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The next frontier in the field of microbiome studies is identification of all microbes present in the
microbiome and accurate determination of their abundance such that microbiome profiles can serve as
reliable assessments of health or disease status. PCR-based 16S rRNA gene sequencing and metagenome
shotgun sequencing technologies are the prevailing approaches used in microbiome analyses. Each poses
a number of technical challenges associated with PCR amplification, sample availability, and cost of pro-
cessing and analysis. In general, results from these two approaches rarely agree completely with each
other. Here, we compare these methods utilizing a set of vaginal swab and lavage specimens from a
cohort of 42 pregnant women collected for a pilot study exploring the effect of the vaginal microbiome
on preterm birth. We generated the microbial community profiles from the sequencing reads of the V3V4
and V4V5 regions of the 16S rRNA gene in the vaginal swab and lavage samples. For a subset of the vagi-
nal samples from 12 subjects, we also performed metagenomic shotgun sequencing analysis and com-
pared the results obtained from the PCR-based sequencing methods. Our findings suggest that sample
composition and complexity, particularly at the species level, are major factors that must be considered
when analyzing and interpreting microbiome data. Our approach to sequence analysis includes consid-
eration of chimeric reads, by using our chimera-counting BlastBin program, and enables recovery of
microbial content information generated during PCR-based sequencing methods, such that the microbial
profiles more closely resemble those obtained from metagenomic read-based approaches.
Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).
1. Introduction

It is now well established that microbiomes are strongly
connected to general health and microbial-related diseases of the
host. The current paradigm in human microbiome studies posits
that a shift in the microbial profile is an indication of a change in
health status and disease progression [1]. For instance, shifting
of the human vaginal microbiota profile from a Lactobacillus-
dominant community to a diverse non-Lactobacillus community is
characteristic of bacterial vaginosis and is associatedwith increased
risk of a number of adverse reproductive health outcomes [2–5].
The value of microbiome composition in intestinal health is illus-
trated by the application of fecal microbiota transplantation, which
has shown high efficacy in treating relapsing Clostridium difficile
infections [6,7] and has become a promising therapy for resetting
microbiomes in other intestinal bowel disorders [8–10]. The impor-
tance of microbiome composition in immune regulation and tumor
progression is also well established [11,12], and oncologists are
now exploring microbiome modulation as a means for improving
immunotherapy outcomes [13,14]. As demonstrated by the case
of PD-1 inhibitor efficacy in cancer therapy in at least three differ-
ent clinical studies, the microbiome composition can significantly
impact the clinical response to chemotherapy treatment [15–17].

The next challenge in microbiome research is to advance
beyond simple observation of differences in microbial profile com-
position to the precise identification of the causal microbial
biomarkers [18,19]. A case in point is the finding that the micro-
biome profiles and signature bacteria identified as responsible for
the associated PD-1 response in each of the above-mentioned
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clinical trial studies [15–17] were different (Akkermansia mucini-
phila, Faecalibacterium prausnitzii, and Bifidobacterium longum,
respectively) [20]. The general perception is that these divergent
findings are attributed to variation in experimental parameters,
including the study setup, sample collection and handling, geno-
mic DNA preparation, sequencing technology platform and analyt-
ical pipeline, and as yet undetermined factors. Although
differences between sequencing analysis pipelines was dismissed
as a confounding factor in the above PD-1 studies [20], current
bioinformatics pipelines for analyzing sequencing data, as a whole,
have not reached a point where they can provide a comprehensive
and precise picture of the microbiome that can reliably pinpoint a
microbial causal agent [18].

Sequence analysis based on the 16S rRNA gene is a powerful
tool commonly applied in identifying the composition of the
microbiome [1,21]. However, because it is a PCR-based method,
it is associated with a number of unavoidable error-generating
artifacts, such as those resulting from choice of PCR amplification
conditions or 16S rRNA variable region used, as well as the chi-
meric read phenomenon [21–24]. Direct microbiome metagenome
sequence analysis has been posited as a superior method for deter-
mining microbial profiles [25,26]. However, this method requires a
large amount of sample and suffers from limited availability of
microbial genomic DNA compared to contaminating host DNA
[27], such that for many large-scale studies, it remains cost-
prohibitive and impractical [28]. In addition, long sequence read
length and high sequencing coverage is required for meaningful
assembly and community representation, and an optimal
assembler remains elusive [25,27]. Alternative use of single-cell
sequencing has been proposed, but also suffers from poor cost-
effectiveness and outcome variability with how the sample is
obtained (amount of sample, nature of study) [27]. Consequently,
16S rRNA gene amplicon-based Illumina sequencing methods
remain valuable as cost-effective approaches most frequently used
for analyzing microbiome profiles [29,30].

Chimeric read formation during PCR amplification is one step
where improvement in microbial profiling could be addressed.
Most efforts to handle the chimeric read problem have been
directed towards improving the PCR amplification and/or DNA
sample preparation steps to minimize the number of chimeric
reads introduced [22,31–33]. Others have suggested that appropri-
ate selection of the primer sets for amplification of the 16S rRNA
gene variable regions could enhance the accuracy of the microbial
profile [24,34]. However, the conclusions reached in those reports
lack consistency and instead appear to apply only for the samples
used in those particular studies, since previous studies noted that
discrepancies in abundances for certain phyla were dependent on
primer targets [23].

Other efforts have been directed towards improving chimera-
filtering algorithms [25,35,36]. Several methods have been
developed to identify chimeric sequences, including UCHIME
[37], Chimera Slayer [38], Chimera Checker [39], and Bellerophon
[40]. When using these programs for sequence analysis, chimeric
reads are routinely discarded from the dataset and are not used
for subsequent analyses. However, the impact of discounting
chimeric reads on sequence data interpretation has not been well
addressed [31,41], particularly in cases where the majority of the
reads are suspected chimeras. Several datasets in the Mockrobiota
data collection [42] showed errors of inflated operational
taxonomic unit (OTU) counts. For example, whereas results for
the V4 region displayed less than twofold OTU inflation due to
chimera formation in one such study [43], the V3V4 and V4V5
regions exhibited as much as 3 and 14 times the number of
expected OTUs, respectively, in others [42], suggesting inconsis-
tencies in the chimera-filtering methods in those pipelines.
Microbial profile compositions of mock community DNA samples,
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HM-276D,
HM-277D, and HM-278D, using the best practice procedures based
on the V4 region, could deviate by more than fivefold in OTU
counts from the expected composition [44].

We asked whether it is possible to recover microbial content
information from chimeric reads generated during PCR-based
sequencing approaches and assess the impact of recovering the
information lost due to chimera formation. Here, we report an
approach for microbial profiling using Illumina sequencing analy-
sis of the 16S rRNA gene that includes recovery of information lost
to chimeric reads. Our approach assumes that all chimeric reads
are generated from PCR amplicons that can be matched to 16S
rRNA genes of actual bacteria present in the sample. Toward this
end, we chose the vaginal microbiome for our analyses since this
microbial community has been extensively characterized and very
few, if any, unknown bacterial taxa are expected to be newly dis-
covered. We utilized a set of vaginal swab and lavage specimens
from a cohort of 42 pregnant women collected for a pilot study
exploring the effect of the vaginal microbiome on preterm birth.
We compared the microbial profiles generated from the sequenc-
ing reads of the V3V4 and V4V5 regions of the full-length 16S rRNA
gene amplicons from the vaginal swab and lavage samples. We
examined the effect of PCR cycle number on the microbial profiles
of samples from 5 selected subjects with varying compositions
with a wide range of chimeric content, and we examined the effect
of PCR extension time on the microbial profiles of samples from 18
subjects. For a subset of the vaginal samples from 12 subjects, we
also performed metagenomic shotgun sequencing analysis for
comparison. Overall, our findings suggest that sample composition
and complexity are major determining factors for chimera forma-
tion that must be considered when interpreting microbiome data.
Further, in order to build a consensus model that more accurately
reflects the microbiome, a combination of multiple sequencing
technologies and analysis tools should be adopted.
2. Methods

2.1. Sample collection

A total of 42 pregnant women (White = 3, African American = 26,
Latina = 8, Asian = 1, unknown = 4) with an average age of 28 years
(ranging from 18 to 43 years) were recruited for this study. Of
these 42 women, 12 had a history of preterm delivery, and samples
from these 12 subjects were subjected to further analysis. Two
vaginal samples were collected from each subject at an average
gestational age of 19 weeks (ranging from 16 to 23 weeks). A vagi-
nal lavage sample was collected using a 15 mL sterile saline solu-
tion. Swab samples were obtained from the overall vaginal canal
using vaginal swabs and placed in 1 mL sterile phosphate-
buffered saline (PBS). All samples were stored at �80 �C until pro-
cessed, as described below.
2.2. DNA Isolation/Purification

Each swab sample was extracted three times with 1 mL of PBS,
and the combined mixture was centrifuged at 16,100g for 5 min.
Similarly, each lavage sample was centrifuged at 16,100g for
5 min. The resulting pellets were used for further purification.
The Genomic DNA Buffer Set (Qiagen, 19060) and Genomic-tip
20/G (Qiagen, 10223) were used for DNA purification. The pellets
were resuspended in buffer B1 containing 20 mL of RNase A
(10 mg/mL), followed by the addition of 20 mL of lysozyme
(100 mg/mL) and 45 mL of proteinase K (20 mg/mL). The samples
were incubated at 37 �C for 30 min, followed by the addition of
350 mL of buffer B2, gentle mixing, and incubation at 50 �C for
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30 min. Thereafter, the manufacturer’s protocol was followed. The
genomic DNA was eluted twice with 1 mL of buffer QF (pre-heated
to 50 �C to increase yield). The eluted DNA was precipitated by the
addition of 700 mL of isopropanol, followed by mixing and centrifu-
gation at 12,000g at 4 �C for 15 min. The resulting DNA pellets were
washed with 1 mL of cold 70% ethanol and again centrifuged at
12,000g at 4 �C for 10 min. The pellets were air-dried for 10 min
and subsequently solubilized in 50 mL of TE.

2.3. 16S rRNA gene amplicon preprocessing and sequencing

For 16S rRNA gene PCR amplification, each reaction contained
1 mL of genomic DNA, 25 mL of 2X DreamTaq Green PCR Master
Mix (Thermo, K1081), 25 mL of water, and 1 mL of each primer
(10 mM, 16S-27F: 50-AGAGTTTGATYMTGGCTCAG-30, 16S-1492R:
50-CGGTTACCTTGTTACGACTT-30). The thermocycler was set at
95 �C for 5 min, followed by 30 cycles at 95 �C for 15 sec, 47 �C
for 30 sec, and 72 �C for 90 sec. The final extension step was set
at 72 �C for 5 min. The resulting PCR amplicons were separated
by electrophoresis on a 1% agarose gel, followed by extraction of
the desired DNA band using the GeneJET gel extraction kit (Thermo,
K0691). The 16S rRNA gene ampliconswere eluted in 50 mL of water
and quantified using a NanoDrop 2000 Spectrophotometer. The
samples were diluted to 20 ng/mL and submitted for amplification
and sequencing using the V3V4 and V4V5 primer sets for Fluidigm
Access Array Amplification sequencing at the UIUC Roy J. Carver
Biotechnology Center. The V3V4 primer pairs were 50-CCTACGGG
NGGCWGCAG-30 and 50-GGACTACNVGGGTWTCTAAT-30, and the
V4V5 primer pairs were 50-GTGYCAGCMGCCGCGGTAA-30 and
50-CCGTCAATTCMTTTRAGT-30. The resulting 250-nt paired-end
reads obtained from Fluidigm-Illumina MiSeq.v2 sequencing after
primer-sorting and demultiplexing were joined by fastp [45] using
default parameters.

2.4. Metagenomic sequencing

Freshly purified DNA samples from eleven swab and twelve
lavage samples from 12 of the 42 subjects were prepared for
metagenomic sequencing, according to the protocol recommended
by the W. M. Keck Sequencing Facility of the Roy J. Carver Biotech-
nology Center at the University of Illinois at Urbana-Champaign
(UIUC). Sequencing was performed on an Illumina HiSeq2500 with
160-nt paired-end reads and 500-bp fragment sizes. The remainder
of the samples was stored at �80 �C until further use.

2.5. 16S rRNA database 16S_RefLib

Our 16S rRNA database, named 16S_RefLib, was initially con-
structed from the 16S rRNA sequences identified in several early
vaginal microbiome studies, including PopSets: 66,878,480 [46],
52,222,145 [47], 63,146,101 [48], 119,352,235 [49]. Using a thresh-
old of 99% identity, similar sequences were de-replicated, keeping
the longest sequences and/or replacing with the closest entries in
the NCBI dataset of 16S ribosomal RNA sequences (RefSeq). After
initial BlastBin analysis of all merged reads, those sequences that
did not have any partial match in our 16S_RefLib with > 99% iden-
tity were used as queries for BLASTn search using RefSeq dataset.
New high-quality hits were added to the 16S_RefLib. The remain-
ing unmatched sequences were used as queries for searching the
NCBI nucleotide database. To ensure that the number of chimeric
reads obtained using BlastBin for chimera-rich samples was not
simply due to the absence of unidentified reference sequences in
our 16S_RefLib, we also analyzed the sequencing data from two
chimera-rich samples, S27 and S41, comparing the number of
OTUs and chimeras obtained using BlastBin versus that obtained
using the Silva database (see Supplemental Methods for the case
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of Samples S27 and S41). High hits of full-length 16S rRNA
sequences from whole genome sequencing or from uncultured
16S rRNA sequences were added to the 16S_RefLib. For example,
Clostridium sp. ND2 was identified from the sequenced genomes,
and BVAB1 was identified from uncultured bacterial amplicon
sequences frequently found in vaginal samples. The definition line
of each sequence includes accession number, genus name, species
name, and strain name. For sequences without a known species
name, RDP project classifier was used to identify the closest
(>99%) genus name or a higher classification name, clone name
or other available information, which was used as species name
in our database. Examples include: Coriobacteriaceae DNF00809
(KP192306.1), Lachnospiraceae BVAB1 (EF120366.1), and Prevo-
tella skin nbw1010e05c1 (GQ047249.1).

2.6. QIIME2 OTU clustering

In the QIIME2 (2020.2.0) workflow, the joined reads were
dereplicated and clustered using q2-vsearch (98% identity).
Sequences in the 16S_RefLib reference databases were trimmed
to generate V3V4 and V4V5 region databases, which were used
for open reference clustering. The resulting OTU tables in QZA for-
mat were converted into BIOM-formatted tables using QIIME2
export tool. The BIOM tables were then converted into readable
TSV-formatted files with ‘‘biom convert,” included in the QIIME2
package. A shell script was used to assign Genus/Species name
for each OTU accession number and identical species names were
merged.

2.7. BlastBin OTU clustering

Our BlastBin algorithm allows for the identification and assign-
ment of the source of chimeric reads. The assumption made is that
all chimeric reads originate from sequences in the same sample
that can be detected and binned by BLASTn. This program bins
the reads by BLASTn at adjustable coverage and identity threshold
defined by the user. Currently, BlastBin is implemented as a shell
script program. For detailed information regarding BlastBin and
counting chimeric reads, see Supplemental Materials and Methods.

To generate a mini-base for each dataset from a sample in this
study, 1000 joined reads were randomly selected and searched
against the 16S_RefLib database. Perfectly matched hits (iden-
tity > 99% with coverage > 90%) were used to generate a mini-
database, which used to remove any additional perfectly matched
sequences from the original dataset. The remaining reads in the
reduced dataset were then subjected to the same process again.
After 2 iterations of picking 1000 joined reads, all of the remaining
reads in the final reduced dataset were used directly for BLASTn
search of the 16S_RefLib to identify any remaining matches, which
were then also added to the mini-database. The entire original
dataset was then searched against this mini-database using
BLASTn at 98% identity and word-size 32 to classify fully matched
sequences with > 99% coverage. Any remaining sequences that
were not matched were assumed to be chimeras derived from
sequences in the mini-database. For each of the chimeric reads,
the largest possible overlapping fragments of matching sequence
hits from BLASTn were identified and used to generate a string of
OTUs, each corresponding to a matching fragment. This string
of OTUs was then used to generate fractional counts for each
source OTU (see Supplemental Materials and Methods). For each
sequenced dataset, BlastBin produced a table consisting of an
accession number, genus/species name, matched read counts,
calculated chimeric read counts, and total matched + chimeric read
counts. BlastBin also generated a table according to accession num-
bers and a table according to genus/species names after merging
accession numbers assigned to the same genus/species names.
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Multiple datasets were merged using a shell script to produce a
TSV OTU table, according to the species names or accession num-
bers for matched only reads, chimeric reads, or matched +
chimeric reads.

2.8. Metagenome assembly pipeline

Our assembly pipeline included the following steps: (1) The
Bowtie2 program [50] was used to filter away human sequences.
(2) The MEGAHIT v1.2.9 program [51] was used to assemble the
remaining paired reads. (3) The resulting contigs from assembly
were used as query to BLAST against our curated 16S rRNA gene
database (16S_RefLib). (4) Contigs containing 16S rRNA genes were
selected using a shell script. (5) The Prokka program [52] was used
to annotate all 16S rRNA gene-containing contigs. (6) The multi-
plicity of the contigs containing full-length gene sequences was
used for calculating the relative abundance. For those contigs with
truncated 16S rRNA sequences, a weight was applied using the
ratio of coverage length over 1500 bp for the presumed full-
length. Metagenomic contig-based fractional abundance was cal-
culated from the ratio of each relative abundance over the total
abundance (see Supplemental Table 5A). Sequencing reads after
removing host DNA were also used as query for direct assignment
by BLASTn search with 16S_RefLib as the database, setting identity
at 99%, coverage at 90%, and selecting only one top hit. A shell
script was used to count the hits and generate an OTU list and
the read-based fractional abundance from the BLASTn output
(see Supplemental Table 5B).

2.9. Statistical analysis and graphical presentations

Statistical analyses were performed using R version 3.6.3 or
4.1.0 (https://cran.r-project.org). Shannon diversity index (H) was
calculated as H = �P

pi log pi and Gini-Simpson diversity index
was calculated as 1�P

pi
2, where pi is the fraction for the i-th

OTU, using the R package vegan version 2.5–7 function diversity
(), with index = shannon and simpson, respectively. The Morisita-
Horn similarity index (MH) was calculated as MH = 2 (

P
xi yi)/

(
P

xi
2 +

P
yi
2), where xi , yi are the abundances for the i-th OTU in

sample X and Y, respectively. The MH index was calculated using
the R package vegan function vegdist() with method = Horn, and
converted into similarity, where MH = 0, if no common species
were found in the two samples, and MH = 1, if the species occur
in the same proportions in both samples. ANOVA was performed
using the R package stats function aov(). Correlations and t-tests
were calculated using Microsoft Excel (version 16.47.1). Graphical
presentations of data were generated by using Excel or the R pack-
age ggplot2 with compatible packages of gplots, dplyr, reshape,
ggpubr, and ggrepel.
3. Results

3.1. Effect of PCR cycle number on chimera formation

PCR amplicons of the full-length 16S rRNA gene from vaginal
swab and lavage samples obtained from all 42 subjects in our
cohort were generated under standard PCR conditions of 30 cycles
and 90-second extension times, using universal bacterial primers,
27F and 1492R. The resulting full-length amplicons were used as
templates to generate V3V4 and V4V5 amplicons for Illumina
sequencing and analysis. Those reads that were > 98% identical
to a known reference sequence in the 16S rRNA gene RefSeq data-
base, to a known genome sequence, or to a known amplicon in
published studies, were considered as ‘‘matched” to that taxon.
Those reads that were not matched were considered to be either
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chimeric reads or currently unidentified sequences, both denoted
as ‘‘chimera” reads from here on. The sequencing results for the
swab and lavage samples indicated that there was a wide range
of chimeric content found among the different samples (see Sup-
plemental Table S1A and S1B).

To determine the effect of PCR amplification conditions on the
occurrence of chimeras, a subset of vaginal swab and lavage sam-
ples representing samples with chimeric read contents ranging
from 5% to 50% were selected: Subject 9 swab (S9), Subject 11
lavage (L11), Subject 13 lavage (L13), Subject 27 swab (S27), and
Subject 41 swab (S41). Full-length 16S rRNA gene amplicons of
these samples were generated under PCR conditions of 25, 30,
35, or 40 cycles with 90-second extension times, followed by Illu-
mina sequencing of the V3V4 or V4V5 regions. The microbial pro-
files for these samples are summarized in Supplemental Table S2A.
For matched sequences, similar microbial profiles were obtained
with each of the different cycle numbers for each of the samples.
As shown in Fig. 1A, PCR cycle number had no consistent effect
on the fraction of chimeric reads detected in a sample. For those
samples having a high match rate with sequences in the
16S_RefLib database (S9 and L11), the number of matched
sequences actually increased with cycle number, whereas for those
samples having fewer matched reads (and presumably more chi-
meric reads), there was either little change (L13) or a decrease
(S27 and S41) in matched reads.

If PCR cycle number were to have a similar effect on chimera
formation for different samples, then one would expect that the
correlation of chimera occurrence for the series with different
PCR cycle numbers would be similar among different samples as
to that observed between the V3V4 and V4V5 reactions within
the same sample. The mean correlation of cycle dependency on
chimera formation (comparing PCR cycle number 25, 30, 35 or
40) between each reaction pair for V3V4 and V4V5 from the same
sample was r = 0.88 ± 0.18 (n = 5); while the mean correlation
between any two reaction sets of different samples was r = -0.22
± 0.61 (n = 40). In contrast, the mean correlation of sample depen-
dency on chimera formation for each pair of cycle numbers was r =
0.97 ± 0.03 (n = 6). ANOVA analysis of chimera content among the 5
samples, the 4 PCR cycle numbers, and the 2 variable regions of the
16S rRNA gene showed p < 2e-16 for samples, p > 0.8 for cycle
number, and p > 0.9 for the variable region. Details of these com-
parisons are summarized in ‘‘Correlation and ANOVA Analysis of
Five Samples” in the Supplemental Methods. These results suggest
that the sample itself has more impact on the extent of chimera
formation than the number of PCR cycles used for full-length 16S
rRNA gene amplification or the variable region used for sequenc-
ing. Chimera formation was expected to occur during the prepara-
tion of full-length 16S rRNA gene amplicons, as well as during the
preparation of the V3V4 and V4V5 amplicons. We were only
able to examine the effect of cycle number on chimera formation
during the first amplification step, but we could not quantify the
impact of the second amplification step.

The diversity of the samples, calculated as the Shannon diver-
sity using only matched reads (Fig. 1B), showed that those samples
containing more matched sequences (S9, L11, and L13) represent
less diverse communities. For L11 and L13, the only change in
diversity was observed between cycle numbers 25 and 30. Since
these samples are dominated primarily by one Lactobacillus spe-
cies, it is reasonable to assume that increasing the cycle number
resulted in loss of the minor components and loss of diversity. In
contrast, the samples with fewer matched reads and presumably
more chimeric reads (S27 and S41) had higher diversity and were
refractory to the number of PCR cycles used. Based on the results
observed for both chimera occurrence and sample diversity, chi-
mera formation appears to be dependent on the composition and
the diversity of the sample, and not on the PCR cycle number used.

https://cran.r-project.org


Fig. 1. Dependence of PCR cycle number on chimeric read formation in 5 selected samples. (A) Shown is the fraction of read counts that matched to reference taxa in the
16S_RefLib database (black bars), and those having no matches (white bars), denoted as ‘‘Other” and presumed to be chimeric reads. S and L in sample names denote swab
and lavage, respectively. Sample numbers (9, 11, 13, 27, or 41) and PCR cycle numbers (25, 30, 35, or 40) are incorporated into the sample name. (B) Shown is the Shannon
diversity index H for each of the selected samples (blue bars), calculated only from the matched read counts. (C) Shown is the Shannon diversity index H for each of the
selected samples (red bars), calculated from the adjusted read counts after including chimeric reads. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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3.2. Counting chimeras

In many of the swab and lavage samples from the 42 subjects,
we observed that >50% of the total reads could not be assigned
at 98% identity to known taxa in the RefSeq database, known gen-
ome sequence databases, or our 16S_RefLib database. In some
cases, these unmatched sequence reads, presumed to be chimeric
reads, reached as much as 80% of the total non-host sequenced
reads (Fig. 2A). These chimeric reads were detected and discarded
by QIIME2 during the standard sequencing analysis protocol. To
determine if it is possible to recover information lost in the dis-
carded chimeric sequence reads, we developed an algorithm, Blas-
tBin, based on NCBI BLASTn [53], that assigns the taxa with
matched sequences as the source of the chimeras, as well as
assigns a fractional count to each source.

For application of BlastBin, our assumptions were:

(1) Chimera products can only be derived from precursors that
can form non-chimera products. That is, if a chimera product
is generated, then non-chimera products of the precursors
should also be detectable from the same PCR reaction.

(2) BLASTn search can be used to assign the fragments in a chi-
mera product to their corresponding precursor taxa from a
database consisting only of the non-chimera precursors that
are present in the sample.

(3) For each observed chimera joining site, there are two precur-
sor templates of equal amounts. Therefore, for the detected
number (n) of a given bipartite chimera product, if the chi-
meric process had not occurred, there would be half the
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number (n/2) of each non-chimera product. For the number
(n) of a given tripartite chimera product with two joining
sites, if the chimera process had not occurred, there would
be a third of the number (n/3) of each of the three non-
chimera products. Similarly, the number (n) of a k-partite
chimera product with k-1 joining sites can be counted as
an equal number of n/k of each non-chimera product. A
mathematical rationale for this chimera counting method
is provided as ‘‘Rationale for Counting Chimera Reads” in
Supplemental Methods.

Based on these assumptions, we devised the BlastBin program
in shell script, which could be translated into Python (see Supple-
mental Materials and Methods). BlastBin takes the merged read
pairs and generates an OTU table using only the matched sequence
reads (Supplemental Table S1B) and a separate OTU table that
incorporates the fractional counts recovered from the chimeric
reads (Supplemental Table S1C). When chimeric reads are included
in the calculation, the diversity of the samples increases (Fig. 2A,
compare red dots versus blue dots). From the diversity comparison
using scatter plot (Fig. 2B), in all cases the Shannon diversity con-
sidering both matched and chimeric reads is greater than that con-
sidering only matched reads. This was confirmed when the Gini-
Simpson index, which considers the number of species present
and the relative abundance of each species, was used for compar-
ison (Fig. 2C). These findings were also observed for the selected
samples used for PCR cycle-dependent analysis mentioned above
(compare Fig. 1B and 1C, and the corresponding OTU tables Supple-
mental Table S2A and S2B).



Fig. 2. Interplay of chimera formation and sample diversity. (A) More diverse samples yield more unmatched reads, presumed to be chimeric reads. Shown is the Shannon
diversity index H for all swab and lavage samples from the 42 subjects, based on analysis of the V3V4 and V4V5 regions in the full-length 16S rRNA amplicons obtained using
standard PCR conditions. The Shannon diversity index H was calculated from the relative abundances using only matched reads (blue dots) or from the adjusted relative
abundances considering chimeric reads (red dots) versus the fraction of chimeric reads. (B, C) Counting chimeric reads increases diversity. Shown are the Shannon diversity
index H comparison (B) and the Gini-Simpson diversity index comparison (C) calculated from the relative abundance adjusted to include chimeric reads versus that from the
relative abundance using only matched reads. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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3.3. Effect of PCR extension time on chimera formation

It is generally believed that longer extension times decrease the
amount of incomplete PCR products and minimize formation of
chimera products. Thus, to obtain full-length 16S rRNA gene ampli-
cons, extension times of 60-seconds [54], 90-seconds [55], or
longer [32] have been recommended as standard conditions by dif-
ferent groups. We tested the effect of using a PCR extension time of
60 or 90 s on a set of samples (18 swabs and the corresponding
lavage samples from Subjects 13 through 30, plus 12 swabs from
Subjects 31 through 42) under standard PCR amplification condi-
tions. The resulting full-length 16S rRNA gene amplicons were then
subjected to Illumina sequencing and analysis of the V3V4 and
V4V5 regions. As shown in Fig. 3A, increasing the PCR extension
time from 60 to 90 s generally did not alter the number of chimeric
reads generated for the majority of the samples. However, in some
instances, the 60-second reactions yielded more chimeric reads,
whereas for others the 90-second reactions yielded more, as sum-
marized in Fig. 3C.

In most cases, the two PCR extension times yielded similar
diversity indices (Fig. 3B), although in some samples, the 60-
second reactions appeared to have more diversity than the 90-
second reactions (Fig. 3D). Consistent with this finding, the 60-
second reactions generally picked up more taxa (Fig. 3E). As was
noted above, the diversity increased when chimeric reads were
considered in determining the microbial abundance (compare
top and bottom panels in Fig. 3B). This held true for both PCR
extension times (Fig. 3F). Again, there was no consistency with
regard to PCR amplification conditions on the number of matched
reads, chimera formation, or diversity of the microbial profiles.
Combined, these findings suggest that PCR conditions are not
solely responsible for influencing the formation of chimeras or
the detection of sample diversity, and instead suggest that sample
composition itself contributes to chimera formation and diversity.
3.4. Comparison of microbial profiles derived from PCR-based
sequencing versus metagenome shotgun sequencing analyses

PCR-independent metagenomic sequencing is assumed to pro-
vide the closest representation of the actual microbial profiles of
samples [28,56–59]. However, 16S rRNA genes only account for a
small fraction of the entire genome, so only a small fraction of
the total reads can be used for ribotyping, and high sequencing
depth is required to achieve reliable taxonomic resolution. With
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that in mind, we performed metagenomic analysis by using Illu-
mina HiSeq metagenome sequencing of the swab and lavage sam-
ples from Subjects 1 through 12. In our dataset of 23 samples,
19 ± 13% (range 7% to 53%) of the total reads remained after filter-
ing out host genomic DNA using Bowtie2 [50]. Of the non-host
reads, 0.22 ± 0.06% (range 0.11 to 0.32%) could be matched to
16S rRNA genes in our 16S_RefLib database using BLASTn. This
equated to only a tiny fraction of the metagenomic shotgun
sequencing reads, 0.046 ± 0.036% (range 0.012 to 0.139%), that
were usable for bacterial taxon identification (see Table 1).

The non-host DNA reads were assembled using MEGAHIT [51],
and the resulting contigs were used for BLASTn search against our
16S_RefLib database to identify contigs containing a 16S rRNA
gene, which were then annotated with Prokka to identify the
sequence range coding for that 16S rRNA gene. The abundance of
bacterial taxa based on the metagenomic assembly was calculated
from the 16S rRNA gene coverage as well as the multiplicity of the
contigs containing the 16S rRNA gene sequence of that taxon (Sup-
plemental Table S5A). The non-host DNA reads were also used
directly for BLASTn search to obtain read-based microbial profiles
(Supplemental Table S5B). In comparing the contig-based micro-
bial profiles after assembly with the read-based profiles without
assembly, the number of bacterial taxa identified from the
assembly-based method appear to be undercounted compared to
the numbers by other methods (ranging from 1 to 26), while that
from the read-based method appear to be overcounted (ranging
from 13 to 79) (see Fig. 4A). In 15 out of 23 cases, the diversities
of the samples were comparable between the contig-based and
read-based methods (Fig. 4B), suggesting that the majority of the
taxa for the read-based counts in these samples were minor com-
ponents of the microbial community.

The number of bacterial taxa identified from the metagenomic
analyses were also compared with that obtained from PCR-based
analysis of the V3V4 and V4V5 regions of full-length 16S rRNA
gene amplicons generated using 30 or 40 cycles (Fig. 4A, compare
also Supplemental Tables S1B and S1C with S5A and S5B). As
expected, more taxa were detected in all cases using the read-
based metagenomic method than the assembly-based method. In
12 out of 23 cases, the PCR-based sequencing method using 30
cycles yielded similar bacterial taxon counts as those obtained
from assembled metagenomic reads, whereas using 40 cycles
yielded more bacterial taxa in all cases. Interestingly, the number
of taxa observed in PCR amplicons after 30 cycles was consistently
less than that observed after 40 cycles. In some cases (S1, L1, S3, L3,



Fig. 3. Dependence of PCR extension time on chimeric read formation. (A) Shown is the fraction of read counts from selected samples that matched to reference taxa in the
16S_RefLib database. S and L in sample names denote swab and lavage, respectively. Subject numbers (13 through 30) and 16S rRNA gene regions (V3V4 or V4V5) are
incorporated into the sample name. Full-length 16S rRNA gene amplicons were generated using PCR reactions with extension time of 60 s (black bars) or 90 s (grey bars). (B)
Shown are the Shannon diversity index H values for the V3V4 and V4V5 regions of 16S rRNA gene from swab and lavage samples from Subjects 13 through 30 and swabs only
from Subjects 31 through 42. H values were calculated from the matched read only counts (top panel, blue bars) or from the adjusted read counts including chimeric reads
(bottom panel, orange bars), where PCR extension time of 60 s (dark bars) or 90 s (light bars) was used to generate full-length 16S rRNA gene amplicons. (C) Shown is a scatter
plot of the fraction of chimeric reads (solid black circles) obtained from reactions using 60-second extension time versus 90-second extension time, similar to that described
for (B). (D) Shown is a scatter plot comparing the effect of PCR extension time (60 versus 90 s) on the Shannon diversity index H values, similar to that described for (B),
calculated from the matched read only counts (blue circles) or from the adjusted read counts including chimeric reads (orange circles). (E) Shown is a scatter plot comparing
the number of taxa identified using PCR extension times of 60 s versus 90 s for the full-length 16S rRNA gene amplicons, followed by Illumina sequencing of the V3V4 and
V4V5 regions in both swab and lavage samples from Subjects 13 through 30, as well as swab samples only from Subjects 31 through 42. (F) Shown is a scatter plot comparing
the effect of counting chimeric reads (match only versus match + chimera) on the Shannon diversity index H values, calculated from fractional reads obtained using extension
time of 60-seconds (solid black circles) or 90-seconds (open black circles), similar to that described for (B). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

M. Ho, D. Moon, M. Pires-Alves et al. Computational and Structural Biotechnology Journal 19 (2021) 5126–5139

5132



Table 1
Metagenomic shotgun sequencing results for swab and lavage samples from Subjects 1 through 12.

Sample Total paired reads Non-host paired reads Non-host yields 16S rRNA hits 16S rRNA % 16S yields

S1 57,048,685 5,310,534 9% 8088 0.15% 0.014%
L1 51,857,992 4,604,966 9% 6642 0.14% 0.013%
S2 49,442,086 9,719,560 20% 26,826 0.28% 0.054%
L2 46,319,475 15,074,561 33% 35,583 0.24% 0.077%
S3 56,017,859 18,510,934 33% 53,417 0.29% 0.095%
L3 49,973,698 25,917,542 52% 69,688 0.27% 0.139%
S4 41,247,549 8,228,648 20% 26,062 0.32% 0.063%
L4 44,974,048 8,738,985 19% 27,831 0.32% 0.062%
S5 54,453,859 3,869,396 7% 4254 0.11% 0.008%
L5 52,573,652 4,588,747 9% 6187 0.13% 0.012%
L6 54,177,968 11,414,311 21% 28,922 0.25% 0.053%
S7 48,367,288 4,273,106 9% 10,073 0.24% 0.021%
L7 52,099,277 5,402,199 10% 15,270 0.28% 0.029%
S8 53,885,469 5,986,783 11% 10,106 0.17% 0.019%
L8 40,612,001 6,282,090 15% 10,742 0.17% 0.026%
S9 61,537,335 7,658,706 12% 15,703 0.21% 0.026%
L9 53,667,891 8,490,088 16% 17,000 0.20% 0.032%
S10 46,366,307 13,079,450 28% 31,697 0.24% 0.068%
L10 48,902,116 25,712,763 53% 63,467 0.25% 0.130%
S11 49,671,540 8,025,035 16% 18,626 0.23% 0.037%
L11 45,930,502 5,696,707 12% 11,807 0.21% 0.026%
S12 45,147,780 6,069,520 13% 15,547 0.26% 0.034%
L12 41,887,200 5,373,884 13% 10,396 0.19% 0.025%

Fig. 4. Comparison of PCR-based and metagenome shotgun sequencing methods for swab and lavage samples from 12 subjects. (A) Number of taxa identified in swab (S) and
lavage (L) samples from Subjects 1 through 12, obtained from metagenome shotgun sequencing, using assembled-based reads (Assembly-m) or raw read-based (Read-m), or
from PCR-based methods considering chimeras analyzing the V3V4 (dark shade) or V4V5 (light shade) regions of the full-length 16S rRNA gene amplicons generated with 30
(orange) or 40 (blue) cycles. For S6, no genomic DNA was obtained, and for S12, no full-length amplicon was obtained for 30 cycle reaction due to insufficient sample. (B)
Shannon diversity index H for each of the samples in (A), calculated from the abundance of taxa identified by each of the respective methods as in (A). (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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L7, L10), the Shannon diversity was also greater after 40 cycles
than 30 cycles, but most of the samples (S2, L2, S4, L4, S5, L5, L6,
S7, S8, L8, S9, L9, S11, L11, S12, and L12) displayed similar Shannon
diversity across the PCR-based and read-based methods (Fig. 4B).
These findings again indicate that at least some of the discrepan-
cies in taxon counts in these samples could be attributed to low-
abundance species. The only exceptions to this, where noticeable
differences were observed, were the highly diverse profiles of sam-
ples from Subjects 3 and 10.
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Many of the bacterial taxa present in the metagenomic profiles
were not detected in the 16S rRNA gene profiles using 30 cycles for
PCR amplification (Fig. 4, also compare Supplemental Tables S4A
and S4B with Supplemental Tables S1B and S1C). This is consistent
with the lower number of taxa and lower diversity observed for the
16S rRNA gene profiles of these samples. However, after 40 cycles,
most of the taxa observed in the corresponding metagenomic pro-
files could be detected, with the exception of Gardnerella vaginalis,
Atopobium vaginae, and Saccharibacterium TM7, which is likely due
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to bias introduced by the imperfect sequence matching of the uni-
versal primers, as previously reported [60]. In this comparison, sev-
eral of the taxa not found by the metagenomic assembly method,
including some with abundances > 1%, could be detected by the
metagenomic read-only and the 40-cycle PCR-based methods.

Closer examination of the microbial profiles from Subjects 3 and
10 (Table 2) revealed the intricate variance of the microbial profile
composition using different analysis methods. For example, G.
vaginalis was detected as a major component of the microbial con-
tent in the assembly- and read-based metagenomic analyses but
was not detected or barely detected by the PCR-based methods,
most likely due to poor primer matching, as mentioned above. In
this case, the assembly-based method overcounted the abundance
compared to the read-based method (3 times for samples from
Subject 3 and 2 times for Subject 10), revealing a flaw in using mul-
tiplicity of contigs as a basis for counting abundances. In the case of
G. vaginalis, the reads of other species may have been incorrectly
incorporated into the contig containing the 16S rRNA gene for G.
vaginalis. Using the assembly-based method, the bacterium Lacto-
bacillus inerswas undercounted, while Lactobacillus gasseri and Lac-
tobacillus crispatus were not detected. On the other hand, even
though A. vaginae was present in relatively low abundance in
L10, the full-length assembly could be detected, indicating that
the assembly-based method has the capability of picking up low
abundant taxa (even < 1%) so long as no other taxa with similar
16S rRNA sequences are present in the sample. This also appears
to be the case for Prevotella skin (S3, L3), Peptoniphilus lacrimalis
(S3, L3, L10), Sneathia amnii (S3, L3), Prevotella colorans (S3, L3),
Mycoplasma hominis (L10), Bacteroidales L3 (L3), and a few others.

The similarities between the Lactobacillus 16S rRNA gene
sequences could result in assembly error of metagenomic
sequences. In samples from Subjects 3 and 10, the reads of less
abundant Lactobacillus species, such as L. jensenii, L. crispatus, L.
gasseri and L. coleohominis, may have been misassembled into the
dominant L. iners species to the point where they were no longer
detected. For samples where there are multiple Lactobacillus spe-
cies of comparable abundances, as was found in samples from Sub-
ject 5, misassembly of the highly similar sequence reads could
result in high chimera content of the profile. Some 16S rRNA gene
sequences identified by metagenomic assembly in samples from
Subject 5 could be assigned to a single Lactobacillus species based
on the highest BLASTn sequence identity match (Table 3). How-
ever, upon closer examination, the best hit was<99% for a number
of the sequences, and in each case, there were several alternative
hits with similar lower identity scores (Table 4), indicating that
the reads were likely misassembled. Among the Lactobacillus spe-
cies, L. coleohominis is the most distant (<90% identity) from other
more abundant Lactobacillus species in the samples, and so, in this
case, it was still possible to obtain a complete assembly of the 16S
rRNA gene, despite its abundance at < 1%. In agreement with the
read-based metagenomic analysis for samples from Subject 5, the
microbial profiles from the PCR-based method using 40 cycles
were dominated by five Lactobacillus species, in order of abun-
dance: L. crispatus, L. iners, L. jensenii, L. gasseri, and L. coleohominis.
In total, closer examination of the microbial profiles from Subjects
3, 5 and 10 comparing different analysis methods support the
notion that microbial content and their abundances affects the reli-
ability of assembly-based shotgun sequencing analysis.

We compared the microbial profiles generated by the PCR-
based methods with the read-based shotgun sequencing method,
using the Morisita-Horn (MH) similarity index [61]. As shown in
Fig. 5A, the microbial profiles for the samples from Subjects 1
through 12 generated by QIIME2 using 40-cycle reads were more
similar to the read-based metagenomic profiles than using the
30-cycle reads. According to the MH similarity indices (Fig. 5B),
our BlastBin method using only matched reads yielded similar
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microbial profiles as the QIIME2 method for both 30- and 40-
cycle reads. This is expected since in each case chimeric reads were
removed from the analysis. Without or with the consideration of
chimeric reads, the profiles generated using 30 or 40 cycle num-
bers were different from each other. When chimeric reads were
considered, the 30-cycle amplicons displayed a greater shift in
the MH similarity pattern, while there was less of a shift for the
40-cycle amplicons. The smaller impact of chimera counting on
the 40-cycle profiles versus 30-cycle profiles most likely reflects
the greater coverage of taxa reached by using 40 PCR cycles, even
when only matched reads were used. The outliers found in the MH
similarity indices are primarily due to those profiles from the two
most diverse samples, those from Subjects 3 and 10 (solid circles in
Fig. 5A), again supporting the notion that the nature and complex-
ity of the sample impacts the reliability of the analysis method.
4. Discussion

As has been well established in the field, we found that the for-
mation of chimeric PCR products is an unavoidable outcome of any
PCR amplification of complex DNA samples. Our samples yielded a
wide range of chimeric content when standard methods were used
for PCR amplification and sequencing analysis. However, unlike
previous reports that suggested chimera formation could be largely
corrected by adjusting the PCR conditions or cycle number used,
we found that the differential occurrence of chimeric reads for a
given sample depends on the nature of the microbial content and
the complexity of the microbial community of the sample, and less
so on the PCR conditions such as cycle number or extension times
used in obtaining the full-length 16S rRNA amplicons. We also
found that the extent of chimera formation was similar whether
the V3V4 or V4V5 regions were used to assess the PCR amplifica-
tion of full-length 16S rRNA gene amplicons. Overall, we found that
more diverse samples tended to have more chimeric reads. While
there were minor effects of PCR cycle number on chimera forma-
tion observed for a number of samples, the effects were inconsis-
tent, with some samples displaying an increase in chimera
formation with increased cycle number, while others a decrease.
In general, PCR extension time had little effect on chimera forma-
tion, even though some samples showed minor differences with
60-sec versus 90-sec cycles. While the 60-sec extension times
tended to yield more diverse profiles, the outcomes were inconsis-
tent and varied among samples. Again, these findings point toward
sample dependency of chimera formation on the microbial profiles.

Removal of chimeras from sequence analysis is the standard
protocol for all current pipelines. However, when the chimeric read
content in a microbiome sample can range from 5% to as much as
80%, such as was observed in our vaginal swab and lavage samples
from 42 subjects, it is difficult to justify excluding chimeras from
microbial community analyses. According to a mathematical ratio-
nale for chimera formation (see equation 17 of the mathematical
rationale in Supplementary Materials and Methods), after i cycles
of amplification, the original ratio between the two species A and
B in a sample is A0/B0 = (Ai + 0.5*Ci)/(Bi + 0.5*Ci), where Ai, Bi,
and Ci represent the amounts of A, B, and chimera C. When these
two species are present at greatly different abundances, A0 � B0,
after i cycles of amplification the ratio will become greatly exag-
gerated compared to the original (Ai/Bi > A0/B0). The consequence
will be that more sequences from the minor component will be lost
due to chimera formation.

To determine how the information loss by removing chimeric
reads from analysis impacts the interpretation of microbiome data,
we first needed to devise a way to count chimeric reads in terms of
what they represent with regard to the microbial composition of
the original sample. So, we developed the BlastBin algorithm to



Table 2
Comparison of microbial profiles obtained for swab and lavage samples from Subjects 3 and 10.(a)

Notes: Pink-shaded boxes indicate where full-length 16S rRNA gene for that taxon was found in a contig (bold type). Blue-shaded boxes indicate where a joined 16S rRNA
gene for that taxon was identified through overlapping of multiple contigs. Grey-shaded boxes indicate where a partial 16S rRNA gene for that taxon was found.
(b) Only hits with abundance>0.001% in read-based analysis are considered.
(c) Prevotella vaginal (similar to JX871244.1 and JX871252.1) or Prevotella skin (similar to GQ047249.1) denotes taxa identified in vaginal or skin samples, respectively, from
published studies.
(d) Full-length 16S rRNA gene was obtained from a single contig in Subject 3. This sequence was closest to Bacteroidales 34.053–1 found in the GenBank database.
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enable the inclusion of chimeric reads in the analysis. An advan-
tage of our BlastBin tool is that it can be integrated into other exist-
ing PCR-based sequence analysis workflows, including QIIME2.
Further expansion of BlastBin could include the capability of auto-
matically amending the reference library to accommodate new
OTUs found in the sample from the NCBI 16S rRNA gene reference
library. In all of our cases, we found that counting chimeric reads
yielded microbial profiles that were more diverse than when the
chimeras were discarded.

Building a mini-database for each dataset is important for the
BlastBin process. This step eliminates incorrect attribution of a chi-
meric read to a taxon that is not present in the sample. Likewise,
omission of low-abundance taxa could incorrectly attribute the
read as a chimera of others. By sampling 1000 reads in the first
iteration, the probability of missing a nonchimeric read is = (1-p)
^1000, where p is the abundance of a nonchimeric read. When p
is 0.01, the probability of missing this nonchimeric read is
0.00043. When p = 0.005, the probability is 0.0066. To minimize
the omission of ‘‘real” taxa in the mini-database, we included a
final step of searching for possible reference sequences in the
remaining unmatched reads. Even with an incomplete mini-
database, the counts of dominant taxa generated using BlastBin
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were consistent (see Supplemental Methods for the case of Sam-
ples S27 and S41, analyzed using different mini-databases).

Host sequences in the samples from certain host sites can reach
as high as 90%, such as was observed for many of the vaginal sam-
ples in this study. The resulting low yields of non-host sequences
gave insufficient coverage of bacterial reads that could be used
for assembly of all bacterial content in the samples. Another limi-
tation of assembly-based methods is that there are no effective
marker genes, other than the rRNA genes, that can be used to count
contigs for microbial profiling. Most of the assembled contigs did
not contain 16S rRNA genes. Nevertheless, sequence assembly of
some contigs from metagenomic sequencing confirmed the pres-
ence of bacterial taxa identified through PCR-based and read-
based metagenome sequencing using the 16S rRNA genes. If 16S
rRNA genes are used to count abundances, misassembled contigs
and contigs containing partial 16S rRNA genes also pose a chal-
lenge with regard to counting accuracy. We observed significant
misassembly of reads in our study, particularly among taxa having
high sequence identity, such as those found among several closely
related Lactobacillus species. Alternatively, we used metagenomic
sequencing reads directly for counting taxa to generate microbial
profiles. We found for our 23 samples that the metagenomic



Table 3
Comparison of microbial profiles obtained for swab and lavage samples from Subject 5.(a)

(a) Grey-shaded boxes indicate the more abundant Lactobacillus species. Pink-shaded boxes indicate full-length 16S rRNA gene in a single contig. Blue-shaded boxes indicate
full-length 16S rRNA gene after joining multiple contigs. Only hits with abundance>0.001% in read-based analysis are considered.

Table 4
Major Lactobacillus species identified in the metagenomic sequence assemblies in samples from Subject 5.

Sequence Name Acc. Number Species Name Query Cov. % ID

mS5_34910 * NR_036982.1 Lactobacillus iners 98% 96.88
NR_075051.1 Lactobacillus gasseri 99% 94.46
NR_041800.1 Lactobacillus crispatus 97% 94.20

mS5_34776-j NR_075051.1 Lactobacillus gasseri 100% 99.24
NR_036982.1 Lactobacillus iners 98% 94.49
NR_025087.1 Lactobacillus jensenii 99% 93.88
CP026503.1 Lactobacillus crispatus AB70 100% 92.49
NR_041800.1 Lactobacillus crispatus ATCC33820 97% 92.23

mS5_8225-j NR_025087.1 Lactobacillus jensenii 99% 99.61
NR_075051.1 Lactobacillus gasseri 100% 93.64
CP026503.1 Lactobacillus crispatus AB70 100% 93.24
NR_041800.1 Lactobacillus crispatus ATCC33820 97% 92.99

mL5_28841-j * NR_036982.1 Lactobacillus iners 98% 97.27
NR_075051.1 Lactobacillus gasseri 99% 94.71
NR_025087.1 Lactobacillus jensenii 99% 93.57

mL5_32455 NR_042436.1 Lactobacillus coleohominis 99% 99.23
NR_041796.1 Lactobacillus vaginalis ATCC49540 99% 94.97
NR_075036.1 Lactobacillus reuteri 99% 94.71
NR_104927.1 Lactobacillus fermentum 100% 93.46

mL5_49026 * NR_075051.1 Lactobacillus gasseri 100% 96.11
NR_036982.1 Lactobacillus iners 98% 94.94
NR_041800.1 Lactobacillus crispatus ATCC33820 97% 94.51

*Asterisks denote possible chimeric sequences. Full-length 16S rRNA gene sequences identified in a single contig or joined frommultiple overlapping contigs are denoted as j.
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sequence yields for 16S rRNA gene reads ranged from 0.008% to
0.14% with a median value of 0.03%. Thus, the sequencing depth
of these reads was relatively low, compared to PCR-based methods.
The metagenomic sequencing method generated non-overlapping
reads of about 250 nucleotides or shorter, which provided rela-
tively poorer resolution for assignment of taxa compared to the
PCR-based method, where the overlapping paired reads provided
merged sequences of 400 nucleotides or longer. However, the
metagenomic read-based method has fewer of the
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above-mentioned artifacts that are associated with the assembly-
based or PCR-based methods.

We compared microbial profiles generated by metagenomic
read-based methods with those generated by the PCR-based meth-
ods. We found that use of 40-cycles for generating the full-length
16S rRNA amplicons and inclusion of chimeric reads in V3V4 and
V4V5 analysis provided microbial profiles that more closely resem-
bled the corresponding metagenomic read-based profiles. By using
40 PCR cycles, as opposed to 30 cycles, and including chimeric



Fig. 5. Comparison of Morisita-Horn similarity indices for microbial profiles. (A) Shown are boxplots of Morisita-Horn similarity indices between the microbial profiles
generated using the metagenomic read-based method and each of the indicated methods for 16S amplicons after 30 cycles (red) or 40 cycles (blue): QIIME2 method; BlastBin
method considering only matched reads (Match 30, Match 40); and BlastBin method considering matched + chimeric reads (Chimera 30, Chimera 40). Data points for samples
from Subjects 3 and 10 are shown as solid circles with labels. Significance was determined by paired two-tailed t-test: **p < 0.01; ***p < 0.001; ****p < 0.0001. (B) Shown are
boxplots of Morisita-Horn similarity indices between microbial profiles for each pair of methods, QIIME2 vs BlastBin matched only, BlastBin method matched only vs
matched + chimera with 30 cycles (red) or 40 cycles (blue); and BlastBin method with 30 vs 40 cycles (purple), as indicated. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

M. Ho, D. Moon, M. Pires-Alves et al. Computational and Structural Biotechnology Journal 19 (2021) 5126–5139
reads, it was possible to detect low-abundance taxa that were pre-
sent in the metagenomic read-based profile. The 40-cycle micro-
bial profiles with chimeric reads included also displayed higher
microbial diversities.

For generating hypothesis-based models for microbiome stud-
ies with large sample sets, using PCR-based or metagenomic
sequencing approaches can yield valuable insights for further stud-
ies. However, each of these approaches have limitations that need
to be addressed. Our results have demonstrated that for some
microbiome samples the nature and composition of the microbial
community can contribute to significant chimera formation. This
could skew the data interpretation without considering the
amount of chimeric reads present. Overly optimistic expectations
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of current assembly-based metagenomic sequencing methods
need to be reassessed in light of the misassembly problem, where
reads could match to multiple hits and lead to inaccurate counting
and assignment of taxa, particularly among closely related species.
One solution might be to use longer reads, but this comes at the
expense of poor quality of reads and increased cost.

In conclusion, the potential power of using microbiome profiles
as tools for clinical diagnosis must consider sample-dependent
reliability in applying analytical methods. To avoid the biases that
may be inherent in clinical samples, it may be necessary to apply
both PCR-based and metagenomic shotgun sequencing methods
to identify key biomarkers of disease. When PCR-based methods
are used, it may be important to include counting of chimeric reads
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in the microbial profile analysis. Our approach using the chimera-
counting tool BlastBin could be incorporated into the analysis
workflow for this purpose.
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