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Abstract

Purpose

To investigate the utility of dynamic contrast-enhanced MRI (DCE-MRI) with Gadolinium
ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) for detecting liver fibro-
sis induced by carbon tetrachloride (CCl,) in rats.

Methods

This study was approved by the institutional animal care and use committee. Liver fibrosis
in rats was induced by intraperitoneal injection of 1 mL/kg 50% CCl, twice a week for 4-13
weeks. Control rats were injected with saline. Liver fibrosis was graded using the Metaviar
score: no fibrosis (FO0), mild fibrosis (F1-F2) and advanced fibrosis (F3-F4). DCE-MRI with
Gd-EOB-DTPA was performed for all rats. K"™", K, Ve and iAUC of the liver parenchyma
were measured. Relative enhancement (RE) value of the liver was calculated on T;-
weighted images at 15, 20 and 25 min after Gd-EOB-DTPA administration.

Results

Thirty-five rats were included: no fibrosis (n=13), mild fibrosis (n=11) and advanced fibrosis
(n=11). K" and iAUC values were highest in advanced fibrosis group and lowest in no fi-
brosis group (P<0.05). The area under the receiver operating characteristic curve (AUROC)
for fibrosis (stages F1 and greater) were 0.773 and 0.882 for K"@"® and iAUC, respectively.
AUROC for advanced fibrosis were 0.835 and 0.867 for K" and iAUC, respectively. Ke,
and RE values were not able to differentiate fibrosis stages (all P>0.05).
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Conclusion

K" and iAUC obtained from DCE-MRI with Gd-EOB-DTPA are useful for the detection
and staging of rat liver fibrosis induced by CCl,.

Introduction

Liver fibrosis is a common feature of almost all causes of chronic liver disease, and eventually
leads to cirrhosis [1, 2]. Among digestive diseases, cirrhosis is the most common nonneoplastic
cause of mortality and it is also a risk factor for hepatocellular carcinoma [3]. In recent years,
increasing research has suggested that liver fibrosis is reversible, especially in the early stage [2,
4, 5]. Therefore, early and accurate diagnosis and staging of liver fibrosis is critical in allowing
early treatment and in the prevention of progression to cirrhosis.

Liver biopsy is the reference standard for the diagnosis and staging of liver fibrosis. Howev-
er, it is not suitable for screening, long-term monitoring and assessing therapeutic response
due to its invasiveness, costs, and sampling variability [6]. These drawbacks have led to the de-
velopment of an increasing number of imaging-based methods for noninvasive assessment of
liver fibrosis, including ultrasound elastography [7], computed tomography with macromolec-
ular contrast material [8], as well as magnetic resonance imaging (MRI) based techniques [6,9—
11]. Among these techniques, MRI is a promising tool with several advantages, including being
non-ionizing, non-invasive, offering high spatial resolution and multiparameter
imaging capability.

The most important pathological changes of liver fibrosis are sinusoidal capillarization and
deposition of collagen, proteoglycans, and other macromolecules in the extracellular matrix [1,
2, 4]. These changes impede the rapid exchange of solutes between sinusoid and hepatocytes
and expand the extravascular extracellular space (EES) [8, 9]. Dynamic contrast-enhanced
MRI (DCE-MRI) is a MR imaging technique which can assess the microcirculation perfusion
status of tissues [12]. Using this technique, several quantitative parameters including transfer
constant (K"™"), rate constant (Kep), extravascular extracellular space volume fraction (V.),
and semi-quantitative parameters such as the initial area under the gadolinium concentration-
time curve (IAUC), can be measured [13, 14]. DCE-MRI has been used to diagnose, predict
prognosis, and monitor treatment response in a variety of tumors [15-19]. Gadolinium ethoxy-
benzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) is a hepatocyte-specific contrast
agent for MRI. After bolus injection into vein, about 50% of Gd-EOB-DTPA is taken up by
functioning hepatocytes and then excreted through the biliary system [20]. The other 50% will
return into blood vessels from EES and is eliminated by kidney [20]. Therefore, Gd-
EOB-DTPA combines the features of an extracellular contrast agent and a hepatocyte-specific
agent and can provide both morphologic information of liver and functional information of
hepatocytes at the same time [9, 20]. Hepatocyte functions are impaired in liver fibrosis due to
increased necroinflammatory changes [21]. Therefore, we undertook this study to test the hy-
pothesis that DCE-MRI with Gd-EOB-DTPA can be used to assess the presence and severity of
liver fibrosis, using a rat model of liver fibrosis induced by carbon tetrachloride.
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Materials and Methods
Animal Model

This study was approved by the institutional animal care and use committee of Jinling Hospi-
tal, Medical School of Nanjing University, Nanjing, China and was performed in accordance
with institutional guidelines. Thirty-eight adult male Wistar rats (Liaoning Changsheng Bio-
technology Company, Benxi, China) initially weighing 180-200g were housed in conventional
cages with free access to standard laboratory food and water at 20-22°C with a 12-h light-dark
cycle. Rats were treated by intraperitoneal injection of normal saline [control group (n = 13)]
or CCly [fibrosis group (n = 25)] (50% CCly/olive oil; 1 mL/kg body weight twice a week; Mon-
day and Thursday) for 4 to 13 weeks to produce different degree of liver fibrosis (Fig 1).

DCE MR Imaging

Beginning the fourth week after the start of CCl, treatment, two or three rats of each group
which selected randomly were examined in a 3 Tesla MR scanner (Magnetorn Trio; Siemens
Medical Solutions, Erlangen, Germany) using a custom-built animal coil (Siemens, 4 channel,
model No.: 10499125, Serial/lot No.:1005) at each weekend (Fig 1). Rats were fasted for 8 hours
before MR scans.

All scans were performed under general anesthesia, which was initiated in an induction
chamber using a mixture of 4% isoflurane (Keyuan Pharmaceutical Co., Jinan, China) and 96%
oxygen, and then maintained with an animal nose mask supplying a mixture of 2% isoflurane
and 98% oxygen at a flow rate of 0.8 L/min. In order to reduce respiratory movement, each
rat’s abdomen was wrapped with gauze before being positioned prone in the animal coil. The
precontrast transverse T weighted imaging (T, WI) was performed with a turbo spin echo
(TSE) sequence (repetition time (TR)/echo time (TE) = 805/13 msec, flip angle (FA) = 150°,
field of view (FOV) = 53x53 mm?, slice thickness = 2.5 mm/0.25 mm gap). The DCE-MRI data
were acquired using a free-breathing three-dimensional volumetric interpolated breath-hold
examination (3D-VIBE) sequences with the following parameters: TR/TE = 7.74/2.32 msec;

Control group
(n=13)
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MR examination

normal saline . CCl,

Fig 1. Scheme of this experimental study. Rats were treated by intraperitoneal injection of normal saline [control group (n = 13)] or CCl, [fibrosis group
(n =25)] (50% CCly/olive oil; 1 mL/kg body weight twice a week) for 4 to 13 weeks to produce different degrees of liver fibrosis. Starting from the fourth week,
two or three rats in each group were examined in a 3 Tesla MR scanner. CCl, = carbon tetrachloride.

doi:10.1371/journal.pone.0129621.g001
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FA = 12° FOV = 70x50.75 mm?>. The scanning process contains 60 continuous measurements
lasting for 10 minutes and 27 seconds and each measurement has 16 axial slices with thickness
1.5 mm, slice gap 0.3 mm [14]. At the end of the third measurement, 0.1mL Gd-EOB-DTPA
(Primovist, Bayer-Schering Pharma, Berlin, Germany) was injected through a previously in-
serted tail vein catheter (24G, BD, Suzhou, China) by hand, followed by a 1 mL saline flush
[14]. Before the DCE acquisition, images for calculating T; maps were acquired using the same
sequence and parameters except for the flip angle (2° and 15°) [14]. Delayed phase of T WI for
calculating relative enhancement (RE) were obtained 15, 20 and 25 minutes after the injection
of the contrast agent [22].

Imaging Analysis

Image analysis was performed by two radiologists in consensus (L.Z., with 10 years of experi-
ence in abdominal MR imaging, and, W.Z., with 2 years of experience). Both radiologists were
blinded to the histopathologic results.

Quantitative parameters including K", K., V.. as well as semi-quantitative parameter

ep>
iAUC of the liver parenchyma were estimated from DCE-MR images using a commercial post-
processing software based on a modified Tofts model (Tissue 4D, Siemens Medical Solutions)
installed at an image processing workstation (Syngo MMWP, Siemens Medical Solutions). The
arterial input function (AIF) was measured at abdominal aorta and the venous input function
(VIF) was measured at the main portal vein. Three circular regions of interest (ROI) were
drawn by hand in the left lateral, right lateral, and medium lateral liver lobes to measure mean
values. Care was taken to avoid large vessels, moving artifacts and any focal lesion.

The RE was calculated according to the following formula: RE = (PostSI — PreSI)/PreSI
(23). PostSI is the liver signal intensity 15, 20 or 25 minutes after venous administration of con-
trast agents, respectively. PreSI is precontrast signal intensity of the liver. The ROIs were drawn
as described above and the ROIs of each four phases were placed in identical anatomic posi-
tions for evaluations.

Blood Markers

Blood samples were obtained by cardiac puncture after MR imaging. The anesthesia was main-
tained by inhalation of 2.0% isoflurane through a face mask during the procedure. After that,
rats were euthanized with an intravenous overdose of chloral hydrate. The serum level of ala-
nine transaminase (ALT), aspartate transaminase (AST), and alkaline phosphatase (ALP) were
measured by spectrophotometry using commercially available kits (Jiancheng Institute of Bio-
technology, Nanjing, China). The assay of the levels of serum hyaluronic acid (HA), laminin
(LN), collagen type IV (IV-C) and procollagen type III (PC III) were done by radioimmunoas-
say (RTA) using commercially available kits (Beifang Biotechnology Research Institute, Beijing,
China). The operations were performed according to the user’s manual.

Histologic and Immunohistochemical Evaluation

For the assessment of the degree of liver fibrosis, livers were removed immediately after obtain-
ing blood samples and fixed in 4.2~5.2% formaldehyde neutral buffer solution. The tissues
were dehydrated, embedded in paraffin, cut in 5 pm sections and mounted on the slide. The he-
matoxylin-eosin (HE) stain and masson stain were used for histopathological examination.
Three histologic slices excised from the left lateral, right lateral, and medium lateral liver lobes
of each rat were evaluated. Histologic staging of fibrosis was done according to the METAVIR
scoring system and divided into the following five stages: FO, no fibrosis; F1, early fibrosis, por-
tal fibrosis without septa; F2, moderate fibrosis, portal fibrosis with rare septa; F3, severe
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fibrosis, numerous septa without cirrhosis; and F4, cirrhosis [24]. Liver slices were also used for
evaluation of smooth muscle actin (SMA). Sections were incubated with monoclonal mouse
anti-rat alpha-smooth muscle actin primary antibody (Boster bio-engineering Limited compa-
ny, Wuhan, China), followed by anti-mouse biotinilated secondary antibody, streptavidin-
peroxidase and finally the DAB chromogen. The sections were then stained with hematoxilin
and mounted with Entellan.

Statistical Analysis

Statistical analysis was performed by using software (SPSS, version 16.0, Chicago). Data were
expressed as mean + standard deviation or median (interquartile range) as appropriate. Data
were first tested for normality by using a one-sample Kolmogorov-Smirnov test. One-way anal-
ysis of variance (ANOVA) with post hoc test was used to evaluate the level of significance of
the difference in parameters of DCE-MRI, blood markers and RE values among fibrosis stages.
Receiver operating characteristic curves (ROCs) were performed to assess which parameter
showed the best accuracy for prediction of liver fibrosis. Areas under the ROCs (AUROC:)
were used to estimate the probability of correctly predicting the degree of liver fibrosis. Accord-
ing to the AUROC:, the optimal cutoff values were determined for liver fibrosis staging. P val-
ues less than 0.05 indicated statistical significant.

Results

Three rats in the CCl, treatment group died due to poor tolerance of CCl,. Thus, thirty-five
rats were included in the study. According to histopathological results, the distribution of fibro-
sis stage was as follows: F0, 13 rats; F1, 1 rat; F2, 10 rats; F3, 8 rats; and F4, 3 rats. The 35 rats
were then divided into three subgroups according to fibrotic stage: no fibrosis (FO, n = 13),
mild fibrosis (F1 and F2, n = 11) and advanced fibrosis (F3 and F4, n = 11). The positive area
of SMA stains correlated with the degree of liver fibrosis as stratified by the Metavire scores
(Fig 2).

Blood Markers

The serum level of ALT and AST increased with increasing degree of liver fibrosis. The ALT
values in the no fibrosis group were lower than those in the advanced fibrosis group (P<0.01),
while no differences were found between no fibrosis group and mild fibrosis group and be-
tween mild fibrosis group and advanced fibrosis group (both P>0.05). The differences in AST
for each two groups (P<0.05) were statistically significant. The serum level of ALP decreased
initially and then increased, and the differences in ALP between each two groups were not sta-
tistically significant (P>0.05). The serum level of HA, LN, IV-C and PC III did not show statis-
tical differences (P>0.05) except the level of IV-C between no fibrosis group and mild fibrosis
group (P<0.05) (Table 1). In the ROC analysis, ALT and AST performed well in the evaluation
of liver fibrosis with an AUROC of 0.850 and 0.808 for fibrosis (stages of F1 and greater), 0.841
and 0.850 for the advanced fibrosis (stages of F3 and F4).

DCE-MRI Parameters

Ktrans

and iAUC were higher with more advanced degree of liver fibrosis (Table 2 and Fig 2).
K" and iAUC were significantly different between the no fibrosis and advanced fibrosis
groups (both P<0.05) and between the mild fibrosis and advanced fibrosis groups (both
P<0.05). With increasing degree of liver fibrosis, K, increased initially and then decreased. Al-
though the K, for both mild and advanced fibrosis group were slightly higher than that of no
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Fig 2. Images of DCE-MRI, K'"S, relative enhancement-time curve, hematoxylin-eosin (HE)-stained
(Original magnification, x100), Masson trichrome-stained (Original magnification, x100.) and SMA
(Original magnification, x400.) of normal liver, mild liver fibrosis (F2), and advanced liver fibrosis (F4)
in rats. The images of DCE-MRI show the selection of ROIs of artery input function, vein input function, and
liver, and the color of ROls correspond to that of RE-time curves. DCE-MRI = dynamic contrast-enhanced
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MRI; HE = hematoxylin-eosin; K" = transfer constant; RE = relative enhancement; SMA = smooth
muscle actin.

doi:10.1371/journal.pone.0129621.g002

Table 1. The serum level of blood markers in different groups.

Blood markers No fibrosis group (F0, n = 13) Mild fibrosis group (F1-F2, n = 11) Advanced fibrosis group (F3-F4, n = 11)
ALT (U/L) 66.08+26.53 161.09+140.91 205.27465.03**

AST (U/L) 163.25+123.77 255.82+171.91* 511.73+350.99* **

ALP (UL) 182.50+45.63 137.55+69.67 194.46198.63

PCIll(pg/L) 42.92+2.39 45.07+4.49 45.28+3.66

IV-C (ng/ml) 5.37+3.87 5.56+2.24* 5.39+4.18

LN (ng/ml) 75.61+10.71 70.78+9.69 78.80+14.15

HA (ng/ml) 100.93+43.44 205.05+256.07 173.64+150.47

Note.—Data are mean + standard deviations.

*P<0.05,

** P<0.01 for comparison with rats in normal group.

#P<0.05 for comparison with rats in mild group.

ALT = alanine transaminase; AST = aspartate transaminase; ALP = alkaline phosphatase; PCIIl = procollagen type llI; IV-C = collagen type IV;
LN = laminin; HA = hyaluronic acid.

doi:10.1371/journal.pone.0129621.t1001

Table 2. Parameters of DCE-MRI in different groups.
No fibrosis group (FO, n = 13)  Mild fibrosis group (F1-F2, n = 11) Advanced fibrosis group (F3-F4, n=11) F value P value

Ktrans(min-1)  0.078+0.017 0.088+0.013 0.104£0.017*** 7.991  0.002
Kep(min-1) 0.273+0.060 0.309+0.055 0.297+0.051 1.271  0.294
Ve 0.300+0.085 0.295+0.057 0.3620.073** 2.863 0.072
iAUC 5.205+1.692 6.694+1.583 8.701+2.069% ** 11.409 0.000

Note.—Data are mean + standard deviations.

*P<0.05,

**P<0.01 for comparison with rats in normal group.

#P<0.05 for comparison with rats in mild group.

K!"a"s = transfer constant, Kep = rate constant, V., = extravascular extracellular volume fraction; iAUC = initial area under the gadolinium concentration-
time curve.

doi:10.1371/journal.pone.0129621.1002

fibrosis group, the difference was not statistically significant (P>0.05). In addition, the value of
V. decreased slightly initially and then increased, and the difference between no fibrosis and
advanced fibrosis groups and between mild fibrosis and advanced fibrosis groups were statisti-
cally significant (both P<0.05).

The results of ROC analysis are shown in Fig 3 and Table 3. K™ and iAUC performed bet-
ter in the evaluation of liver fibrosis than K, and V., with an AUROC of 0.773 and 0.882 for fi-
brosis (stages of F1 and greater), 0.835 and 0.867 for advanced fibrosis (stages of F3 and F4). V.,
had a moderate utility for diagnosing advanced fibrosis with an AUROC of 0.723.

The combination of blood markers (ALT and AST) and DCE-MRI parameters (K"*" and
iAUC) resulted in improved specificity, but loss of sensitivity for the diagnosis of liver fibrosis
(Table 4).
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Fig 3. ROC curves for DCE-MRI parameters for diagnosis in rats with (a) fibrosis (stage F1 and greater) and (b) advanced fibrosis (stage F3 and

F4).
doi:10.1371/journal.pone.0129621.9003

Table 3. Cutoff and performance values of DCE-MRI parameters for diagnosis in rats with any fibrosis and advanced fibrosis.

FO vs F1 through F4

K'rans Kep Ve iAUC K'rans
Cutoff point 0.083 0.300 0.326 7.762 0.098
AUROC 0.773 0.664 0.575 0.882 0.835
Sensitivity 0.773 0.591 0.500 0.500 0.636
Specificity 0.692 0.769 0.692 1.000 0.875
P value 0.008 0.109 0.463 0.002 0.002

FO through 2 vs F3 and F4

Kep

0.317
0.549
0.455
0.750
0.664

Ve

0.373
0.723
0.636
0.833
0.036

iAUC
7.816
0.867
0.727
0.914
0.001

K@ = transfer constant, Kep = rate constant, V, = extravascular extracellular volume fraction; iAUC = initial area under the gadolinium concentration-time

curve; AUROC = area under the receiver operating characteristic curve.

doi:10.1371/journal.pone.0129621.t003

Table 4. The results of serial combined examination for blood markers and DCE-MRI parameters.

FO vs F1 through F4

Sensitivity Specificity
K'ans  ALT 0.527 1.000
Kirans, AGT 0.598 0.929
iIAUC+ALT 0.341 1.000
iIAUC+AST 0.387 1.000

FO through F2 vs F3 and F4

Sensitivity

0.636
0.636
0.727
0.727

Specificity
0.969
0.958
0.979
0.971

ALT = alanine transaminase; AST = aspartate transaminase; K" = transfer constant, iAUC = initial area under the gadolinium concentration-time curve.

doi:10.1371/journal.pone.0129621.1004

Relative Enhancement (RE) Values

The RE values for each stage of liver fibrosis at each time point (15, 20, and 25 minutes) are
shown in Fig 4. There were no significant differences in RE between the different groups of rats

(P>0.05).
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15min
E3 20min
E 25min

group

Fig 4. Bar graph of the relative enhancement of different groups at 15, 20, 25 minutes after contrast
agent injection.

doi:10.1371/journal.pone.0129621.g004

Discussion

In this study, we found that K"*” and iAUC calculated from DCE-MRI performed well in the
detection and staging of CCl,-induced liver fibrosis in rats. V. can be used to predict advanced
fibrosis. K, and RE were not able to predict fibrosis. To our knowledge, this is the first study
evaluating the utility of K", Keps Ve, and iAUC from DCE-MRI with Gd-EOB-DTPA for the
detection and grading of liver fibrosis in a rat model.

Activation of hepatic stellate cells is a central event in fibrosis [4]. They produce most of the
collagen which deposit in extracellular matrix and leads to formation of the fibrous bands or
septa [4, 6]. At the same time, sinusoidal endothelial cells lost the normal fenestrations, trans-
form from the fenestrated hepatic sinusoids into continuous capillaries which is termed capil-
larization of the sinusoids [25]. Both fibrous bands or septa and sinusoidal capillarization may
impede the diffusion of contrast agent [9]. Therefore, it has been postulated that K"*"* will de-
crease with the progression of hepatic fibrosis. However, contrary to what has been postulated,
we found that K™ increased with fibrosis stage, and the differences in K" between no fi-
brosis group and advanced fibrosis group and between mild fibrosis group and advanced fibro-
sis group were statistically significant. There are several possible reasons for this finding. First,
Gd-EOB-DTPA is a low-molecular-weight contrast agent which is less affected by the sinusoi-
dal capillarization than other macromolecular substances, and still can pass from intravascular
space to EES quickly in the setting of fibrosis [8, 25]. Second, the speed of blood transfer from
sinusoid into EES (reflected by K"*™) is directly proportional to the pressure in the sinusoid
which is increased in fibrosis. One previous study demonstrated an increase arterial flow and
arterial fraction in fibrosis [26] which may be the reason for the increasing pressure in sinusoid
and accelerated transport. Our results suggest that our current understanding of the pathologi-
cal mechanism of liver fibrosis is still incomplete, and requires further study.

Secondary to the deposition of collagen and matrix proteins, the volume of EES expands
markedly [27]. The EES accounts for approximately 15% of the total fluid space in normal liv-
ers, but it can gradually expand to account for more than 50% of the volume in patients with
advanced disease [28]. Therefore, V., which is the volume fraction of EES per unit volume tis-
sue [13], should increase with the progression of fibrosis. In our study, V. of advanced fibrosis
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group was significantly higher than the other two groups, and, V. had a moderate diagnostic
accuracy for diagnosing the advanced fibrosis.

IAUC is a semiquantitative measure of the amount of contrast agent delivered to and re-
tained by tissue in a given time period and is considered to be a mixed parameter of both K"*"
and V., [29]. Many previous studies demonstrated that hepatic mean transit time (MTT) and
distribution volume (DV) were significantly increased in advanced fibrosis [25, 30], which
would increase the amount of contrast agent delivered to and retained by tissue in a given time
period increased. This likely explained the increased iAUC seen with fibrosis in our study.

In our study, we found that with increasing degree of liver fibrosis, the RE decreased initially
and then increased, and, RE can not differentiate different stages of fibrosis. However, previous
studies showed that RE values by Gd-EOB-DTPA could reflect hepatocyte function and had
negative correlation with liver fibrosis stage [23]. A previous study with SD (Sprague Dawley)
rats found that the peak signal intensity of liver with Gd-EOB-DTPA were at 5 minutes after
administration [31], in our study it was about 2 to 3 minutes after administration. It is possible
that sample selection bias, motion artifact, region of interest placement result in the different
findings between the two studies.

In previous studies with Gd-EOB-DTPA in clinic, the evaluation of liver fibrosis focus on
the slope, the contrast agent uptake rate (Kyp), liver-to-spleen contrast ratios (LSC) and RE
and so on [9, 32-33]. Chen BB [9] found slope and AUC were the best perfusion parameters to
predict the severity of liver fibrosis in their study. Norén B [32] found that Ky, LSC10, and
LSC20 had significant difference between each group. Verloh N [33] found that RE of liver pa-
renchyma is negatively affected by increased severity of liver cirrhosis. However, the quantita-
tive parameters of DCE-MRI were rarely reported to use for Gd-EOB-DTPA study in
liver fibrosis.

There were several limitations to our current study. First, we used a modified Tofts model
rather than a dual-input two-compartment model, which is considered a better model to inves-
tigate the hepatic blood supply. However, the modified Tofts model has been approved by the
US food and drug administration (FDA) for investigating liver perfusion state. Second, the
sample size was small in this study. The stages of fibrosis were mostly F2 and F3, F1 and F4
stages were relatively few. Third, it is not clear the exact timing of the hepatobiliary phase in
rats, which may affect the accuracy of RE measurement. Some studies indicated that enhance-
ment effect of liver parenchyma is the highest at 20 min in healthy controls, and in rat models
it is at about 5 to 30 min [22]. One study by Ma et al. selected 20 min in rat models [34]. We
choose 15 min, 20 min, and 25 min after administration to scan and calculated RE values in
this study.

In conclusion, DCE-MRI with Gd-EOB-DTPA is a promising method for the noninvasive
diagnosis and staging of liver fibrosis. Both K"™"* and iAUC correlate with the stage of liver fi-
brosis induced by carbon tetrachloride in rats. Future studies using this technique to assess
liver fibrosis in patients are warranted.
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