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Abstract: Innate recognition of virus proteins is an important component of the immune 

response to viral pathogens. A component of this immune recognition is the family of lectins; 

pattern recognition receptors (PRRs) that recognise viral pathogen-associated molecular 

patterns (PAMPs) including viral glycoproteins. In this review we discuss the contribution 

of soluble and membrane-associated PRRs to immunity against virus pathogens, and the 

potential role of these molecules in facilitating virus replication. These processes are 

illustrated with examples of viruses including human immunodeficiency virus (HIV), 

hepatitis C virus (HCV) and Ebola virus (EBOV). We focus on the structure, function and 

genetics of the well-characterised C-type lectin mannose-binding lectin, the ficolins, and the 

membrane-bound CD209 proteins expressed on dendritic cells. The potential for lectin-based 

antiviral therapies is also discussed. 

Keywords: innate immunity; lectin; HIV; hepatitis viruses; therapeutics; mannose binding 

lectin; ficolin; DC-SIGN 

 

1. Introduction 

Lectins are a diverse group of proteins broadly defined as non-immunoglobulin proteins that exhibit 

high avidity for glycoprotein- and/or glycolipid-associated carbohydrates, but display no enzymatic 

activity [1]. Genes encoding lectins been identified in all forms of life, including plants, animals, and 

viruses, an indication of their evolutionary conservation [1]. Indeed, phylogenetic studies indicated that 
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the primitive immune system depended on lectin-protease-mediated opsonophagocytosis [2]. Lectins 

differ in tissue expression, ligand affinities, structure and function, and are classified by the phylogeny 

and primary and tertiary amino acid structures of their carbohydrate-recognition domains (CRD). 

However there are several inconsistencies in this classification system (reviewed in [3]). 

Glycosylation is a form of post-translational modification in which glycans—monosaccharides or 

oligosaccharides—are glycosidically bonded to an organic molecule (reviewed in [4]). This modification 

plays an essential role in the expression and function of many proteins in eukaryotes and prokaryote 

cells, with roles in, for example, inter-compound interaction and pathogenic immune evasion. 

Eukaryotic and viral glycosylation occurs in the host cell endoplasmic reticulum (ER) and Golgi 

apparatus. Lectin-glycan interactions are generally achieved by hydrogen bonding and Van der Waals 

forces, and often depend on cations and multivalent interactions between multiple CRDs and multiple, 

clustered target glycans in order to achieve sufficient affinities for lectin activity [3]. 

The roles of human lectins include protein modulation, cell growth and homeostasis [4]. As 

glycoproteins are found on the surfaces of several pathogens to a diverse and widespread degree, some 

lectins act as pattern-recognition receptors (PRRs), recognising pathogen-associated molecular patterns 

(PAMPs)—including glycans and nucleic acid—related to invading microorganisms and malignant, 

apoptotic or dead host cells. This can lead to the induction of an immune response against the invading 

pathogen. However, the relationship between lectins and viruses is complex. In addition to immune 

evasion, glycosylation is essential for protein expression, assembly and entry steps in virus replication 

cycles [5], and many viruses have evolved mechanisms to exploit lectins to enhance infection. 

This review focuses on human lectins and their roles during viral infections, concentrating on the 

well-described lectins mannose-binding lectin (MBL), ficolins and dendritic cell-specific ICAM-3 

grabbing non-integrin (DC-SIGN). It highlights the different effects of lectins on viral infections and the 

consequences of genetic variation in lectin genes on susceptibility to virus infections. 

2. The Complement Cascade 

Complement contributes towards the initial defence against viral infections through a sequential 

protein activation cascade (reviewed in [6]). There are three known complement activation pathways. 

Each pathway converges at the formation of C3 convertase, which activates downstream complement 

factors to constitute the membrane attack complex (MAC). The MAC subsequently forms pores in the 

lipid membranes of pathogens and infected cells, causing osmotic lysis. Parallel to the cascade, some 

complement cleavage products mediate inflammation and opsonise pathogens, attracting phagocytes, 

encouraging antigen aggregation and preventing viral entry. To avoid potentially damaging, excessive 

complement activity, stringent regulation mechanisms have evolved, including complement factor 

cleavage and endocytotic shedding of MACs. 

The alternate and classical complement pathways are triggered by foreign surface molecules and 

antigen:antibody complexes, respectively. The lectin pathway involves the binding of microbial surface 

carbohydrate moieties to serum lectins, which activates lectin-bound MBL-associated serine proteases 

(MASPs) and proteins (MAPs) (Figure 1). 
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Figure 1. The lectin pathway of complement activation. MBL and ficolins undergo 

conformational changes upon interaction with viral glycoproteins via glycan-associated 

mannose and N-acetylglucosamine residues, respectively. Sugars are labelled in accordance with 

reference [7]. This activates MASP-1 followed by MASP-2, which initiates a cleavage cascade 

of complement factors, with roles in opsonisation, inflammation and pathogen and infected 

cell lysis. 

The MBL-Associated Serine Proteases 

MASP-1, MASP-3 and MAP-1 are alternative splice products of the MASP1 gene [8,9], while  

MASP-2 and sMAP are encoded by the MASP2 gene [10]. MASP-1 and MASP-2 cleave C3 and C4, 

respectively, while C2 is cleaved by both [11]. MASP-2 can produce the C3 convertase C4bC2a and 

thus activate complement [6] (Figure 1). 

Upon ligand binding, lectins undergo a conformational change that brings MASP serine protease 

domains within close proximity of each other, thus allowing proteolytic autoactivation [12–15] via the 

cleavage of an arginine-isoleucine bond in the serine protease domain [16]. 

MASP-2 activation appears to be primarily dependent on MASP-1, which may autoactivate then 

trans-activate the MASP-2 proenzyme [17]. This might be mediated either by heterodimeric MASP 

complexes, MBL-MASP-1-MASP-2 co-complexes, or separate MBL-MASP complexes [18,19]. If 

these complexes are separate, the binding sites of MASP-2 and MASP-1 and -3 on the lectin are likely 

to be within close proximity and overlapping, but not identical [20]. 
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sMAP and MAP-1 are truncated MASP proteins lacking serine protease domains, and have putative 

roles in the modulation of MASP-associated complement activation [9,10,21]. MAP-1 may inhibit 

MASP-2 activation by the disruption of inter-MASP and lectin-MASP co-complexes [18,22]. 

The MASPs may also associate the lectin pathway of complement with the coagulation  

system [23,24]. MASP-3 has a putative regulatory function of MASP-2 activity [8], and—due to its 

involvement in the facial dysmorphic 3MC syndrome—roles for the protein in embryonic development 

have been hypothesised [25]. 

3. Mannose-Binding Lectin (MBL) 

3.1. Genetics, Structure, Expression and Binding Specificities of MBL 

MBL is a soluble, Ca2+-dependent protein of the collectin family–characterised as C-type lectins with 

collagenous domains–encoded by the MBL2 gene on human chromosome 10q11.2–10q21 [26]. MBL is 

primarily expressed in the liver and secreted into the blood, however lower expression has been detected 

elsewhere, including in mammalian muscle tissue and brain, often following immune challenge [27]. 

MBL monomers are 32 kDa in molecular weight and possess a typical collectin structure: an  

N-terminal cysteine-rich domain, a collagen-like domain (CLD) of approximately 20 Gly-Xaa-Yaa 

tandem repeats, a neck region and a CRD responsible for ligand binding (Figure 2a) [28]. These 

monomers form homotrimeric subunits that further oligomerise into trimeric to hexameric structures that 

can activate the complement cascade [29]. Trimeric and tetrameric MBL are the most common 

physiological configurations (Figure 3a) [30]. 

The CLDs form MBL trimers by hydrophobic interactions, as initiated by α-helical triple coiled coil 

formation of the neck domain and stabilised by inter- and intra-monomer bridges via 3 N-terminal 

cysteines [28,30,31]. Oligomeric MBL arranges into a sertiform structure, with trimeric subunits 

stretching out from the short, bundled N-terminal regions [30,32]. A short amino acid sequence after the 

first 7 N-terminal Gly-Xaa-Yaa repeats creates a “kink” bend in the CLD, however this is only seen in 

a minority of MBL molecules in vivo and does not influence MBL activity [30,32]. Significant flexibility 

exists at the CLD-neck and CLD-N-terminus regions, influencing CRD positioning, ligand specificity 

and MASP interaction [30,32]. 

MASP binding is centred around a conserved lysine occupying the Xaa position of a CLD  

repeat [33]. Ligand binding induces a “stretching” event which splays the MBL trimeric subunits and 

brings MASPs together to enable proteolytic autoactivation [12–15]. Trimeric/tetrameric MBL may 

represent the optimal configuration to accommodate MASP auto-activation [30,32]. 

MBL exhibits specificity for pairs of adjacent equatorial monosaccharide 3- and 4-hydroxyl groups, 

present in terminal mannose, N-acetylglucosamine (GlcNAc), N-acetylmannosamine and L-fucose 

oligosaccharides [34]. This is consistent with the presence of a conserved glutamate-proline-asparagine 

(EPN) motif in the CRD. MBL also binds phospholipids and nucleic acids, supporting a role in clearance 

of necrotic tissue [35,36]. MBL may employ higher order oligomers in order to achieve sufficient ligand 

binding via multivalent bonding [37]. 
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Figure 2. Exon and monomeric structures of (a) MBL; (b) ficolins; (c) DC-SIGN. MBL and 

ficolins possess 3/2 N-terminal cysteines and a lysine in its CLD, important in 

oligomerisation and MASP/phagocyte interaction respectively. DC-SIGN contains  

N-terminal, cytoplasmic dileucine and tyrosine internalisation motifs. 
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Figure 3. Active, oligomeric structures of (a) MBL; (b) M-/L-ficolin; (c) H-ficolin;  

(d) DC-SIGN. MBL and DC-SIGN possess C-terminal carbohydrate-recognition domains 

(CRD) whereas ficolins possess fibrinogen-like domains (FBG). MBL and ficolin possess 

collagen-like domains and consist of trimeric subunits. DC-SIGN possesses a neck region 

and transmembrane (TM) domain. 

3.2. MBL Interaction with Viruses 

MBL interacts with several, but not all, viruses in a Ca2+-dependent manner. It interacts with several 

strains of human immunodeficiency virus-1 (HIV-1) via its spatially conserved, high mannose-type,  

N-linked glycosylated gp120 envelope glycoprotein [38]. While HIV-1 uses several mechanisms to 

evade adaptive immune responses—such as “glycan shielding” in which gp120 glycosylation site 

mutations prevent neutralising antibody binding but maintain cell receptor binding [39]—MBL is able 

to bind and neutralise diverse strains of HIV-1. However, MBL does not neutralise HIV-1 through 

complement activation, even at concentrations far exceeding physiological serum levels [40,41]. 

Therefore, MBL directly neutralises infection in complement-independent manners, such as 

opsonisation to enhance phagocytosis by DCs and macrophages, as observed for bacterial infections 

(Figure 4) [42]. The phagocyte cell surface receptor for MBL has not yet been identified, but a likely 

candidate is calreticulin—a protein-folding chaperone typically situated in the ER, with roles in antigen 

presentation—which may bind the MBL at the MASP-binding site [43]. 
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Figure 4. The pro-viral and antiviral activities of serum MBL and ficolins. Both have 

antiviral activities through complement activation, opsonophagocytosis and direct spatial 

blocking of virus-receptor interactions and entry. Ficolins also enhance production of 

inflammatory cytokines and nitric oxide. MBL has specific pro-viral activities in Ebola virus 

and HIV-1 infections, through enhanced virus entry and neuronal apoptosis respectively. 

MBL-gp120 interaction also prevents HIV-1 interaction with cell entry inhibitors and inhibits  

trans-infection by direct spatial blocking [40,44]. The same viral glycoprotein-mediated  

complement-dependent/independent mechanisms are employed by MBL to neutralise influenza A virus 

(IAV) [45,46], hepatitis C virus (HCV) [47], severe acute respiratory syndrome coronavirus  

(SARS-CoV) [48,49], Dengue virus (DV) and West Nile virus (WNV) [50,51] infection in vitro. 

Furthermore, MBL can indirectly activate coagulation upon pathogen binding, perhaps via MASP-1 

recruitment, as observed in HCV [52] and IAV [45] infection. 

Viral Exploitation of MBL 

Recombinant MBL has therapeutic potential against Ebola virus (EBOV) infection as it neutralises 

the virus in vitro and in vivo via complement activation [53], phagocytosis, and direct inhibition of 

glycoprotein interaction with the DC-SIGN/L-SIGN receptor [54]. However, MBL may have pro-viral 

effects, enhancing EBOV infection by mediating macropinocytosis in low complement conditions, 

perhaps via the C1QBP cell receptor (Figure 4) [55]. This may partially explain the high prevalence of 

allelic variants conferring low MBL levels, as in the context of EBOV lower MBL levels may prevent 

excessive infection [55]. MBL can also enhance HIV-1 infection of the brain. AIDS-associated dementia 

complex is characterised by neuronal cell death and cognitive deficits, however HIV-1 infects relatively 

few brain cells [56]. Instead, HIV-1 sheds gp120 glycoprotein, which is internalised via the CXCR4 
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receptor on neuronal cells, then bound and shuttled by intracellular MBL in vesicle complexes to the ER 

and Golgi apparatus, perhaps facilitating gp120-mediated apoptosis (Figure 4) [56,57]. 

3.3. MBL Variants 

In addition to the wild-type MBL allele A, 3 MBL variants with single nucleotide polymorphisms 

(SNPs) in exon 1 are common. These—termed MBL-B, -C and -D—are products of amino acid 

substitutions in codons 54 [58], 57 [59] and 52 [60] which disrupt Gly-Xaa-Yaa repeats. These  

cause less stable CLDs, hindering the capacity for trimerisation, MASP-binding and complement 

activation [20]. The mutations are N-terminal to the CLD kink whereas the MASP-binding sites are  

C-terminal, indicating that the decreased affinity for MASPs is an indirect result of the destabilisation 

of the CLD [20]. 

Certain African and South American populations have low serum MBL levels as a result of high allele 

MBL-C and -B frequencies, respectively [61]. Frequency of the MBL-D allele is particularly high in 

African and Caucasian populations [60]. Nevertheless, approximately 10%–30% of the global 

population are MBL deficient [62]. Heterozygotes for the variant alleles exhibit characteristics of both 

wild-type and variant homozygotes, including different patterns of oligomerisation and MBL serum 

levels [63]. 

However, despite its polymorphisms, the MBL2 gene and its primate orthologues are highly 

homologous and conserved, emphasising the evolutionary and immune importance of the protein [64]. 

Several theories for the high frequencies of various MBL variants with significantly different levels and 

activities have been proposed, including founder effect, or selective advantages such as heterozygous 

advantage, decreased complement-mediated tissue damage and a role of MBL in the enhancement of 

infection [65]. 

MBL2 promoter SNPs −550G>C (H/L), −221C>G (X/Y) and +4C>T (P/Q) influence MBL serum 

concentration [61,66,67]. As a result of linkage disequilibrium, 7 common haplotypes have been 

described, each with differing serum levels of MBL ranging from <0.01 μg/mL to >5 μg/mL, with an 

average of 1.7 μg/mL [61,68]. Although alternative immune mechanisms often compensate for MBL 

defects [69], both excessively high and low serum levels are associated with increased susceptibility to 

both infectious and autoimmune disease [61].  

The Effect of MBL Variant Alleles on Viral Infection 

MBL deficiency-associated alleles correlate with increased susceptibility to infectious diseases, 

however these relationships are complex (Table 1). Homozygotes and heterozygotes of the variant alleles 

increase risk of HIV-1 infection [70,71] and disease progression [72]. HIV-1 patients carrying the  

MBL-B allele had higher viral loads in their sera, likely as a result of decreased MBL-mediated viral 

elimination [73]. The -221 SNP has been correlated with increased risk of perinatal HIV-1  

infection [74], whereas higher MBL levels conferred protection. Low serum level haplotypes of the  

−550 and −221 SNPs were associated with low CD4+ T-cell counts, higher viral loads [75] and 

accelerated disease progression [72]. In contrast, some studies found no association between variant 

alleles and susceptibility to HIV-1 infection [76] and disease progression [77,78]. Although MBL levels 

do not change throughout HIV-1 disease progression, MBL serum levels are elevated in HIV-1-infected 
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patients and are correlated with good response to highly active antiretroviral therapy (HAART) [41,79]. 

Some studies suggest a protective effect against HIV-1 disease progression conferred by the variant 

alleles [80]. 

Table 1. Single nucleotide polymorphisms of the MBL2, FCN and CD209 genes with 

associations with virus infections. del = deletion; ins = insertion. +1 represents the A of the 

ATG translation start site for all genes except MBL2, where +1 represents the transcription 

start site, to comply with literature. 

Gene 

dbSNP 

(Alternative 

Name) 

Nucleotide 

Position 

Major 

Allele 

Minor 

Allele 
Region 

Amino Acid 

Mutation 

Relevance to Specific Virus 

Infections 

MBL2 

rs11003125 

(H/L) 
−550 G C Promoter - HIV [74,75] 

rs7096206 (X/Y) −221 C G Promoter - 

HBV [81], HCV [82,83], HIV 

[72,75], HTLV [84],  

SARS-CoV [48] 

rs7095891 (P/Q) +4 C T 5’ UTR -  

rs5030737 

(MBL-D) 
+223 C T Exon 1 Arg52Cys 

CMV [85,86], DV[50],  

HBV [87,88], HCV [82,83,89,90], 

HIV [70,72,80],  

rs1800450 

(MBL-B) 
+230 G A Exon 1 Gly54Asp 

CMV [85,86], DV [50], HBV 

[81,88,91], HCV [82,83,89,90], HIV 

[70,72,73,80], HTLV [92],  

SARS-CoV [48] 

rs1800451 

(MBL-C) 
+239 G A Exon 1 Gly57Glu 

CMV [85,86], DV [50], HBV [88], 

HCV [82,83,89,90], HIV [70,72,80]

FCN1 

rs2989727 −1981 G A Promoter -  

rs10120023 −542 G A Promoter -  

rs28909976 −271 - InsT Promoter -  

rs10117466 −144 C A Promoter - Increased serum concentration [93] 

rs10441778 +1435 G A Exon 2 Gly43Asp 
Likely affects structure and 

oligomerisation [94] 

ss76901539 +3458 G A Exon 4 Arg93Gln 
Likely affects structure and 

oligomerisation [94] 

rs148649884 +6658 G A Exon 8 Ala218Thr 
Reduced serum concentration, 

reduced ligand binding [93] 

rs150625869 +7895 T C Exon 9 Ser268Pro Abolished serum concentration [93]

rs1071583 +7918 G A Exon 9 -  

ss76901546 +7929 G A Exon 9 Trp279STOP 
Likely affects structure and 

oligomerisation [94] 

rs138055828 +7959 A G Exon 9 Ala289Ser 
Reduced serum concentration, 

reduced ligand binding [93] 

ss76901547 +8000 G A Exon 9 Gly303Ser Likely affects function [94] 
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Table 1. Cont. 

Gene 
dbSNP 

(Alternative 

Name) 

Nucleotide 

Position 

Major 

Allele 

Minor 

Allele 
Region 

Amino Acid 

Mutation 

Relevance to Specific Virus 

Infections 

FCN2 

rs3124952 −986 G A Promoter - 
Reduced serum concentration 

[94]; HBV [95] 

rs3124953 −602 G A Promoter - 
Increased serum concentration 

[94]; HBV [95] 

rs17514136 −4 A G Promoter - 
Increased serum concentration 

[94]; HBV [95] 

ss76901565 +4423 C T Exon 5 Arg103Cys 

Likely affects chemical  

and structural  

properties [94] 

ss76901566 +4526 C T Exon 5 Thr137Met 
Likely affects chemical and 

structural properties [94] 

ss76901570 +4957 G A Exon 6 Arg147Gln 
Likely affects  

ligand binding [94] 

ss76901571 +4987 G A Exon 6 Arg157Gln 
Likely affects  

ligand binding [94] 

rs17549193 +6359 C T Exon 8 Thr236Met 

Reduced binding to  

GlcNAc [94] and  

PTX3 [96]; 

rs7851696 +6424 G T Exon 8 Ala258Ser 

Increased binding to  

GlcNAc [94]; CMV [86],  

HBV [95] 

rs28357091 +6443_44 CT A Exon 8 Ala264fs Truncated protein [94] 

FCN3 
rs28357092 +1637 C delC Exon 5 Leu117fs 

Truncated protein [94]; Severe, 

recurrent respiratory and 

gastrointestinal  

infections [97–99] 

ss76901551 +1663 A G Exon 5 Thr125Ala Likely affects function [94] 

ss76901555 +5543 T C Exon 8 Val287Ala Likely affects function [94] 

CD209 

rs4804803 −336 A G Promoter - 

DV [100–102],  

HCV [103],  

HIV [104–106],  

SARS-CoV [107] 

rs11465366 −201 C A Promoter - HIV [104,106] 

rs2287886 −139 T C Promoter - HIV [106,108] 

rs41374747 +660 G A Exon 4 Arg198Gln HIV [104] 

rs11465380 +791 C G Exon 4 Leu242Val HIV [104] 

The MBL variants may also influence Dengue virus infection and disease progression [50].  

MBL deficiency is also linked to cytomegalovirus (CMV) reactivation after lung or liver  

transplantation [85,86] and susceptibility to SARS-CoV [48], yet displayed no correlation with IAV 

H1N1 infection [109]. Correlations between MBL-B homozygotes and the −221 SNP with susceptibility 

to human T-cell lymphotropic virus (HTLV) infection have been observed [84,92]. 
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Some studies suggested that MBL variants do not influence susceptibility to HCV infection [110,111] 

or disease progression [112], however others show an association with HCV infection, disease progression 

and treatment response [82,83,89,112]. One study associated MBL-B and -D with protection against 

HCV infection, while associating MBL-C with increased susceptibility [90]. MBL-B is associated with 

chronic hepatitis B disease progression [91], whereas MBL-D displayed a Caucasian-specific 

association with hepatitis B virus (HBV) persistence [87]. All variants and the −221 SNP may influence 

HBV-associated hepatitis, liver cirrhosis and hepatocellular carcinoma [81,88], and MBL serum levels 

have a role in perinatal HBV infection [113]. However, one study found no correlation between variants 

and chronic HBV infection [114]. 

When studying the association of polymorphisms with disease severity, the geographical population, 

ethnicity, disease severity, asymptomatic patients, age, route of transmission, study techniques and 

sample size must be taken into account. These confounding factors can, in part, explain discrepancies 

between studies. 

4. Ficolins 

4.1. Genetics, Structure, Expression and Binding Specificities of Ficolins  

Three human ficolins have been described: L-ficolin [115], M-ficolin [116,117] and H-ficolin [118]. 

Several orthologues have been identified in genetically diverse lineages of animals, an indication of the 

ancient ancestral origins of these lectins. These include the invertebrate ascidians [119], and vertebrates 

such chickens [120], non-human primates [121] and pigs [116,122]. The human ficolins differ in several 

ways, for example in their localisation in the human body and their capacity to trigger an immune response. 

The M-, L- and H-ficolin proteins are encoded by the FCN1, FCN2 and FCN3 genes, respectively, 

encoding polypeptides of 326, 313 and 299 amino acids, including the signal peptide (Figure 2b) 

(reviewed in [123]). The FCN1 and FCN2 genes are both situated on chromosome 9q34 whereas FCN3 

is found on chromosome 1p36.11. The FCN2 and FCN3 genes consist of eight exons, whereas FCN1 

comprises nine exons.  

Each ficolin monomer comprises an N-terminal region with two functionally important cysteine 

residues, a CLD containing Gly-Xaa-Yaa repeats, a linker region and, characteristically, a C-terminal 

globular fibrinogen-like domain [124,125]. Like CRDs, the fibrinogen-like (FBG) domain recognises 

specific pathogen-associated carbohydrates, and the CLD is responsible for signalling to induce an 

immune response via MASP proteins [124,125]. Active, oligomeric L-ficolin and M-ficolin are 

dodecamers comprised of four homotrimeric subunits to form what has been labelled as a “bouquet” 

structure (Figure 3b), whereas H-ficolin is octadecameric (Figure 3c) [124–126]. Like MBL, ficolin 

homotrimers are stabilised by interactions between hydrophobic residues in the CLDs [31,127],  

and oligomerise by inter-monomer and -trimer disulphide bridges between the N-terminal cysteine 

residues [124,128]. 

Hepatocytes are the main site of expression and secretion of both L- and H- ficolin [125,129], 

although H-ficolin is also highly expressed in type II alveolar and bronchial epithelial cells [129]. 

Despite minor lung and blood expression, most M-ficolin is associated with the surface of peripheral 

blood leukocytes [117,130]. H-ficolin is the most abundant serum ficolin (median concentration of  



Molecules 2015, 20 2240 

 

~26 µg/mL; range 6–83 µg/mL) [131] followed by L-ficolin (median of 3.7–5.4 μg/mL; range  

~1–13 µg/mL) [132,133] and M-ficolin (median of 1.07 µg/mL; range 0.28–4.05 µg/mL) [134]. 

All ficolins bind GlcNAc and N-acetylgalactosamine (GalNAc) [118,130,135]. H-ficolin also binds 

GalNAc and D-fucose, but not mannose and lactose [118,135]. M-ficolin also binds sialic acid [130]. 

These differing ligand specificities are conferred by sequence differences in the binding site—S1—near 

the Ca2+-binding site of the FBG [135]. In addition to S1, L-ficolin has 3 inner binding sites,  

S2–S4, which exhibit great structural plasticity, thus allowing the sites to accommodate a wide variety 

of ligands in both Ca2+-dependent and -independent ways such as phosphocholine moieties of bacterial 

teichoic acids, in addition to acetylated compounds [135,136]. For example, S2 is the major binding site 

for galactose and N-acetylcysteine, whereas S3 and S4 cooperate to bind (1,3)-β-D-glucan, among  

others [135].  

4.2. The Roles of Ficolins in the Immune Response 

Like MBL, ficolins indirectly activate the lytic complement pathway via MASP activation, induce 

phagocytosis by opsonisation, and stimulate the production and secretion of inflammatory cytokines and 

nitric oxide by macrophages [137]. Interaction with phagocytes is believed to be mediated by a 

functionally significant lysine in the CLD, at residues 57 and 47 for L- and H-ficolin respectively,  

which binds calreticulin on phagocyte cell surfaces [126]. The same residue is responsible for interaction 

with MASPs, therefore it is possible that the phagocytic and complement effects of L-ficolin are 

competitive [20,126]. L-ficolin may also clear apoptotic and necrotic host cells through the binding of 

apoptosis-associated ligands [138]. Furthermore, L-ficolin directly prevents viral entry into host cells [139]. 

4.3. Ficolin Interaction with Viruses 

The role of ficolins in the clearance of several pathogens has become increasingly evident; however 

their role in viral clearance requires greater investigation. L-ficolin interacts with viruses via N-linked 

glycans on viral envelope glycoproteins [140–142]. L-ficolin binding of HCV triggers infected-cell lysis 

via C4 deposition, however L-ficolin interaction is abrogated if the HCV E2 glycoprotein is not 

glycosylated [141]. Biologically relevant levels of recombinant oligomeric L-ficolin, which displayed 

similar binding activity and structure to serum L-ficolin, neutralised HCV entry in a dose-dependent 

manner by preventing E2 interaction with cell surface lipoprotein receptor and scavenger receptor B1, 

which are important for HCV entry [139,143]. Monomeric L-ficolin can activate complement [141] but 

not inhibit HCV entry [139].  

Human L-ficolin and porcine ficolin-α neutralise replication and infection of IAV in vivo [142] and 

porcine reproductive and respiratory syndrome virus in vitro [140], respectively. L-ficolin directly 

inhibits IAV entry and promotes complement-mediated lysis of IAV and infected cells [142]. IAV binds 

sialylated glycans on serum H-ficolin in the airway before viral entry, enabling H-ficolin mediated 

inhibition of IAV infectivity by direct blocking, viral aggregation and complement activation [144]. As 

yet unpublished research by Ren et al. implicates L-ficolin mediated complement activation following 

interaction with HIV-1 gp120 [145]. 

Few M-ficolin interactions with pathogens have been observed, despite its ability to activate 

complement [130]. M-ficolin inhibits IAV infection [144]. The majority of M-ficolin is monocyte and 
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granulocyte membrane-bound, despite its lack of a transmembrane (TM) domain, and associates with 

sialylated membranes via its FBG domain [146]. A candidate receptor of M-ficolin is G-protein-coupled 

receptor 43 (GPCR43) which, upon M-ficolin-mediated pathogenic interaction, indirectly activates IL-8 

production [147]. Serum M-ficolin binds sialic acid on capsulated Streptococcus agalactiae via its FBG 

and activates complement, however L- and H-ficolin were found not to interact with this pathogen [148]. 

4.4. Single Nucleotide Polymorphisms in FCN Genes 

Hummelshøj et al. extensively described the SNPs of the highly polymorphic FCN genes  

(Table 1) [94,149]. In general, polymorphisms in the promoter regions of the ficolin genes are expected 

to affect gene regulation and protein concentration whereas coding region polymorphisms likely affect 

protein stability, modification, folding and activity, thus altering protein function. Non-synonymous 

substitutions alter protein activity, however non-synonymous mutations may influence mRNA 

processing and protein expression. 

While polymorphisms have been identified in the FCN1 and FCN3 genes, several more significant 

SNPs have been identified in the FCN2 gene. The frequencies of FCN polymorphisms often differ 

between ethnicities, with some existing solely in a particular geographical population, more so in African 

populations [94,150]. This likely arose from distinct geographical selective pressures, such as 

genetically-determined and infectious diseases. 

The FCN2 and FCN3 genes have three and two as yet undetected splicing variants, respectively [115,151]. 

The FCN1 gene contains 45 SNPs, nine of which are exclusive to African populations and eight of which 

are non-synonymous. Gly43Asp, Arg93Gln and Trp279STOP likely affect M-ficolin structure and 

oligomerisation, whereas Gly303Ser may affect M-ficolin function. The FCN3 gene showed 15 low 

frequency SNPs, none of which were found globally. Only Leu117fs, Thr125Ala—corresponding to 

FCN2 Thr137Met—and Val287Ala are predicted to affect H-ficolin function.  

Of the 36 SNPs in the FCN2 gene, five significant SNPs have been identified. Promoter 

polymorphisms −986A>G, −602G>A and −4A>G affect serum levels of L-ficolin and exon 8 

polymorphisms +6359C>T and +6424G>T, conferring Thr236Met and Ala258Ser respectively,  

in the FBG alter L-ficolin affinity to GlcNAc. Several of these and other polymorphisms were in strong 

linkage disequilibrium.  

Additional FCN2 SNPs were detected and their effects hypothesised, however no associated 

phenotype has yet been described. The Arg147Gln and Arg157Gln mutations are found in the S2  

and S3 binding sites respectively, and are therefore expected to affect ligand binding. Furthermore,  

the Arg103Cys and Thr137Met mutations are expected to affect the chemical and structural  

properties of L-ficolin. A rare frame shift mutation encoding Ala264fs has also been described, however 

a homozygote for this polymorphism has not been found, hence the physiological implications are 

unknown [149]. The rare frame shift SNP +1637delC of FCN3, correlating to Leu117fs, encodes a 

truncated H-ficolin protein that cannot be expressed [97]. This leads to full H-ficolin deficiency—in 

homozygotes, causing high levels of lung infection and disease, and severe necrotising enterocolitis [97–99]. 
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4.4.1. The Significance of FCN Gene Single Nucleotide Polymorphisms in Viral Infections 

There have been several clinical studies monitoring the part that ficolins play in disease outcome, 

typically focussing on one or both of two factors: ficolin gene polymorphisms (Table 1) and ficolin 

serum concentrations.  

One FCN2 haplotype is associated with protection against HBV infection [95]. L-ficolin levels were 

higher in patients with acute rather than chronic HBV infection, suggesting that the protein is directly 

involved in immediate clearance of the virus, and influences subsequent liver disease [95]. The L-ficolin 

Ala258Ser mutation appears to confer a protective effect against CMV re-infection in liver 

transplantation when compared to wild-type L-ficolin [86]. 

The Thr236Met mutation reduced affinity towards pentraxin 3 (PTX3), a serum protein which 

enhances L-ficolin-mediated complement response to Aspergillus fumigatus, suggesting that FCN2 

polymorphisms also alter affinity towards cooperative proteins and thus affect the immune  

response [96]. Interestingly, the +6424T SNP is associated with low serum levels of L-ficolin, yet also 

increased L-ficolin binding [133]. It has been hypothesised that this unexpected correlation is due to 

higher activity and “exhaustion” of the L-ficolin protein as a result of its increased binding affinity.  

Although there are few investigations of the role of L-ficolin in viral infections, FCN2 polymorphisms 

were found to be significant in susceptibility to and disease severity of bacterial diseases, including 

cutaneous leishmaniasis [152], Mycobacterium leprae [153], Pseudomonas aeruginosa-associated 

bronchiectasis [154], and Streptococcus pygones-associated rheumatic fever and chronic rheumatic heart 

disease [155]. However, the SNPs were not associated with invasive pneumococcal disease [156] and 

other respiratory tract infections [157]. These studies have been relatively small-scale and 

geographically limited, and often did not measure the serum concentrations of L-ficolin to confirm the 

relationship of the polymorphisms and haplotypes with L-ficolin levels, therefore more rigorous larger 

scale studies would yield more reliable results.  

M-ficolin SNPs have not yet been reported to have roles in viral infections, however the −144C SNP 

is associated with protection against M. leprae-associated leprosy, whereas −1981A, −271delT and 

−542G correlate with susceptibility, perhaps by altering transcription factor affinity [158]. The −144C 

SNP has been associated with increased M-ficolin serum levels [93]. The Ala218Thr and Asn289Ser 

non-synonymous mutations reduced serum levels and ligand binding activity, whereas Ser268Pro 

abolished serum levels [93]. The −1981A and +7918 SNPs were correlated with rheumatoid  

arthritis [159]. Interestingly, expression the FCN1 gene, among others, is up-regulated in chronic HCV 

patients who possess the CC genotype at the IL28B rs12979860 promoter SNP, which is associated with 

favourable response to pegylated interferon-α and ribavirin treatment [160,161]. This suggests a possible 

role of M-ficolin in the clearance of HCV, however further studies are needed. No studies have correlated 

H-ficolin SNPs with infectious diseases. 

4.4.2. The Significance of Ficolin Serum Concentrations in Viral Infections  

Serum ficolin levels are dependent on the expressed alleles; homozygotes for particular SNPs exhibit 

the highest or lowest levels whereas heterozygotes display intermediate levels of ficolin [149]. Specific 

FCN2 SNPs that are associated with low levels of L-ficolin tend to cause higher susceptibility to 
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infection [152]. L-ficolin levels are significantly increased in the serum of HCV-infected individuals, 

and concentrations correlate with the severity of fibrosis [141]. Chronic HCV-associated liver damage 

also did not reduce the levels of L-ficolin expressed [139]. In chronic HCV-infected patients with 

abnormal alanine aminotransferase (ALT) levels, serum concentrations of L-ficolin correlated with ALT 

levels [162]. ALT is a known marker of fibrosis and inflammation [162]. After successful therapy, ALT 

and HCV RNA levels of these patients all decreased to normal values, followed by a decrease in  

L-ficolinlevels, suggesting a correlation of ALT and RNA levels with disease outcome, as a result of  

L-ficolin activity [149,162]. 

Higher L-ficolin serum concentrations also appear to confer protective effects against  

microorganism-induced inflammation in allergic respiratory disease [163]. L-ficolin levels were higher 

in acute severe cases of Plasmodium falciparum-based malaria, rather than mild cases [164].  

Low H-ficolin serum levels correlate with fever and neutropenia in paediatric cancer patients treated 

with chemotherapy [131]. 

4.5. Cooperative Relationships between Lectins and Other Immune Proteins 

A consequence of complement activation is the subsequent activation of the humoral immune system 

against a pathogen, thus enhancing the adaptive immune response and memory [6]. Lectins can also 

directly interact with immune components and enhance the antimicrobial response. MBL can bind the 

serum PRRs PTX3 and serum amyloid P component (SAP) via its CLD to promote complement 

activation and opsonophagocytosis of Candida albicans (Figure 5a) [165]. PTX3 required C1q to 

enhance activation of the classical complement pathway [165].  

Natural antibodies are produced without prior exposure to infection or immunisation, and are 

important in the protection of individuals exposed to pathogens for first time, such as neonates [166]. 

They are able to initiate complement alone, however under mild acidosis and reduced calcium  

levels—conditions found at infection-inflammation sites—an additional binding site is exposed on the 

ficolin FBG to allow complex formation with natural immunoglobulin G (nIgG) [166,167]. This allows 

indirect nIgG-based phagocytosis via L-ficolin opsonisation, leading to a stronger immune response 

(Figure 5b) [166]. PTX3 interacts with L-ficolin to enhance its binding of Aspergillus fumigatus and its 

induction of C4 deposition [96]. Similarly, M-ficolin binds sialic acid on PTX3 in a Ca2+-dependent 

manner via its FBG domain [168,169]. M-ficolin:PTX3 complexes enhance phagocytosis of apoptotic 

and necrotic cells [169]. H-ficolin may also cooperate with PTX3 [144], however specific interaction 

between the two has not been reported [96,168]. 

Similar to nIgG:ficolin complexes, infection-inflammation conditions significantly increase 

interaction between the acute phase protein C-reactive protein (CRP) and L-ficolin, leading to a stronger  

classical- and lectin-mediated complement response against Pseudomonas aeruginosa [170]. A pH- and 

calcium-sensitive binding site on the ficolin FBG domain enables binding to CRP [171]. Later phase 

infection-inflammation conditions also enhance interaction between membrane GPCR43-associated  

M-ficolin and CRP, thus blocking M-ficolin binding of PAMPs and curtailing GPCR43-mediated IL-8 

production, and allowing the restoration of homeostasis upon infection and injury [147,171]. 
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Figure 5. The cooperative antimicrobial relationships of serum (a) MBL and (b) ficolins 

with other immune proteins. Complement activation and opsonophagocytosis can be 

enhanced by SAP and PTX3-C1q interaction with MBL, and PTX3, CRP-C1qrs and natural 

IgG interaction with ficolins. 
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5. DC-SIGN 

5.1. Genetics, Structure, Expression and Binding Specificities of DC-SIGN  

Dendritic cells (DCs) express PRRs, such as DC-SIGN [172], which play a role in antigen capture 

and internalisation. This contributes to maturation and migration of DCs to secondary lymphoid organs 

where they present antigen to resting T-cells [173]. The DC-T-cell interaction is mediated by the 

transient interaction of DC-SIGN with ICAM-3 on the T-cell surface [174].  

Human DC-SIGN—encoded by the CD209 gene—is a C-type lectin, the monomeric structure of 

which comprises a C-terminal, Ca2+-dependent CRD followed by a flexible neck region which forms an 

α-helical coiled coil upon trimerisation and which consists of 7.5 23-amino acid repeats involved in 

oligomerization [175,176]. A TM region follows, then a cytoplasmic N-terminal region responsible for 

internalisation via di-leucine and tyrosine motifs (Figure 2c) [175,177]. Adjacent to CD209 on 

chromosome 19p13 is the CD299 gene, encoding the membrane-bound C-type lectin L-SIGN  

(DC-SIGNR)—a protein that is highly homologous to DC-SIGN [178]. This protein performs similar 

roles to DC-SIGN, but differs in tissue distribution and expression, being expressed mainly in liver and 

lymph nodes. 

Active, tetrameric DC-SIGN (Figure 3d) is organised on DC surfaces in nanoclusters, mediated by 

the neck region and permitting interactions with pathogens of a variety of sizes, as large as 300 nm across 

as seen with the measles virus (MV) [175,176]. The level of DC-SIGN expression is important to optimal 

virus binding, which partially explains the relatively more efficient HIV-1 binding exhibited by DCs 

rather than other DC-SIGN+ cells [179,180]. Furthermore, the virus-binding capacity of DC-SIGN is 

also governed by the cell type in which the virus replicated, as each cell type causes subtle changes in 

the glycosylation profile of viral glycoproteins [181]. 

DC-SIGN preferentially binds fucosylated and high mannose-type oligosaccharides using different 

binding sites, with differing avidity depending on the configuration of the mannose and fucose residues 

in the glycan ligand, as well as the presentation of the target molecule on the pathogen surface [175]. 

5.2. Exploitation of DC-SIGN by Viruses 

DC-SIGN is exploited by several pathogens for host cell binding and entry. The current, generally 

accepted model of DC-SIGN-mediated HIV-1 infection utilises DC-SIGN+ cells, such as DCs, to 

transport virions from sites of HIV-1 exposure—at the mucosal membranes or bloodstream—to CD4+ 

T-cell targets in the lymphoid tissues (reviewed in [182]). In addition to the primary HIV-1 receptor 

CD4 and CCR5 or CXCR4 co-receptors [183], DC-SIGN also recognises HIV-1 gp120 [172], resulting 

in the activation of downstream processes. Most HIV-1 virions are shuttled to the proteasome, aided by 

the interaction of the cytoskeletal phosphoprotein LSP1 with HIV-1-bound DC-SIGN, where it is 

degraded for MHC class II presentation to T-cells [184,185]. Alternatively, HIV-1 exploits the  

DC-SIGN signalosome—comprising DC-SIGN, LSP1, KSR1 and CNK—to activate Raf-1 and 

modulate cytokine response, and to enhance NF-κB-mediated transcription of the HIV-1 genome [186]. 

Independently, HIV-1-bound DC-SIGN modulates TLR-induced cytokine and HIV-1 genome 

expression (Figure 6) [186].  
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Figure 6. The role of DC-SIGN in HIV-1 infection. DC-SIGN neutralises HIV-1 infection 

through increased DC-SIGN signalosome-mediated cytokine production and degradation of 

virions. DC-SIGN then aids dendritic cell-T-cell interaction through transient ICAM-3 binding, 

thus allowing antigen presentation to T-cells to enhance the immune response. However, 

HIV-1 exploits DC-SIGN to increase dendritic cell apoptosis via ASK-1, enhance viral 

replication via the DC-SIGN signalosome and to evade the immune response in specialised 

non-lysosomal endosomes. DC-SIGN also enhances HIV-1 trans-infection of T-cells. 

DC-SIGN binding to HIV-1 can also enhance CD4-gp120 glycoprotein interactions and CCR5-mediated 

entry [187,188]. As a result, DC-SIGN-bound, intact HIV-1 virions are non-fusogenically internalised 

into a specialised, non-lysosomal, low-pH endosome, where virions are able to maintain stability and 

infectivity for several days without the need for replication [177,189]. Whether an HIV-1 virion is 

degraded or maintained in a DC is dependent on several factors, including the N-linked glycan 

composition of gp120 [190]. 

DC-internalised, stable HIV-1 is can be transferred to T-cells [177]. Upon DC-T-cell contact, 

protected HIV-1 virions, adhesion molecules and receptors rapidly accumulate at the DC-T-cell 

interface, enabling HIV-1 transfer across the infectious synapse and gp120 binding to T-cell  

receptors [191]. HIV-1 Nef may prevent DC-SIGN-bound HIV-1 internalisation to enhance  

trans-infection [192,193]. Trans-infection is more likely to occur in more mature DCs, which are more 

efficient at protecting the virus by endocytosis whereas immature DCs are more efficient at  

degradation [184,191]. In contrast, HIV-1 binding to DC-SIGN may slow DC maturation by—for 

example—reducing expression of CD86 and MHC class II, in order to prevent immune response and 

prime the cell for trans-infection [194]. Other lectins are implicated in HIV-1 trans-infection,  

such as the mature DC-expressed sialic acid-binding Ig-like lectin 1 (Siglec-1), which binds 
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sialyllactose-containing gangliosides on the HIV-1 surface [195]. Interestingly, a feature of acquired 

immunodeficiency syndrome (AIDS) is the gradual depletion of DC levels, increasing the risk of 

opportunistic infection [196]. This is a result of gp120-DC-SIGN interaction in certain conditions to 

prime the DC for apoptosis, through excessive activation of the pro-apoptotic kinase ASK-1 [196]. 

Several other viruses utilise DC-SIGN for different purposes. For example, many viruses use  

DC-SIGN as an attachment factor and for trans-infection, such as MV [197], EBOV [198],  

SARS-CoV [199], IAV [200], HCV [201] and CMV [202]. Others use DC-SIGN for fusion and 

internalisation, such as human herpesvirus-8 [203] and HCV [204]. L-SIGN is similarly exploited by 

many viruses as a glycoprotein-mediated attachment and internalisation receptor, as is observed with 

HIV-1 [205], HCV [201], SARS-CoV [206], Marburg virus [206] and EBOV [198]. However,  

DC-SIGN and L-SIGN differ in viral interaction and polymorphisms, as the neck region of L-SIGN is 

highly variable and polymorphic whereas DC-SIGN is generally conserved [207]. Furthermore, L-SIGN 

binds and promotes infection of certain viruses more efficiently than DC-SIGN, for example WNV [208]. 

5.3. DC-SIGN Variants  

Several DC-SIGN isoforms exist as a result of alternative splicing, resulting in both membrane-bound 

and soluble forms with alternative cytoplasmic and CRD regions, missing TM domains and variable 

neck domain repeat regions [209]. Relatively little is known of the physiological and immune roles of 

soluble DC-SIGN (sDC-SIGN). Tetrameric sDC-SIGN has been detected in bodily fluids and the 

cytoplasm of some DC-SIGN+ cells, however it is unknown how the protein is secreted [209,210]. 

Interestingly, CMV interacts with sDC-SIGN via its gB glycoprotein, in the same manner as its 

interaction with membrane-bound DC-SIGN, possibly to enhance viral uptake by DCs [210]. 

Considerable purifying selection pressure has been exerted on the CD209 region encoding the  

DC-SIGN neck region, preventing the accumulation of polymorphisms in the global population and 

maintaining the typical neck region size of 7.5 repeats [207]. In fact, the CD209 gene only displays 2% 

variant heterozygosity, and the prototypic 7.5 neck region repeat allele is present in 99% of the global 

population [207]. This length and the tetrameric structure constrain the CRDs and partially influence 

specificity for certain viruses and glycan structures with certain geometric configurations [175]. Despite 

this conservation, eight low frequency CD209 alleles encoding DC-SIGN proteins with two to 10 neck 

region repeats have been documented [207]. Different DC-SIGN isoforms can be found on the same cell 

surface and can affect DC-SIGN multimerisation, and therefore could, in theory, influence susceptibility 

to HIV-1 infection [211]. 

5.4. The Significance of DC-SIGN Variants in Viral Infection 

The Leu232Val and Arg198Gln mutations of DC-SIGN enhanced HIV-1 capture and  

trans-infection [104]. While some studies have identified no significant DC-SIGN exon 4 neck region 

SNPs in the context of HIV-1 [212] it has been observed that DC-SIGN variants with less than five neck 

region repeats are rare but are more frequent in Chinese populations, and are associated with protection 

against HIV-1 transmission [213]. Heterozygotes for variants with atypical numbers of neck region 

repeats above five were also associated with protection against HIV-1 infection [214]. CMV has been 
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observed to interact with sDC-SIGN via its gB glycoprotein, in the same manner as its interaction with 

membrane-bound DC-SIGN, possibly to enhance viral uptake by DCs [210]. 

CD209 promoter SNPs have been implicated in resistance and susceptibility to several infectious 

diseases, however such correlations are often limited to particular geographical populations. The −336G 

SNP and AA genotype confer protection against DV-based dengue fever [100,101], perhaps due to 

reduced transcription factor binding and activity [107], decreased susceptibility of DCs to infection [101] 

and the suppression of symptoms [102]. The −336 GG/AG genotypes, on the other hand, increase 

susceptibility to dengue haemorrhagic fever as a result of higher DC-SIGN expression and immune 

activity against DV [100]. The −139G allele is associated with protection against HIV-1 infection [108], 

whereas −336C is implicated in higher susceptibility to parenteral HIV-1 infection [105]. The −139, 

−201 and −336 SNPs are also implicated in perinatal transmission of HIV-1 [104,106]. The −336 SNP 

influenced liver disease severity in HCV patients [103] and the −336 AG/GG genotypes pre-empted 

improved prognosis for SARS-CoV patients [107]. 

6. Additional Lectins with Pro-Viral and Antiviral Properties  

In addition to DC-SIGN, several membrane-bound lectins are exploited by viruses to enhance infection, 

such as HIV-1 exploitation of the C-type lectin mannose receptor [215,216] and Siglec-1 [195], however 

there are significantly less soluble lectins involved in enhancing infection. Nevertheless, a few 

candidates, in addition to MBL, have been identified. 

The soluble pulmonary collectins SP-A and SP-D both inhibit IAV haemagglutinin activity by viral 

aggregation and enhancement of the neutrophil immune response [217]. SP-A also has roles in 

enhancing phagocytosis via the host SP-A receptor 210, which may be exploited by IAV to cause 

excessive lung inflammation [218]. Furthermore, SP-D can bind and neutralise several strains of  

HIV-1 through virion agglutination and spatial blocking of gp120-CD4 interaction [219]. However,  

SP-D enhances HIV-1 trans-infection from DCs to T-cells [220]. Similarly, SP-A prevents HIV-1  

cis-infection of CD4+ T-cells, yet enhances cis-infection of DCs and trans-infection of T-cells [221]. 

SP-A also enhances entry and fusion of respiratory syncytial virus (RSV) [222]. 

Galectins are soluble lectins of varying structure and oligomerisation that exhibit specificity for 

glycans containing β-galactoside [3]. Galectin-1 binds both HIV-1 gp120 glycans—through its CRD—

and human cell CD4 receptor, thus allowing the protein to directly stabilise and cross-link HIV-1-CD4 

interaction and enhance viral attachment and entry [223]. Similarly, galectin-9 cross-links HIV-1 

interaction with cell surface-associated protein disulphide isomerase to enhance fusion and entry [224]. 

Galectin-3, on the other hand, intracellularly bridges HIV-1 Gag p6 interaction with ALG-2-interacting 

protein X (Alix) to promote HIV-1 budding [225]. 

Membrane-associated lectins are generally described to be exploited by viruses for entry. However, 

some can have significant roles in viral clearance. The C-type lectin langerin is expressed on the surface 

of Langerhans cells, an epithelial DC subset, and binds the mannose-containing glycans of gp120 [226]. 

Unlike DC-SIGN, langerin mediates internalisation into Birbeck granules for viral degradation and 

antigen presentation while efficiently preventing HIV-1 transmission [226]. Langerin is also responsible 

for the capture, but not internalisation, of MV [227]. 
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7. Lectin Therapy for Viral Infections 

7.1. Soluble Lectin Therapy 

Virus-associated glycans are emerging as potential targets for antiviral therapy [7]. Preliminary 

clinical trials of regular MBL replacement therapy for MBL-deficient patients using plasma-purified 

MBL have been attempted, and resulted in normal, long-term complement activation and opsonisation 

activities with no obvious adverse or autoimmune effects [228]. The production and purification of safe, 

active and functional therapeutic MBL is feasible, but requires optimisation [229]. Therapy using 

recombinant MBL avoids ethical issues and allows cost-effective large-scale production [230], and 

phase I trials proved recombinant MBL to be tolerable, safe and effective in the restoration of MBL 

activity in MBL-deficient patients, with mild to no adverse effects [231]. 

Due to its complex structure, recombinant active MBL is complicated and expensive to produce [232], 

whereas recombinant chimaeric lectins (RCLs) can exhibit superior protective potency, cost-effectiveness 

and safety [217,230,231,233]. The antiviral efficacy of RCLs consisting of the structurally similar lectins 

MBL and L-ficolin has been studied [232,234]. Like L-ficolin, active MBL/L-ficolin RCLs formed 

dodecamers, and RCL2 (L-FCN/MBL76) exhibited stronger MBL CRD-mediated ligand binding, likely 

due to enhanced CRD flexibility [232]. RCL2 possessed a MASP- and calreticulin-binding site 

consisting of both MBL and L-ficolin fragments, and displayed strong complement activation and 

opsonophagocytic properties [232]. Physiological levels of RCL2 neutralised EBOV pseudotype 

infection, and moderately neutralised Hendra and Nipah virus infection [232]. RCL2 and RCL3  

(L-FCN/MBL64)—which possesses the MBL MASP-binding site and kink—exhibited anti-IAV activity 

in vitro by enhancing complement activation, inducing viral aggregation, inhibiting IAV envelope 

glycoprotein activities and, as a therapeutic advantage, exhibiting a reduced association with MASP-1 

to diminish coagulation system activities [235]. RCL3 demonstrated more efficient anti-IAV effects in vivo 

by maintaining a cytokine and inflammatory balance that is more advantageous for the host [234]. 

Similar therapeutic approaches for other lectins have been researched. For example, specific 

mutagenic engineering of human SP-D enhanced IAV binding and clearance and murine survival  

in vivo [236]. Porcine SP-D neutralises a wider range of IAV infections more potently than recombinant 

human SP-D in vitro and ex vivo, however it may be immunogenic in humans, therefore further 

development is necessary [237].  

Although ficolins have not been used clinically as antiviral therapies, given the promise of MBL 

therapy there are is the potential for therapeutic administration of ficolins for virus infections. Due to the 

essential and conserved nature of N-linked glycosylation sites in the life cycles of many enveloped 

viruses, acetylated sugars are potential targets for direct entry inhibition and viral clearance by  

L-ficolin administration. Indeed, there are no documented HCV strains resistant to the antiviral effects 

of the ficolins [238]. Ficolins could be used in combination with antibody therapy. However, the degree 

to which antibodies interact with these complement components varies. For example, MBL prevents, 

rather than enhances, the HIV-1 neutralising activity of the 2G12 antibody [239]. Moreover, the 

importance of complement in the protection against infectious disease varies with each pathogen and 

each strain. For example, HCV genotypes with more heavily glycosylated E1E2 glycoproteins appear to 

be more susceptible to lectin-mediated neutralisation [47].  
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Interference of the immune system, in particular the complement system, is extremely complex and 

may lead to potentially harmful and excessive immune activity, therefore strict caution and testing 

should be imposed [240]. Passive immunotherapy does not actively trigger an immune response to fight 

infection, and avoids excessive stimulation of the complement system [139]. Therefore L-ficolin could 

solely act as an entry inhibitor, after site-directed mutagenesis at the Lys-57 residue of the FBG domain, 

which is responsible for MASP interaction and interaction with phagocytic receptors [126].  

7.2. Therapy Using Xenogeneic Lectins 

An alternative approach is the use of carbohydrate-binding agents (CBA), which interact with viral 

glycoproteins in order to inhibit DC-SIGN interaction. These tend to be xenogeneic, such as the algal 

and cyanobacterial lectins griffithsin (GRFT), cyanovirin-N (CV-N), scytovirin (SVN), Oscillatoria 

agardhii agglutinin (OAA) and the synthetic antibiotic pradimicin S, which act as CBA inhibitors of 

HIV-1 interaction with DC-SIGN in vitro, in vivo and ex vivo [241–246]. These lectins therefore have 

potential uses in antiviral microbicides and have elicited non-toxic and non-immunogenic HIV-1 

neutralisation in mammals in vitro and in vivo [241,244,247]. OAA and the hybrid OPA molecule  

(a synthetic chimera with the Pseudomonas fluorescens agglutinin) are notable as uniquely they interact 

with oligosaccharide Man-9, rather than terminal mannoses of Man-8/9 [248]. 

GRFT also has antiviral activity against HCV [249], SARS-CoV and several coronaviruses  

in vitro [250]. In vivo, GRFT reduced viral titres and pathology in Japanese encephalitis-infected,  

HCV-infected and SARS-CoV-infected mice when administered intraperitoneally, subcutaneously and 

intranasally, respectively [250–252]. CV-N inhibited entry by HCV [253], MV and human herpesvirus 

6 [254] in vitro and prevented further infection and mortality of IAV-infected mice and ferrets  

when administered intranasally, however it was ineffective when administered subcutaneously [255]. 

Nevertheless, several CBAs have small viral target ranges, likely as a result of diverse viral 

glycoproteins. For example, certain CBAs inhibited HIV-1 and HCV infection, yet were ineffective 

against Herpes simplex virus, vesicular stomatitis virus, RSV, parainfluenza virus-3 [256], adenovirus 

type 5, CMV, herpesvirus type 1 [257] or vaccinia virus [254].  

Mitogenic activity, which affects cytokine expression, and a short plasma half-life are  

characteristic of non-human immune proteins used in the human milieu [243,258]. To overcome this, a 

linker-extended and PEGylated CV-N was produced in order to extend the protein’s half-life, dampen 

its immunogenicity and cytotoxicity, and yet maintain its antiviral activity [258].  

GRFT elicits a far greater anti-HIV-1 effect than CV-N and SVN, and does not cause significant 

mitogenic, inflammatory, cytotoxic or irritant effects [259,260]. Despite the possibility that GRFT is not 

sufficiently stable for therapeutic administration [260], subcutaneously-administered GRFT remained 

active in mice for several days after injection, with minimal adverse effects [259]. 

8. Conclusions 

With their ancient origins and multiple physiological functions, lectins are part of the evolutionary 

arms race between the human immune system and infecting viruses. Lectins have evolved the ability to 

bind diverse ligands and limit viral infections through a range of immune activities. Viruses have evolved 

highly glycosylated proteins that are able bind lectins to enhance their attachment, entry and 
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transmission, yet can evade lectin-mediated neutralisation. Despite viral exploitation, lectins have the 

potential to prime the immune system and enhance viral clearance. This emerging field has  

already yielded novel antiviral therapies, but our understanding of the specificity of these lectins and the 

virus-host dynamics remains incomplete. Improved understanding of these interactions will aid our 

development of these proteins as antiviral therapeutics. 
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