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Abstract

Kaposi's sarcoma (KS) associated herpesvirus (KSHV)-encoded viral FLICE inhibitory protein 

(vFLIP) K13 is a potent activator of the NF-κB pathway. Here we demonstrate that infection with 

KHSV and ectopic expression of K13, but not its NF-κB-defective mutant, suppressed the 

expression of CXCR4. Suppression of CXCR4 by KSHV and K13 was associated with 

upregulated expression of miR-146a, a microRNA that is known to bind to the 3′ untranslated 

region of CXCR4 mRNA. Reporter studies identified two NF-κB sites in the promoter of 

miR-146a that were essential for its activation by K13. Accordingly, ectopic expression of K13, 

but not its NF-κB-defective mutant or other vFLIPs, strongly stimulated the miR-146a promoter 

activity, which could be blocked by specific genetic and pharmacological inhibitors of the NF-κB 

pathway. Finally, expression of CXCR4 was downregulated in clinical samples of KS and this was 

accompanied by increased expression of miR-146a. Our results demonstrate that K13-induced NF-

κB activity suppresses CXCR4 via upregulation of miR-146a. Downregulation of CXCR4 

expression by K13 may contribute to KS development by promoting premature release of KSHV-

infected endothelial progenitors into the circulation.
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Introduction

Kaposi's sarcoma (KS)-associated herpesvirus (KSHV), also known as human herpesvirus 8 

(HHV-8), is an oncogenic γ2 herpesvirus that was originally identified in KS lesions 

obtained from HIV-infected individuals (Chang et al., 1994), and has been subsequently 

Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
‡To whom correspondence and reprint requests should be addressed at the Hillman Cancer Center, 5117 Centre Avenue, Suite 1.19A, 
Pittsburgh, PA, 15213-1863, Ph: 412-623-7703, Fax: 412-623-1415.
*These authors contributed equally to this work.

Conflict of interest
The authors declare no conflict of interest.

HHS Public Access
Author manuscript
Oncogene. Author manuscript; available in PMC 2010 September 25.

Published in final edited form as:
Oncogene. 2010 March 25; 29(12): 1835–1844. doi:10.1038/onc.2009.460.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nature.com/authors/editorial_policies/license.html#terms


etiologically linked to all clinico-epidemiological forms of KS (Dourmishev et al., 2003). In 

addition to KS, KSHV infection has been associated with primary effusion lymphoma (PEL) 

and some aggressive forms of multicentric Castleman's disease (Moore and Chang, 2001).

KSHV frequently establishes a latent infection in the target cells, which is characterized by 

the persistence of the viral genome in the nucleus, and expression of a limited number of 

viral genes (Dourmishev et al., 2003; Sarid et al., 1998). The three major viral proteins that 

are expressed during latency include LANA (latency-associated nuclear antigen), v-Cyclin, 

and K13 (Chaudhary and Nicholas, 2008). The K13 protein resembles the prodomain of 

caspase 8/FLICE in its structure and was originally classified as a viral FLICE inhibitory 

protein (vFLIP) (Schulz, 2000; Thome et al., 1997). However, subsequent work has revealed 

that K13 does not act as an inhibitor of caspase 8, and instead interacts with a multi-subunit 

Ikappa kinase (IKK) complex to activate the NF-κB pathway (Chaudhary et al., 1999; 

Chugh et al., 2005; Liu et al., 2002; Matta and Chaudhary, 2004; Matta et al., 2007a; Matta 

et al., 2003). By hijacking the NF-κB pathway, K13 blocks lytic replication of KSHV, and 

manipulates diverse cellular processes that regulate cellular survival, proliferation, and 

cytokine secretion, thereby contributing to cellular transformation and tumorigenesis.(Chugh 

et al., 2005; Guasparri et al., 2004; Sun et al., 2003a; Sun et al., 2006; Sun et al., 2003b; Xu 

and Ganem, 2007; Ye et al., 2008; Zhao et al., 2007)

Infection of micro- and macro-vascular endothelial cells with KSHV in vitro results in their 

acquisition of a spindle cell phenotype resembling the spindle cells characteristic of KS 

lesions (Ciufo et al., 2001; Flore et al., 1998; Moses et al., 1999). We and others recently 

demonstrated that ectopic expression of K13 in vascular endothelial cells is sufficient to 

recapitulate this effect of KSHV-infection on spindle cell transformation (Grossmann et al., 

2006; Matta et al., 2007b). Furthermore, both KSHV infection and ectopic K13 expression 

resulted in the upregulated expression of several genes that are known to be involved in the 

regulation of immune and inflammatory responses, apoptosis, and angiogenesis, and have 

been implicated in the pathogenesis of KS lesions (Grossmann et al., 2006; Matta et al., 

2007b; Naranatt et al., 2004; Poole et al., 2002; Punj et al., 2009a; Punj et al., 2009b; Raggo 

et al., 2005; Sakakibara et al., 2009; Thurau et al., 2009). In particular, RDC1/CXCR7, a G-

protein coupled receptor, was one of most strongly induced transcripts in KSHV-infected 

vascular endothelial cells (Moses et al., 2002; Poole et al., 2002; Raggo et al., 2005), and 

was shown to play a key role in their increased proliferation and transformation (Raggo et 

al., 2005). Strong upregulation of RDC1/CXCR7 was also observed in human vascular 

endothelial cells upon ectopic expression of K13 (Matta et al., 2007b).

Although RDC-1/CXCR7 was originally labeled an orphan chemokine receptor, it was 

recently revealed that the principal chemokine ligand for RDC-1/CXCR7 is CXCL12/

SDF-1, which also binds CXCR4 (Balabanian et al., 2005; Burns et al., 2006; Sierro et al., 

2007). Based on the importance of CXCR4 in CXCL12/SDF-1-induced signaling through 

RDC-1/CXCR7, we decided to examine the effect of KSHV infection on CXCR4 

expression. We report that, in contrast to the situation with RDC-1/CXCR7, KSHV infection 

downregulates CXCR4 gene expression through a novel mechanism that involves K13-

induced upregulation of miR-146a, a microRNA that was recently shown to suppress 

CXCR4 expression by binding to the 3′ UTR of its mRNA (Labbaye et al., 2008). As 
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CXCR4 plays a key role in the retention of immature cells in the marrow, its downregulation 

may contribute to KS development by promoting premature release of KSHV-infected 

progenitors into the circulation.

Materials and Methods

Cell Lines and Reagents

Human Umbilical Vein Endothelial Cells (HUVEC) were purchased from Cambrex (East 

Rutherford, NJ), and were grown in EMB medium containing 10% FBS (fetal bovine serum) 

and supplemented with the bullet kit. Cells were used for experiments at passages 2 to 6. 

HUVECs stably expressing 4-Hydroxytamoxifen (4OHT)-inducible K13-ERTAM have been 

described previously.(Matta et al., 2007b) 293T, HeLa and K562 cells were obtained from 

the American Type Culture Collection. SLK cells were kindly provided by Dr. Parkash Gill 

(University of Southern California). MSCV-based retroviral vectors expressing K13-ERTAM 

K13-58AAA-ERTAM have been described previously (Matta et al., 2007b; Sun et al., 

2003b; Zhao et al., 2007), and were used to generate polyclonal populations of infected cells 

after selection with G418. Bay-11-7082 and IKK-inhibitor VI [(5-Phenyl-2-ureido) 

thiophene-3-carboxamide] were purchased from Calbiochem (Gibbstown, NJ). Arsenic 

trioxide (As2O3) was from Sigma (St. Louis; MO). Rabbit polyclonal antibody against 

CXCR4 was obtained from NIH AIDS Research and Reference Reagent Program 

(Rockville, MD). Antibodies against Flag and Tubulin were from Sigma (St. Louis, MO).

Plasmids

Plasmids encoding various vFLIPs and phosphorylation-resistant mutants of IκBα have 

been described previously (Sun et al., 2006; Sun et al., 2003b). The CXCR4 reporter 

construct containing a Rous Sarcoma Virus-promoter driven firefly luciferase gene fused to 

∼500 bp of the 3′ UTR from CXCR4 mRNA containing its two miR-146a binding sites was 

cloned in our laboratory. A CXCR4 reporter construct containing mutations in the two of the 

miR-146a binding sites (site2 and 3) was generated by site directed mutagenesis as 

described previously (Labbaye et al., 2008). The wild type and mutant miR-146 promoter 

luciferase reporter constructs were kindly provided by Dr. David Baltimore (California 

Institute of Technology, Pasadena, CA).

Luciferase Reporter Assay

293 cells were transfected in a 24-well plate with various test plasmids along with the wild-

type or mutant miR-146a luciferase reporter constructs or CXCR4 luciferase reporter 

construct (75 ng/well) and a pRSV/LacZ (β-galactosidase) reporter construct (75 ng/well), 

using calcium phosphate as described previously (Chaudhary et al., 1999). Cells were lysed 

24–36 h later, and extracts were used for the measurement of firefly luciferase and β-

galactosidase activities, respectively. Luciferase activity was normalized relative to the β-

galactosidase activity to control for the difference in the transfection efficiency. Luciferase 

reporter assay in HeLa and SLK cells was conducted using Lipofectamine transfection 

essentially as described previously (Matta et al., 2003).
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TaqMan Quantitative Real-time PCR analysis of mature micro-RNA (miR)

Total RNA was isolated using the miRNeasy Mini kit (Qiagen) and miR-146a expression 

was studied, using TaqMan microRNA pre-designed assay as recommended by 

manufacturer (Applied Biosystems, Inc., Foster City, CA). The assay includes two steps: 

generation of cDNA followed by TaqMan real time PCR. Briefly, total RNA was reverse-

transcribed, using TaqMan miRNA Reverse Transcription Kit following the manufacturer's 

protocol (Applied Biosystems, Inc., Foster City, CA). TaqMan miRNA assay included 

specific RT Primers and TaqMan Probes to quantify mature hsa-miR-146a (P/N 4373132). 

For normalization, hsa-miR-RNU48 (P/N 4373883) was used. All reactions were incubated 

in a 96-well plate at 95°C for 10 min followed by 40 cycles of 95°C for 15 sec followed by 

60°C for 1 min in ABI 7700 system (Applied Biosystems, Inc., Foster City, CA). Melt curve 

analysis was performed at the end of each qPCR run. No-template and no-reverse 

transcriptase controls were included. hsa-miR-RNU24 (P/N 4373379) was used as a 

negative control in the PCR. A threshold cycle (CT) was observed in the exponential phase 

amplification, and quantification of relative expression levels was performed, using standard 

curve for target genes and endogenous control generated by a SDS-gel quantification 

software (Applied Biosystems, Inc. Foster City, CA). An efficiency of 90-100% of PCR was 

only taken into consideration and mean ΔCT±SE (CT value of target gene-CT value of 

normalizer) for each target was calculated as described previously (Dorak, 2006; Williams et 

al., 2007). Therefore higher ΔCT indicates lower expression of target gene.

Real time quantitative PCR for CXCR4 and IL8

Total RNA was isolated, using the RNeasy Mini kit (Qiagen), and quantitative RT-PCR 

performed as described previously (Zhao et al., 2007). The real-time PCR reactions were 

performed in triplicate, using an ABI Prism 7700 system and SYBR green-Taq polymerase 

mix to determine the relative change in the expression of target gene. Actin was used as a 

housekeeping control. ΔCT was calculated for each target as described above. Primers used 

for real-time PCR are CXCR4 Forward (GCCTTATCCTGCCTGGTATTGTC), CXCR4 

Reverse (GCGAAGAAAGCCAGGATGAGGAT), IL8 Forward 

(GCCAACACAGAAATTATTGTAAAGCTT), IL8 Reverse 

(CCTCTGCACCCAGTTTTCCTT), β-Actin Forward 

(TCACCCACACTGTGCCCATCTACGA), β-Actin Reverse 

(CAGCGGAACCGCTCATTGCCAATGG).

Statistical Analysis

Data is expressed as mean ΔCT±SE unless otherwise indicated. Student's t- test (Unpaired, 

two tailed) was used to determine the differential expression of miR-146a and CXCR4 and P 

value (*P<0.05 and ** P<0.01) was calculated in Graph Pad Prism 5.02 (Graph Pad 

software, La Jolla). Scatter plot for expression of miR-146a and CXCR4 in patient samples 

was plotted using Graph Pad Prism 5.02 software.
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Results

KSHV downregulates CXCR4 expression in vascular endothelial cells

To examine the effect of KSHV infection on CXCR4 expression we utilized the publicly 

accessible Gene Expression Omnibus (GEO) datasets. We used Gene Spring GX10 (Agilent 

Technology) software to reanalyze a dataset of Affymetrix GeneChip expression analysis 

(Dataset Record GDS940) and observed 2.5 fold downregulation of CXCR4 expression in 

primary human dermal endothelial cells (HDMEC) that had been infected with KSHV as 

compared to the uninfected control cells.

To confirm the GeneChip results, we infected telomerase-immortalized human vascular 

endothelial cells (iHUVECs) with KSHV, and examined the expression of CXCR4 by qRT-

PCR and immunoblot analyses. The relative expression is presented as ΔCT values (CT 

value of target gene minus CT value of house-keeping gene actin), therefore the smaller 

ΔCT values represent higher gene expression. As shown in Figure 1a-b, we observed 

significant downregulation of CXCR4 mRNA expression in iHUVECs that had been 

infected with KSHV for 12- 94 h, and this was accompanied by a parallel reduction in the 

level of the CXCR4 protein.

K13 mimics the effect of KSHV infection on CXCR4 downregulation

K13 is one of the few KSHV-encoded proteins to be expressed in cells latently infected with 

the virus. As such, we next examined whether K13 can mimic the effect of KSHV infection 

on CXCR4 expression in vascular endothelial cells. For this purpose, we used HUVECs 

stably expressing a K13-ERTAM fusion construct, in which the K13 cDNA is fused in-frame 

to the ligand-binding domain of a mutated estrogen receptor (Matta et al., 2007b). The 

mutated estrogen receptor encoded by this fusion construct does not bind to its physiological 

ligand estrogen, but binds with very high affinity to the synthetic ligand 4OHT (4-

hydroxytamoxifen), and allows control of K13-induced NF-κB activity in a 4OHT-

dependent fashion (Matta et al., 2007a). To examine the effect of K13 on CXCR4 

expression, we treated the HUVECs-K13-ERTAM and HUVECs-vector with 4OHT and 

examined the effect of the treatment on CXCR4 expression by qRT-PCR and immunoblot 

analyses. As shown in Figure 2a, there was a significant difference (*P<0.05) in the mean 

ΔCT values of 4OHT-treated HUVECs-K13-ERTAM as compared to untreated cells 

suggesting a significant down-regulation of CXCR4 mRNA. This was accompanied by a 

reduction in the CXCR4 protein expression (Figure 2b). Treatment with 4OHT had no 

significant effect on CXCR4 mRNA or protein level in the HUVECs-vector (Figure 2a-b). 

In contrast to the situation with CXCR4, the ΔCT value for IL-8 in the 4OHT-treated K13-

ERTAM cells was significantly lower (*P<0.01) as compared to the untreated cells, 

indicating an upregulation of IL-8 expression (Figure 2c), indicating that the effect of K13 

on CXCR4 downregulation is specific. To rule out the possibility that the observed 

downregulation of CXCR4 expression in HUVECs was an indirect consequence of spindle 

cell differentiation that accompanies induction of K13 activity (Matta et al., 2007b), we 

examined the effect 4OHT on CXCR4 expression in K13-ERTAM-expressing K562 

(Chronic Myeloid Leukemia) cells. Similar to the situation with HUVECs, 4OHT 
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downregulated CXCR4 expression at the mRNA and protein levels in the K562-K13-

ERTAM cells, but upregulated IL-8 expression (Figure 2d-f).

KSHV- and K13-induced downregulation of CXCR4 expression is associated with 
increased miR-146a expression

A recent study demonstrated that miR-146a downregulates the expression of CXCR4 in 

K562 cells by binding to two sites in its 3′UTR (Labbaye et al., 2008). To examine the 

hypothesis that KSHV might suppress CXCR4 expression via miR-146a, we used qRT-PCR 

analysis to examine the effect of KSHV infection on miR-146a expression in HUVECs. We 

observed a significant upregulation of miR-146a expression in HUVECs at 6, 12, and 48 h 

after KSHV infection, as reflected by decline in the corresponding ΔCT values (Figure 3a).

We next asked whether K13 could mimic the effect of KSHV on miR-146a upregulation in 

HUVECs. As shown in Figure 3b-c, 4OHT treatment resulted in robust (**P<0.01) 

upregulation of miR-146a expression in the K13-ERTAM-expressing HUVECs and K562 

cells, respectively, but was without effect in the corresponding control vector-expressing 

cells. 4OHT treatment had no significant effect on the expression of miR-RNU24, a house 

keeping microRNA (Figure 3b-c). Thus, ectopic expression of K13 is sufficient to induce 

miR-146a expression in cells of different lineage and this effect is not limited to cells 

infected with KSHV.

Ectopic miR-146a expression downregulates CXCR4 in HUVECs

In the case K13 downregulates CXCR4 gene expression by upregulating miR-146a, ectopic 

expression of miR-146a should be expected to do the same. To test this hypothesis, we used 

lentiviral-mediated gene transfer to generate stable clones of HUVECs expressing miR146. 

We confirmed the increased expression of miR-146a in the stably transduced cells by qRT-

PCR analysis (Figure 3d). Subsequently, we examined the effect of ectopic miR-146a 

expression on CXCR4 gene expression. As shown in Figure 3e, we observed significant 

downregulation (*P<0.05) of CXCR4 mRNA expression (reflected by higher ΔCT) in the 

miR-146a-expressing HUVECs as compared to the empty vector-expressing cells.

K13 stimulates miR-146a promoter activity via NF-κB activation

K13 is a potent activator of the NF-κB pathway (Chaudhary et al., 1999). To examine 

whether the NF-κB pathway is also involved in K13-induced miR-146a upregulation, we 

took advantage of a previously described K13 mutant, K13-58AAA, which lacks the ability 

to activate the NF-κB pathway (Sun et al., 2003b). We generated stable clones of HeLa 

expressing an empty vector, K13-ERTAM and K13-58AAA-ERTAM constructs, and used a 

luciferase-based reporter assay to examine their ability to activate NF-κB in response to 

4OHT. Consistent with our previously reported results, 4OHT resulted in robust NF-κB 

activation in the HeLa-K13-ERTAM cells, but failed to do so in the K13-58AAA-ERTAM 

cells (Figure 4a). More importantly, 4OHT resulted in significant (*P<0.05) upregulation of 

miR-146a expression in the HeLa-K13-ERTAM cells (reflected by lower ΔCT), but not in the 

HeLa-vector or HeLa-K13-58AAA-ERTAM cells (Figure 4b), thereby implicating the NF-

κB pathway in this process.
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To confirm the above results and to further examine the mechanism by which K13 

upregulates miR-146a, we transfected 293T cells with a luciferase-based reporter construct 

containing the miR-146a promoter region (miR-146a-WT-Luc). Coexpression of K13 led to 

a significant increase in miR-146a-Luc activity, whereas coexpresssion of K13-58AAA 

failed to do so (Figure 4c). Furthermore, no miR-146a promoter activation was observed 

upon coexpression of vFLIP E8 from the equine herpesvirus 2, and vFLIPs MC159 and 

MC160 from the molluscum contagiosum virus, which resemble K13 in structure but lack 

the ability to activate the NF-κB pathway (Chaudhary et al., 1999; Matta et al., 2008) 

(Figure 4d). On the other hand, coexpression of Human T-cell Leukemia-encoded Tax 

protein, which resembles K13 in activating the NF-κB pathway, led to robust miR-146a 

promoter activation (Figure 4d). Induction of miR-146a promoter activity by K13, however, 

was not limited to 293T cells. Treatment of K13-ERTAM–transfected SLK (a KS-derived 

cell line) cells with 4OHT resulted in significant activation of NF-κB-Luc and miR-146a-

Luc reporter constructs (Figure 4e-f). Collectively, these results indicate that K13 

upregulates miR-146a expression primarily through activation of its transcription via an NF-

κB-dependent mechanism.

The NF-κB sites in the miR-146a promoter are essential for K13-mediated activation

The miR-146a promoter region contains two NF-κB binding-elements (Taganov et al., 

2006). To examine the involvement of these κB sites in K13-induced miR-146a 

upregulation, we transiently transfected 293T cells with either a luciferase reporter construct 

containing the wild-type miR-146a promoter (miR-146a-WT-Luc) or a reporter construct 

(miR-146a-NF-κBm2-Luc) with mutations in the κB sites. As shown in Figures 4g, 

mutation of the two κB sites in the miR-146a-NF-κBm2-Luc construct nearly abolished 

K13-induced miR-146a promoter activity, confirming the importance of the κB sites in K13-

mediated miR-146a upregulation.

Abrogation of K13-induced miR-146a promoter activation by genetic and pharmacological 
inhibitors of the NF-κB pathway

K13 activates the NF-κB pathway by inducing phosphorylation of IκBα, targeting it for 

ubiquitination and subsequent degradation via proteasome (Liu et al., 2002). We next 

examined the effect of two phosphorylation-resistant mutants of IκBα on K13-induced 

mir-146a promoter activity. As shown in Figure 5a, K13-induced mir-146a promoter activity 

was completely blocked by either a phosphorylation-resistant mutant of IκBα in which the 

two critical serine residues have been mutated to alanine (IκBα SS32/36AA), or a deletion 

mutant of IκBα lacking the N- terminal 36 amino acids (IκBαΔN).

K13 activates the NF-κB pathway by activating the IKK complex (Chaudhary et al., 1999; 

Liu et al., 2002). Therefore, we examined whether specific inhibitors of NF-κB and IKK 

complex can block K13-induced miR-146a promoter activity. As shown in Figure 5b, 

treatment with Bay-11-7082, a specific inhibitor of NF-κB, and IKK inhibitor VI (Baxter et 

al., 2004) effectively blocked K13 transactivated miR-146a promoter activity in 293T cells. 

In addition, arsenic trioxide, a known inhibitor of K13-induced NF-κB (Matta et al., 2003), 

completely blocked K13-induced miR-146a promoter activity (Figure 5b).
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K13 suppresses a CXCR4-3′UTR reporter construct

To provide further support for the hypothesis that the expression of CXCR4 gene is 

regulated at the post-transcriptional level by K13-induced miR-146a, we used a 

CXCR4-3′UTR reporter construct. This construct contains a Rous Sarcoma Virus promoter 

driven firefly luciferase cDNA fused to ∼500 bp of the 3′ UTR from CXCR4 mRNA 

containing its miR-146a binding sites. We transiently transfected the CXCR4-3′UTR 

reporter construct in the HeLa-vector, HeLa-K13-ERTAM and HeLa-K13-58AAA-ERTAM 

cells and studied the effect of 4OHT treatment on the luciferase activity in the cell extracts. 

As shown in Figure 6a, we observed a significant reduction in the firefly luciferase activity 

upon 4OHT treatment in the Hela-K13-ERTAM cells but not in the HeLa-vector cells, 

supporting the argument that CXCR4 mRNA is target of post-transcriptional repression by 

K13. Treatment with 4OHT had no significant effect on the luciferase activity in the HeLa-

K13-58AAA-ERTAM cells (Figure 6a), thereby supporting the role of K13-induced NF-κB 

activity in this process.

The CXCR4 3′UTR contains three sites complementary to miR-146a. Of these, sites 2 and 3 

are functionally involved in the suppression of CXCR4 by miR-146a (Labbaye et al., 2008). 

To confirm that K13 suppresses CXCR4 gene expression via miR-146a, we generated a 

CXCR4-3′UTR reporter construct containing mutations in the miR-146a binding sites 2 and 

3. We transfected the wild-type and mutant CXCR4-3′UTR reporter constructs in HeLa-

K13-ERTAM cells. Consistent with previous results, 4OHT treatment led to significant 

reduction in the luciferase activity in the cells transfected with the wild-type construct, but 

not in those transfected with the mutant construct (Figure 6b). Essentially similar results 

were obtained when the experiment was repeated in the SLK cells (Figure 6c). Finally, 

infection of iHUVECs with KSHV effectively blocked the wild-type CXCR4-3′UTR 

reporter activity but had no significant effect on the mutant CXCR4-3′UTR reporter activity 

(Figure 6d). Taken collectively, the above results demonstrate that KSHV and K13 

downregulate CXCR4 expression by upregulating miR-146a.

Increased miR-146a and decreased CXCR4 expression in KS clinical specimens

To determine the clinical significance of our results, we examined the expression of 

miR-146a and CXCR4 in KS (n= 6) and normal skin (n=10) samples by quantitative RT-

PCR analysis. As shown in Figure 7, the mean ΔCT values for miR-146a of six KS samples 

(6.70±1.12) were significantly (**P<0.01) lower than mean ΔCT values for normal skin 

samples (12.21±0.97) suggesting a significant higher expression of miR-146a in the KS 

samples. On the contrary, ΔCT for CXCR4 for KS samples was significantly higher (11.04± 

0.848) than normal skin samples (7.99± 0.566), thereby indicating a significant (* P<0.05) 

downregulation of CXCR4 expression in KS skin samples. Taken collectively, these results 

suggest that KSHV-mediated upregulation of miR-146a and downregulation of CXCR4 that 

we demonstrated in vitro also occur in vivo.

Discussion

Infection of vascular endothelial cells with KSHV is known to upregulate the expression of 

several cytokines, chemokines and chemokine receptors (Moses et al., 2002; Naranatt et al., 
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2004; Poole et al., 2002; Raggo et al., 2005). In particular, the gene for RDC-1/CXCR7, one 

of the receptors of CXCL12/SDF-1, is one of the most upregulated genes in KSHV-infected 

vascular endothelial cells (Moses et al., 2002; Poole et al., 2002; Raggo et al., 2005). In this 

report, we demonstrate that in contrast to RDC-1/CXCR7, the expression of CXCR4, the 

other known receptor of CXCL12/SDF-1, is significantly downregulated by KSHV 

infection. We and others had previously shown that ectopic expression of K13 is sufficient 

to mimic the effect of KSHV infection on spindle cell transformation and RDC-1/CXCR7 

upregulation (Grossmann et al., 2006; Matta et al., 2007b). Consistent with these results, we 

demonstrate here that expression of K13 is also sufficient to downregulate CXCR4 

expression in HUVECs. Since K13 is one of the few KSHV-encoded proteins to be 

expressed in latently-infected endothelial cells, our results suggest its major role in the 

downregulation of CXCR4 expression by KSHV, although a contribution of other KSHV-

encoded proteins in this process can not be entirely ruled out.

To delineate the mechanism of CXCR4 suppression by KSHV, we focused on miR-146a, as 

it was reported recently that miR-146a could suppress CXCR4 expression by binding to the 

3′UTR of the latter mRNA (Labbaye et al., 2008). The involvement of miR-146a in KSHV- 

and K13-induced CXCR4 suppression is supported by the following data. First, we 

observed significant upregulation of miR-146a in HUVECs upon infection with KSHV and 

upon induction of K13 activity. Second, ectopic expression of miR-146a resulted in 

significant downregulation of CXCR4 expression. Finally, infection with KSHV or ectopic 

expression of K13 suppressed the wild-type CXCR4-3′UTR reporter but had no effect on a 

CXCR4-3′UTR reporter containing mutations in the miR-146a-binding sites. Taken 

collectively, the above results support the hypothesis that KSHV and K13 suppress CXCR4 

by upregulating miR-146a expression.

Previous studies have characterized the mechanism of miR-146a induction by inflammatory 

stimuli and viral infections (Cameron et al., 2008; Taganov et al., 2006; Williams et al., 

2008). Although the miR-146a promoter contains binding sites for several transcription 

factors, two NF-κB binding sites have been shown to be primarily responsible for its 

induction by lipopolysaccharide and EBV-encoded latent membrane protein 1 (Cameron et 

al., 2008; Taganov et al., 2006). Consistent with these earlier reports, our results 

demonstrate that the NF-κB pathway is also primarily responsible for K13-induced 

miR-146a induction. This conclusion is supported by the following data. First, we observed 

a strong correlation between the ability of K13 constructs to activate NF-κB and their ability 

to activate miR-146a promoter. Thus, while the miR-146a promoter was strongly activated 

by coexpression of wild-type K13, no promoter activation was observed by coexpression of 

the K13-58AAA mutant that lacks NF-κB activity. Similarly, vFLIPs MC159, MC160 and 

E8, which lack NF-κB activity, failed to activate the miR-146a promoter, while HTLV1-

encoded Tax, a known NF-κB activator, successfully activated it. Second, K13 failed to 

activate a miR-146a promoter that carried mutations in the two NF-κB binding sites. 

Finally, K13-induced miR-146a promoter activity was blocked by genetic (i.e. IκBα 

SS32/36AA and ΔNIκBα) and chemical (i.e. Bay-11-7082, IKK inhibitors VI, and arsenic 

trioxide) inhibitors of the NF-κB pathway.
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What is the biological significance of CXCR4 downregulation by KSHV? Recent studies 

suggest that new blood vessels in tumors develop not only from existing vessels, but also 

from circulating endothelial progenitor cells originating from the bone marrow (Ahn and 

Brown, 2009). CXCR4 is highly expressed on immature cells, including endothelial 

progenitors, in bone marrow and its most important function is believed to retain them in the 

marrow for their further maturation (Urbich and Dimmeler, 2004). Downregulation of 

CXCR4 may result in premature release of KSHV-infected endothelial progenitors into 

circulation, which may subsequently home to the permissive sites and propagate to produce 

KS lesions. Support for the above hypothesis is provided by a recent study that reported 

evidence of KSHV infection in the circulating endothelial cells in patients with KS (Pellet et 

al., 2006). Although CXCL12/SDF-1 binds to both CXCR4 and RDC-1/CXCR7, it does not 

induce signaling through RDC-1/CXCR7 (Balabanian et al., 2005; Burns et al., 2006; Sierro 

et al., 2007). Instead, RDC-1/CXCR7 forms a functional heterodimer with CXCR4 and 

enhances CXCL12/SDF-1-induced signaling (Sierro et al., 2007). Therefore, future studies 

should also examine the possibility that suppression of CXCR4 by KSHV may represent a 

regulatory mechanism to modulate signaling through CXCL12/SDF-1.

Based on current estimates, any given miRNA can regulate >100 targets. miR-146a has been 

also implicated in the regulation of genes involved in immune and inflammatory responses 

(Williams et al., 2008). Thus, Taganov et al reported that miR-146a “fine-tunes” the innate 

immune response by downregulating the expression of IRAK1 and TRAF6, two proteins 

involved in TLR-signaling pathway (Taganov et al., 2006). miR-146a is also rapidly 

induced following cellular treatment with IL-1β, and negatively regulates the release of 

proinflammatory cytokines IL8 and RANTES, which has led to the suggestion that 

miR-146a might represent a negative feedback mechanism to control the severity of the 

inflammatory response (Perry et al., 2008). Interestingly, miR-146a expression is also highly 

induced in cells latently infected with the Epstein-Barr Virus due to the activity of EBV-

encoded latent membrane protein 1 (LMP1) (Cameron et al., 2008; Motsch et al., 2007). 

Furthermore, ectopic expression of miR-146a has been shown to downregulate the 

expression of a number of interferon-responsive genes, suggesting that miR-146a may 

functions in a negative feedback loop to modulate the intensity and/or duration of the 

interferon response (Cameron et al., 2008). Thus, K13 and KSHV-induced miR-146a 

upregulation may have a broad effect on gene expression and additional studies are needed 

to delineate fully its role in the regulation of immune and inflammatory responses during the 

natural history of KSHV infection and in the pathogenesis of KSHV-associated 

malignancies.

K13 is one of the few KSHV-encoded proteins to be expressed in cells latently infected with 

the virus and a key player in the pathogenesis of KSHV-associated malignancies 

(Chaudhary and Nicholas, 2008). Previous studies have shown that K13-induced NF-κB 

upregulates the expression of a large number of genes that control cellular survival, 

proliferation, transformation, and immune and inflammatory responses (Grossmann et al., 

2006; Matta et al., 2007b; Punj et al., 2009a; Sakakibara et al., 2009; Thurau et al., 2009). 

Most of these K13-induced genes, such as IL6, IL8, RANTES, and CCL20, are known 

targets of the NF-κB pathway, suggesting a direct role of the NF-κB pathway in their 
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upregulation (Grossmann et al., 2006; Matta et al., 2007b; Punj et al., 2009a Punj et al., 

2009b; Sakakibara et al., 2009; Thurau et al., 2009). However, K13 also downregulates the 

expression of numerous genes (Punj et al., 2009a). Data presented here demonstrates that 

K13-induced NF-κB upregulates the expression of miR-146a, which may explain, at least in 

part, how K13 might downregulate the expression of cellular genes. Thus, both the direct 

and indirect (via miRNAs) effects of K13 on cellular and viral gene expression might 

contribute to its biological role in the natural history of KSHV infection and in the 

pathogenesis of KSHV-associated malignancies.
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Figure 1. KSHV downregulates CXCR4 expression in vascular endothelial cells
a. iHUVECs were infected with KSHV for indicated time intervals and expression of 

CXCR4 was measured by qRT-PCR analysis and normalized to β-Actin (housekeeping 

control). PCR reactions were performed in triplicate and the data presented as mean ΔCT

±SE (CT value of CXCR4-CT value of β actin). Higher ΔCT value indicates lower 

expression of target gene. (*P<0.05 Student's t-test)

b. Western blot analysis showing a reduction in the level of the CXCR4 protein upon 

infection of iHUVECs with KSHV.
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Figure 2. K13 downregulates CXCR4 expression in vascular endothelial cells
a. HUVECs stably expressing a control vector or K13-ERTAM were mock-treated or treated 

with 4OHT (20 nM). After 48 h, RNA was extracted and CXCR4 expression was 

determined by qRT-PCR. The experiment was performed essentially as described for Figure 

1a. (*P<0.05; Student's t- test)

b. Western blot analysis showing a reduction in the level of the CXCR4 protein upon 

treatment of HUVECs-K13-ERTAM with 4OHT.

c. Induction of IL-8 mRNA expression, as measured by qRT-PCR, in HUVECs-K13-

ERTAM treated with 4OHT. Data is presented as mean ΔCT±SE as described in Figure 1a. 

(**P<0.01; Student's t-test)

d. K562 cells stably expressing a control vector or K13-ERTAM were mock-treated or 

treated with 4OHT (20 nM) for 72 h, and expression of CXCR4 mRNA measured by qRT-

PCR analysis. (*P<0.05; Student's t- test)

e. Western blot analysis showing a reduction in the level of the CXCR4 protein upon 

treatment of K562 K13-ERTAM cells with 4OHT.

f. Level of IL-8 mRNA expression, as measured by qRT-PCR, in K562-K13-ERTAM cells 

treated with 4OHT. (**P<0.01; Student's t- test).
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Figure 3. Upregulation of miR-146a expression by KSHV and K13
a. HUVECs were infected with KSHV for 6, 12, and 48 h and expression of miR-146a was 

measured by Taqman micro RNA assay based qRT-PCR analysis and normalized to miR-

RNU48 (housekeeping control). PCR reactions were performed in triplicate and the data 

presented as mean ΔCT±SE (CT value of miR-146a minus CT value of miR-RNU48). 

Higher expression is equivalent to smaller ΔCT value. (**P<0.01; Student's t- test).

b-c. K13 upregulates miR-146a expression in HUVECs and K562. HUVECs and K562 cells 

stably expressing a control vector or K13-ERTAM were mock-treated or treated with 4OHT 

(20 nM) for 48 h and induction of miR-146a was measured by qRT-PCR. miR-RNU24 was 

not affected by 4OHT treatment. PCR reactions were performed in triplicate and the data 

presented as mean ΔCT±SE. (**P<0.01; Student's t- test).

d-e. HUVECs were stably transduced with miR-146a-expressing lentiviral vector and 

expression of miR-146a and CXCR4 was measured by qRT-PCR analysis and normalized to 

β-actin (housekeeping control). qRT-PCR reactions were performed in triplicate and the data 

presented as mean ΔCT±SE. (*P< 0.05 and **P<0.01; Student's t- test).
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Figure 4. K13 upregulates miR-146a via NF-κB
a. HeLa cells stably expressing a control vector, K13-ERTAM or K1358AAA-ERTAM were 

transfected with an NF-κB luciferase reporter construct (75 ng/well) and a Renilla reporter 

construct (75 ng/well) and subsequently treated with 4OHT (20 nM) for 16 h. Luciferase 

activity was measured as described under Materials and Methods. The values shown are the 

averages (means±SE) of one representative experiment of three in which each transfection 

was performed in duplicate.

b. HeLa cells stably expressing a control vector or K13-ERTAM or K13 58AAA-ERTAM 

were mock-treated or treated with 4OHT (20 nM) for 48 h and miR-146a expression was 

measured by qRT-PCR as described for Figure 3b. 4OHT failed to induce miR-146a in 

HeLa cells expressing an NF-κB-defective mutant of K13 (K13 58AAA-ERTAM). K13 has 

no significant effect on the expression of miR-RNU24, which serves as a negative control.

c. Ectopic expression of wild-type K13 but not its NF-κB defective mutant K13 58AAA 

induced miR-146a-promoter activity. 293T cells were transfected with an empty vector, 

wild-type K13 or its NF-κB defective mutant K13 58AAA (250 ng/well) along with a wild-

type miR-146a promoter luciferase construct (75 ng/well) and a pRSV/LacZ (galactosidase) 

reporter construct (75 ng/well), and the reporter assay was performed as described under the 

Materials and Methods section. The values shown are averages (Mean±SE) of one 

representative experiment out of three in which each transfection was performed in 

duplicate.

d. 293T cells were transfected with the indicated vFLIPs (250 ng/well) or HTLV-encoded 

Tax along with a wild-type miR-146a promoter luciferase construct (75 ng/well) and a 
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pRSV/LacZ (β-galactosidase) reporter construct (75 ng/well), The experiment was 

performed essentially as described in Figure 4c

e-f. SLK cells were transfected with a control vector or K13-ERTAM along with an NF-κB 

luciferase (e) reporter construct or miR-146a luciferase reporter (f) and a Renilla reporter 

construct (normalization control) and subsequently treated with 4OHT (20 nM) for 48 h. 

Luciferase activities were measured as described under Materials and Methods. The values 

shown are the averages (Mean±SE) of one representative experiment of two in which each 

transfection was performed in duplicate.

g. The two NF-κB sites in the miR-146a promoter are critical for activation by K13. 293T 

cells were transfected with a control vector or a vector encoding K13 along with either wild-

type (miR-146aWT-Luc) or mutant (miR-146a-NF-κBm2-Luc) reporter constructs, and the 

luciferase reporter assay was performed as described in Figure 4c. The values shown are 

averages (Mean±SE) of one representative experiments out of three in which each 

transfection was performed in duplicate.
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Figure 5. K13 stimulates miR-146a promoter activity via NF-κB activation
a. Dominant-negative mutants of IκBα (IκBαΔN and IκBαSS32/36AA) block K13-induced 

miR-146a promoter activity. 293T cells were transfected either with an empty vector or 

K13, dominant-negative mutants of IκBα along with a miR-146a luciferase reporter 

construct and a β-galactosidase reporter construct, as described for 4c. The amount of IκBα 

mutant plasmids (500 ng/well) was five times the amount of vector or K13 (100 ng/well) 

plasmid, and the total amount of transfected DNA was kept constant by adding empty 

vector. The values shown are averages (Mean±SE) of one representative experiment out of 

three in which each transfection was performed in duplicate.

b. Pharmacological inhibitors of NF-κB block K13-induced miR-146a promoter activation. 

293T cells were transfected with an empty vector or a vector encoding K13, and 

subsequently treated with DMSO (vehicle) or the indicated compounds for 16 hours prior to 

cell lysis. Reporter assay was performed as described for Figure 5a
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Figure 6. Expression of CXCR4 gene is regulated post-transcriptionally by K13-induced 
miR-146a
a. HeLa cells stably expressing a control vector, K13-ERTAM or K13 58AAA-ERTAM were 

treated with 4OHT (20 nM) for 16 h to induce miR-146a and subsequently transfected with 

a CXCR4-3′UTR luciferase construct (10 ng/well) and a Renilla reporter construct (75 ng/

well). Approximately 48 h later, cell extracts were prepared and reporter assays performed 

as described in Figure 4a.

b. HeLa cells stably expressing K13-ERTAM were treated with 4OHT (20 nM) for 16 h to 

induce miR-146a and subsequently transfected with a CXCR4-WT-3′UTR luciferase 

construct or a CXCR4-Mut2/3 3′UTR luciferase construct (10 ng/well) and a Renilla 

reporter construct (75 ng/well). Approximately 48 h later, cell extracts were prepared and 

reporter assays performed as described in Figure 4a.

c. SLK cells were transfected with K13-ERTAM along with a CXCR4-WT 3′UTR or 

CXCR4-Mut2/3 3′UTR luciferase construct (10 ng/well) and a Renilla reporter construct (75 

ng/well) and subsequently treated with 4OHT (20 nM). Approximately 48 h later, cell 

extracts were prepared and reporter assays performed as described in Figure 4a.

d. iHUVEC cells stably expressing a wild-type CXCR4-3′UTR luciferase construct or Site 

2/3 mutated CXCR4-3′UTR luciferase construct were infected with KSHV. Approximately 

48 h later, cell extracts were prepared and reporter assays performed as described in Figure 

4a.
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Figure 7. Upregulation of miR-146a and downregulation CXCR4 in KS skin samples
Scatter plot showing normalized ΔCT values in KS skin (n=6) and healthy skin (n=10) 

patient samples for miR-146a and CXCR4 expression. Open circles and closed indicate KS 

patient and healthy patient samples, respectively. Horizontal lines represent the mean of 

normalized ΔCT± SE (*P< 0.05 and **P<0.01; Student's t- test)
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