RA is a systemic inflammatory disease characterized by not only chronic synovial
membrane (SM) inflammation, cartilage damage, bone erosion, but also other organ dam-
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ages such as the skin, heart, lungs, and eyes. The incidence of this disease in the general
population is about 1% with the highest proportion in middle age. Women have a higher
incidence of this disease. The pathogenesis of RA is complicated with the role of many
cells including immune cells, fibroblast, chondrocyte, dendritic cells. RA can lead to
disability, inferior quality of life, and increased comorbidities. The disease progression
and prognosis have been improved considerably by new biologic agents including TNFα
inhibitors, IL6 inhibitors, T-cell blockers, Janus kinase inhibitors, in combination with
standard therapy [47–49].

The SM is rich in blood vessels [50], and numerous factors have been implicated in
increased SM vascularization, including VEGF, TGF-β, and FGF [51]. There is an increase
in blood vessel number of synovium and endothelial proliferation in RA. In an early stage
of RA, endothelial activation and synovium hyperplasia are detected. Inflammatory cells
infiltrate increasingly to SM through new blood vessels during the progression of RA [52].
Taken together, in RA, promoting and maintaining synovial hyperplasia requires angiogen-
esis. VEGF, a proangiogenic factor, plays an essential role in synovial angiogenesis [53], a
key process during the development and progression of RA. Synovial angiogenesis reduces
in VEGF knockout mice using antigen-induced models of arthritis [54], which suggests
that VEGF contributes to the pathology of RA. VEGF and its receptors are detectable
in serum and synovial fluids. VEGF expression is observed in synovial macrophages
and fibroblasts of RA patients [55–60]. Moreover, several studies have reported that SM
endothelial cells and cells of the lining layer also high express in RA. VEGF regulates
the migration and proliferation of endothelial cells in RA [58,59]. In RA synovial tissue,
VEGF-A and their receptors express higher compared to normal tissue [60]. Kim et al.
showed that VEGF-NRP also prevents synoviocyte apoptosis by inducing Bcl-2 expression
and translocation of Bax [36]. This leads to synovial hyperplasia called “pannus”, which
is a prominent characteristic of RA. Bone erosion is another crucial characteristic of RA
disease. Bone destruction depends on the osteoclast differentiation and VEGF also has a
role in this process in RA. VEGF impact on osteoclast differentiation both directly regulates
osteoclast differentiation from monocytes and induces fibroblast-secreted RANKL (nuclear
factor-kappa-B ligand), a central cytokine in osteoclast differentiation [61]. Additionally,
VEGF is also associated with disease activity as well as other markers. VEGF concen-
tration was found to be significantly different in various rheumatic diseases, including
RA, SLE, antiphospholipid syndrome, and mixed connective tissue disease. VEGF was
expressed at the highest concentration among these diseases in that study [62]. VEGF
concentration in the serum increases and correlates with disease activity, C-reactive pro-
tein level, and radiographic progression [63,64]. In clinical studies, VEGF was used as
a marker to assess treatment response. Synovial VEGF expression, as well as synovial
vascularization, decrease significantly in RA treatment with infliximab in the combination
therapy with methotrexate [65]. High VEGF levels strongly correlate with RA pathogenesis.
Another angiogenic cytokine, PlGF, represents the synovitis severity of RA as assessed by
ultrasound [66]. Recently, some studies reported that serum VEGF is more valuable than
traditional factors such as CRP in determining the treatment response of patients receiving
biologic DMARDs [66,67]. In the management of RA, the optimal goal is prevention of
permanent injuries in a joint, so the diagnosis in the early stage of the disease is key. As-
sessment by biomarker may be more sensitive compared to disease activity score in this
stage [67]. Additionally, VEGF-C gene polymorphisms may contribute to susceptibility,
potential diagnostic markers, and therapeutic targets in patients with RA [68]. Studies have
shown that several pathways are related to VEGF in RA. Expression and secretion of VEGF
in RA may occur via the IL-6/JAK2/STAT3/VEGF pathway [69]. VEGF/Ang2-induced
proangiogenic/inflammatory mechanisms are mediated by Notch signaling pathways in
RA [70]. This suggests that the VEGF/Ang2-Notch and IL-6/JAK2/STAT3/VEGF axes
may be potential therapeutic targets.

The effect of anti-VEGF therapy or its combination with current therapy was inves-
tigated in animal models. In a murine model of collagen-induced arthritis, Miotla et al.
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used soluble VEGF receptor for collagen-induced arthritis treatment and showed that the
disease severity decreased in this treatment group [71]. Other studies also showed the
consistency in the effectiveness of anti-VEGF polyclonal antibodies in collagen-induced
arthritis model [72,73]. A study used VEGF blockade monotherapy in the comparison
with current monotherapies such as tocilizumab or methotrexate with promising results.
This study compared the effect of ranibizumab (anti-VEGF antibody) and tocilizumab
(interleukin-6R antagonist) in rat adjuvant-induced arthritis by intra-plantar injection. The
effects on inflammatory, angiogenesis, apoptosis inhibition were observed in both groups.
Interestingly, anti-VEGF reduces the bone and cartilage destruction compared to methotrex-
ate or tocilizumab treatment [74]. Another anti-VEGF signaling agent, Ramucirumab, is
a monoclonal antibody against the VEGFR2, and co-therapy with methotrexate showed
synergistic effects in a RA experimental model. Ramucirumab is also used by intra-plantar
injection [75]. Recent evidence suggests that anti-VEGF therapy by intra-articular injection
may be an option for monotherapy or the combination with standard therapy. Further
studies are required to evaluate the effect or anti-VEGF therapy in RA treatment.

4. VEGF in AS

Seronegative spondyloarthritis group consists of AS, reactive arthritis, psoriatic arthri-
tis, enteropathic arthropathy, undifferentiated spondyloarthropathy. AS is the most com-
mon of the seronegative spondyloarthritis diseases, with onset at a young age; it may
cause disability if undiagnosed and untreated. AS is a chronic progressive disease. Clinical
symptoms include low back pain, sacroiliitis, enthesitis, spinal ankylosis, and deformity.
Inflammatory bowel disease, acute anterior uveitis, psoriasis, cardiovascular disease, iri-
tis, and pulmonary involvement are other manifestations [76]. Current treatments for
spondyloarthritis are anti-inflammation drugs and several biological agents. Targeted
therapy includes TNF-α inhibitors (etanercept, infliximab, golimumab, adalimumab, and
certolizumab pegol), IL-12/23 inhibitors (ustekinumab), and IL-17 inhibitors (secukinumab
and ixekizumab) [77]. Treatment with anti-TNF-α inhibitors has been proven to be an
important strategy; however, its effect on the radiographic progression of the disease
remains unclear. Therefore, improved understanding of AS pathology will contribute to
targeted and combination therapies for AS treatment.

Diagnosis of early inflammatory arthritis significantly improves patient outcomes,
because the permanent injuries can be prevented. Besides joint injuries such as bone erosion
in synovial joints, AS patients suffer new bone formation and new cartilage was followed
by calcification [78,79] that lead to syndesmophytes, anthesophytes, spine ankylosis, these
damages cannot recover. The mechanism of this process remains unclear. Angiogenesis
is one of the hypotheses to explain about the new bone formation in AS. Not only new
bone formation but also sacroiliitis, and enthesitis that are various manifestations of AS,
require angiogenesis. VEGF is a central regulator of this process [80]. Fearon et al. observed
that VEGF is also expressed in early inflammatory arthritis and is closely related to an-
giopoietins [81]. It suggests that VEGF may be a potential factor that regulates these events
in the pathogenesis of early AS. VEGF may directly regulate osteoblast differentiation
from synovial fibroblast that contributes to the new bone formation in AS [82]. Moreover,
VEGF may stimulate the COX2 pathway [83]. VEGF also participates in inflammatory
in AS [84]. Thus, VEGF may be a target for the treatment of arthritic diseases. Several
studies showed that macrophages in SM and entheses of AS secrete VEGF [82,85,86]. Thus,
this suggests that VEGF has various functions apart from angiogenesis. VEGF is also a
factor to assess the progression, prediction, and susceptibility of this disease in numerous
studies. There is a significant increase in serum VEGF levels in AS patients compared
to healthy persons [87–89]. VEGF concentration also has a difference in the serum and
synovial fluid. In AS patients with peripheral arthritis, VEGF levels are lower considerably
in synovial fluid compared to serum levels [88]. Additionally, some evidence showed
that VEGF correlates with clinical manifestations such as peripheral arthritis [88] and Bath
Ankylosing Spondylitis Disease Activity Index by evaluation the fatigue, spinal pain, joint
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pain, enthesitis, morning stiffness [84,88,90], other markers of inflammatory [84,91], and
duration [89]. However, extra-articular manifestations, syndesmophytes, or the severity
of sacroiliitis do not register the association with VEGF [84,89]. Therefore, serum VEGF
may be considered a marker of disease activity in AS [84,88,92]. However, another study
supported that VEGF only shows a part of the disease progression [93]. Various isoforms
of VEGF have also shown inconsistent results. For example, in a study by Bandinelli et al.,
the levels of VEGF-C did not show a correlation with disease activity [94]. Prediction
through spinal radiographic progression serves as the main factor in the prognosis and
treatment choice of AS, although it is challenging. VEGF may better predict bone damages
in patients with axial spondyloarthritis [88,93,95]. In contrast, Braun et al. did not show any
correlation between VEGF and disease activity score based on clinical manifestations and
abnormal signs in magnetic resonance imaging. [96]. However, VEGF in combination with
other factors such as biomarkers, clinical characteristics, predict better for radiographic
progression in axial spondyloarthritis [97]. TNFα inhibitors are the biologic agents that are
indicated frequently in AS. VEGF levels also significantly decrease following anti-TNFα
therapy [91,98,99]. VEGF also correlates with bone mineral density in AS treatment with
infliximab [99]. VEGF levels decrease sharply in AS treated with secukinumab (Anti-IL-17A
monoclonal antibody), and decreases in VEGF levels also correlate with inflammatory
osteogenic biomarkers [100]. Additionally, VEGF also associates with extra joints and spine
manifestations in spondyloarthritis such as subclinical gut inflammation. VEGF and PIGF
levels markedly increased in the intestinal mucosa of AS patients without any history of gut
inflammation compared to healthy controls [101]. Several studies also support that VEGF
is related to AS susceptibility [87], suggesting that VEGF plays a role in the pathogenesis
of AS.

A study assessed the effect of anti-VEGF therapy in AS mouse model of proteoglycan-
induced arthritis by injection of soluble fms-like tyrosine kinase-1 (sFlt-1), a secretory
decoy receptor for VEGF. It supported that disease activity improves significantly in the
group treatment compared to the control group [102]. Currently, the main therapies for AS
include non-steroid drug and anti-TNFα, both of them target in inflammatory process with
limitations remaining in radiograph progression prevention. Lacout et al. suggested that
bone homeostasis should be targeted in AS treatment. Anti-VEGF such as bevacizumab
may be a potential therapy for severe disease activity and fast progression [103].

5. VEGF in SLE

SLE is the most typical autoimmune disease with various autoantibodies detecting.
Other organ damages include skin, hair, blood, nervous system, kidney, vascular, lung,
and musculoskeletal manifestations. Women of childbearing age are a high incidence [104].
The etiology of SLE is unclear; many factors are mentioned comprising the gene, ethnic,
immune regulatory, hormone, and environment. SLE has many severe complications
that lead to life-threatening of patients. In recent decades, the outcome of SLE patients
improved considerably because of new immunosuppressant agents [105].

VEGF levels are associated with SLE risk, active SLE risk, lupus nephritis risk [106],
and the risk of SLE in a Chinese Han population related to VEGFR1 gene polymor-
phisms [107]. VEGF is an independent predictor of disease activity [106,108]. In pediatric-
onset SLE, VEGF was shown to be one of the six markers of endothelial dysregulation.
Therefore, VEGF may be a potent biomarker for pediatric-onset SLE activity as well as
organ involvement. It is also helpful for understanding vascular pathogenesis and disease
monitoring [109]. VEGF associates with the incidence of clinical manifestations of SLE. Oral
ulceration is a common symptom in SLE patients that has a relationship with VEGF [109].
Additionally, VEGF may be contributed to the raised frequency of neuropsychiatric disor-
ders in SLE patients [110]. Female SLE patients in pregnancy often progress more severely
with active SLE and various complications to both mother and fetus. Preeclampsia also
is an obstetrics disease in pregnancy. To answer the SLE patients in the acute phase of
SLE with nephritis or inactive SLE or preeclampsia is challenging to clinicians due to



Int. J. Mol. Sci. 2021, 22, 5387 7 of 17

overlapping symptoms. Recent publications showed that there is a significant difference
in VEGF level between preeclampsia, inactive SLE, and active lupus nephritis. So, this
result suggests that VEGF level may be a useful marker to clinicians [111]. Lupus nephri-
tis is a severe manifestation and prognosis in patients with SLE. VEGF-A participates
in the pathogenesis of proliferation lupus nephritis via its impact on the relationship of
endothelial cells and epithelial cells [112]. VEGF levels relate to the development of kidney
damage [106]. Another study also showed that there is a considerable increase of VEGF in
lupus nephritis compared to the non-lupus nephritis and the control group. However, there
was no statistically significant relationship between serum VEGF levels and the histological
classes of lupus nephritis [113]. Thus, VEGF may be contributing to the pathogenesis of
these manifestations. Furthermore, there was a decrease in the level of VEGF-A in SLE
patients taking mycophenolate mofetil compared to the non-taking mycophenolate mofetil
group [114]. Another study observed that the level of VEGF-R2 significantly decreased in a
group of SLE patients treated for a long time compared to the group of newly diagnosed,
untreated SLE patients. Various drugs, including prednisone, immunosuppressive drugs
were used in this study [115]. VEGF correlates with disease activity [116–118].

6. VEGF in OA

OA is the most common joint disorder in middle age and elderly people. OA affects
all parts of joints, including cartilage, subchondral bone, synovium, ligaments, and periar-
ticular muscle. Cartilage degeneration is fundamental damage [119]. OA is the principal
cause of disability and pain [120]. Disease-modifying drugs are currently not available,
and therapy is mainly aimed at symptom relief [121].

Angiogenesis forms a network of neovascularization in synovium called OA pannus.
Angiogenesis associates with osteophytes formation, VEGF promotes this process [122].
Hyperangiogenesis contributes to synovial inflammation and microstructural deterioration
during OA [70]. Augmentation of VEGF signaling exacerbates joint OA formation by
increasing osteoclast differentiation, metalloproteinase, and chondrocyte apoptosis leads
to bone and cartilage destruction [123]. There is increased expression of VEGF in the entire
structure of joints, synovial fluid in OA. Its receptors strongly express in OA chondrocytes.
Similarly, VEGF also registers the increase in serum and synovial fluid [124–126]. The
role of VEGF is observed in various processes of bone homeostasis. VEGF enhances
osteoclast differentiation, osteoclast survival, RANKL secretion [123]. There is an increase
of VEGF levels in osteoblasts from patients who replaced total hip [127]. VEGF can be
used as a marker to monitor the response to OA therapy [128]. Pain is the key symptom
of OA and the mechanism of pain in OA is not completely understood; therefore, a clear
understanding of the pathogenesis of pain in OA is essential for the development of
targeted therapies. Tanako et al. supported that in human knee OA, VEGF experienced a
positive correlation with pain score [129] and Galballa et al. also showed that VEGF not
only correlates with pain but also in clinical and radiology symptoms [130]. One of the
factors that contributes to the mechanism of pain is the growth of sensory nerves. This
process is stimulated by proangiogenic factors [131]. Pain hypersensitivity is a phenomenon
that is observed in OA. Several studies suggest that VEGF signaling has an association
with this condition [132–134]. VEGF also increases the expression of several types of
MMP, especially MMP-13, key factor results in cartilage degeneration [123,135]. Moreover,
hypoxia, a crucial mediator of the VEGF axis, contributes to temporomandibular joint
osteoarthritis and accelerates the angiogenesis of condylar cartilage through the HIF-1-
VEGF-Notch signaling pathway. HIF-1α and Notch may be novel therapeutic targets for
temporomandibular joint osteoarthritis [136]. The accumulated evidence shows that VEGF
signaling participates in various aspects of OA including synovitis, mechanism of pain,
bone and cartilage destruction.

In vivo studies have also shown positive results with VEGF-targeted therapy. In a
rabbit OA model due to trauma, there is a significant decrease in pain, cartilage destruc-
tion, synovium inflammatory in group treatment with bevacizumab, a VEGF blocker by
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intra-articular injection. Moreover, they do not register any adverse effect [137]. Oral ad-
ministration of a VEGFR-2 kinase inhibitor attenuated OA progression in a mouse model of
post-traumatic human knee OA [38]. Anti VEGF signaling seems to be a potential therapy
in OA and using anti-VEGF agents by local administration may show more benefits.

7. VEGF in SSc

SSc is a rare autoimmune disease marked by the fibrosis of the skin, and involve-
ment of internal organs, especially the vascular system, lung, kidney, and gastrointestinal
system and is caused by excessive collagen deposition, immunological disturbances, and
accompanying vascular changes. Genetic, environmental, vascular, autoimmunological,
and microchimeric factors contribute to the pathogenesis of SSc. The cause of this disease
is unknown and the limitation in the treatment therapies leads to the poor outcome of SSc
patients. Thus, the tools for early diagnosis and effective intervention are required. A better
understanding of the pathology of SSc may contribute to potentially effective therapies to
improve SSc patient outcomes. Microvascular damage and dysfunction of angiogenesis are
identified abnormalities. Tissue fibrosis results from series events including endothelial
dysfunction, inflammatory, increased vascular permeability, platelet aggregation [138–140].
Impaired angiogenesis is detected in the digit ulcers of SSc patients [141]. There is a signifi-
cant increase in serum VEGF levels in both the early and established stages of SSc [142,143].
Jinin et al. suggested that VEGFR-2 level may be an indicator for microangiopathy and
helpful for diagnosis in SS [144]. Avouac et al. reported that VEGFR-1 level decreased in
SSc patients compared to those in the healthy control. There is a significant increase of
VEGF and its receptor expression in skin lesion from SSc patients [144,145].

Pulmonary fibrosis, pulmonary hypertension, and renal involvement are the main
causes of mortality. Serum VEGF levels may act as biomarkers for interstitial lung in-
volvement [146]. VEGF does not correlate with intrarenal stiffness and renal function in
patients with SSc [147]. VEGF, pigment epithelium-derived factor (PEDF) levels, and the
VEGF/PEDF register considerable changes, and they seem to be useful tools for disease
activity assessment [148]. However, some studies show that the relationship of VEGF with
pulmonary pressure is still unclear [148,149]. VEGF is also used as a marker in combination
with other factors to predict disease activity in SSc [143]. VEGF and Ang/Tie2 dysfunction
lead to peripheral microvasculopathy in SSc [150]. Nintedanib inhibits simultaneously
three types of receptors including the platelet-derived growth factor, fibroblast growth fac-
tor, and vascular endothelial growth factor tyrosine kinase, and is approved for idiopathic
pulmonary fibrosis. Huang et al. assessed the effect of nintedanib in a mouse model of SSc
with promising results. The pulmonary arterial hypertension, microangiopathy destruc-
tion, pulmonary, myocardial, and dermal fibrosis are improved in group treatment [151].
Taken together, the inhibitors targeting VEGF signaling may be a potential therapy for
SSc treatment.

8. VEGF in SS

Primary SS is an autoimmune disease characterized by chronic inflammation that
results in dryness of the eye, mouth, and an increased the size of parotid gland. The
incidence rate is 0.2–0.5% of the adult population. SS is the most common in middle-
aged women [152]. The risk of dental caries and oral infections results in an inferior
quality of life. Angiogenesis represents a novel potential marker for primary SS and may
contribute significantly to the pathogenesis [153]. VEGF-C expressed in epithelial cells and
inflammatory cells of primary SS. There is a considerable increase in VEGFR-3 expression
in lymphatic vessels. In primary SS, this study showed that the increased expression
of VEGF-C correlates with immune cells, cytokine, and lymphatic EPC originated from
bone marrow [154]. Furthermore, the role of VEGF is also supported by another study
that showed that tumor necrosis factor alpha converting enzyme (TACE) in TACE/VEGF-
R2/NF-κB dysregulation participates in SS pathogenesis [155]. However, the role of VEGF
in SS remains controversial, because another study did not show any change in VEGF
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levels in SS patients. Detection of serum VEGF is less sensitive than detection of VEGF in
saliva but the role of saliva VEGF in pathogenesis of SS is unclear [156]. With the evidence
limitation, the function of VEGF in SS remains relatively modest.

9. Summary

Taken together, VEGF shows its role in the pathogenesis of many diseases in rheuma-
tology. VEGF is a marker in disease activity assessment and treatment following. The
function of VEGF in rheumatic diseases is summarized in Table 1. VEGF contributes
to various aspects of the pathogenesis of joint damage in rheumatic diseases including
angiogenesis, synovitis, inflammatory, osteoclast differentiation and cartilage degradation.
Interestingly, VEGF reveals the association with the mechanism of pain in OA. The role of
VEGF in the development of joint injuries is illustrated in Figure 1.

Table 1. The role of VEGF in rheumatic diseases.

Rheumatic Diseases Mechanisms Clinical Results

Rheumatoid arthritis Regulate the migration, proliferation of
endothelial cells
Prevent the synoviocyte apoptosis
Regulate osteoclast differentiation,
induce RANKL secretion
IL-6/JAK2/STAT3/VEGF
VEGF/Ang2-Notch

High levels
Correlate with disease activity, C-reactive
protein, radiographic progression
VEGF-C contribute to the susceptibility
Treatment therapy reduces VEGF expression

Ankylosing spondylitis Regulate osteoblast differentiation
Stimulate COX2 pathway
Participate in inflammatory

Correlate with peripheral arthritis, BASDI,
inflammatory markers, duration
Predict bone damage
Correlate with bone mineral density in
infliximab treatment
Associated with subclinical gut inflammation
Anti TNFα, anti-IL-17A decreased serum VEGF
levels

Systemic lupus erythematosus Endothelial dysfunction High level in lupus nephritis
Associated with SLE risk, active SLE, lupus
nephritis risk
Predictor of disease activity
Associated with oral ulceration, neuropsychiatric
disorders
Correlate with disease activity
MMF decreased the VEGF-A levels.

Osteoarthritis Promote the neovascularization in
synovium
Increase osteoclast differentiation,
osteoclast survival, RANKL secretion
Increase metalloproteinase
Increase chondrocyte apoptosis
Accelerated angiogenesis via
HIF-1-VEGF-Notch

Associated with pain, clinical and radiology
symptoms

Systemic sclerosis VEGF/Ang/Tie2 dysfunction High levels
Associated with microangiopathy
Biomarker for interstitial lung involvement
Combination with other factors to predict
disease activity

Sjögren syndrome TACE/VEGF-R2/NF-κB dysregulation Remain unclear
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Figure 1. Schematic diagram of the role of VEGF in the development of joint injuries in rheumatic
diseases. VEGF plays an important role in angiogenesis, the prominent characteristic of arthritis.
VEGF and its receptor strongly express in synovial tissue, fluid. VEGF-NRP1 axis leads to apoptotic
resistance of synoviocytes. VEGFR-1 is expressed on the membrane of macrophages. VEGF axis
regulates the inflammatory process by cytokine production as well as enhanced bone resorption via
increased osteoclast differentiation. In OA, VEGF may increase the expression of MMP-13, leading to
tissue destruction.

Targeting angiogenesis via inhibition of VEGF may be a potential therapy in rheumatic
diseases. However, to minimize the drawbacks of anti-VEGF therapy, appropriate clinical
trials are needed to test its safety, efficacy, cost-effectiveness, and methods need to be
developed to control the binding ability of drugs to targeted injuries. Based on current
evidence, anti-VEGF therapy may be most likely adjunctive therapy for arthritis. Local
administration shows more beneficially because of low dose requirement and adverse
effect minimizing. In the SSc mouse model, VEGF inhibitor also shows its effect in the
improvement of pulmonary hypertension, skin, and lung fibrosis. More studies are needed
to clarify the role of VEGF and the effect of anti-VEGF therapy in rheumatic diseases.
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