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Multiscale image analysis reveals 
structural heterogeneity of the cell 
microenvironment in homotypic 
spheroids
Alexander Schmitz*, Sabine C. Fischer*, Christian Mattheyer, Francesco Pampaloni & 
Ernst H. K. Stelzer

Three-dimensional multicellular aggregates such as spheroids provide reliable in vitro substitutes for 
tissues. Quantitative characterization of spheroids at the cellular level is fundamental. We present 
the first pipeline that provides three-dimensional, high-quality images of intact spheroids at cellular 
resolution and a comprehensive image analysis that completes traditional image segmentation by 
algorithms from other fields. The pipeline combines light sheet-based fluorescence microscopy of 
optically cleared spheroids with automated nuclei segmentation (F score: 0.88) and concepts from 
graph analysis and computational topology. Incorporating cell graphs and alpha shapes provided 
more than 30 features of individual nuclei, the cellular neighborhood and the spheroid morphology. 
The application of our pipeline to a set of breast carcinoma spheroids revealed two concentric layers 
of different cell density for more than 30,000 cells. The thickness of the outer cell layer depends on 
a spheroid’s size and varies between 50% and 75% of its radius. In differently-sized spheroids, we 
detected patches of different cell densities ranging from 5 × 105 to 1 × 106 cells/mm3. Since cell density 
affects cell behavior in tissues, structural heterogeneities need to be incorporated into existing models. 
Our image analysis pipeline provides a multiscale approach to obtain the relevant data for a system-
level understanding of tissue architecture.

Three-dimensional in vitro cell cultures more closely resemble the cellular microenvironment of cells in tissues 
than two-dimensional monolayer cultures1. Compared to real tissues, they excel with well-defined experimental 
conditions. Even simple model systems such as monotypic spheroids2 or organoids3 that show a moderate com-
plexity, provide an adequate and reproducible characterization. Spheroids are three-dimensional multicellular 
clusters that form through cell aggregation and cell proliferation. With diameters of more than 400–500 μ m, 
they develop a concentric cell layering, in which a necrotic core is surrounded by a layer of quiescent cells and an 
outer rim of proliferating cells4. Many spheroids display properties characteristic of their ancestral tissue such as 
beating cardiomyocyte spheroids5 or aggregates of mouse embryonic stem cells that exhibit axis elongation6. Due 
to their high potential, the applications of spheroids range from fundamental questions underlying cell differen-
tiation and cancer biology to drug discovery and drug response studies7.

All these applications depend on the properties of individual cells in a spheroid and all means to retrieve the 
properties rely on spheroid disintegration or the use of rather small spheroids of less than 200 μ m in diameter, 
which lack the prominent concentric layering and central necrosis. However, morphometric measurements in 
intact, differently-sized spheroids are needed8. Based on histological sections of spheroids, Jagiella et al. demon-
strated the high potential of retrieving insight into spheroid growth from image-based modelling9. Automated 
image analysis pipelines are required to extend such an analysis to multiple cell lines. Mathematical models 
of spheroids have shown that changes in the state of each individual cell10 must be monitored when studying 
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spheroids. This requires the quantification of the three-dimensional cell environment11, since cell properties are 
affected by cell density12, contact inhibition or mechanical pressure9,13–15.

Phase contrast imaging provides a global but two-dimensional picture of spheroids16. Histological sectioning 
of spheroids allows the quantification of individual cells in a single two-dimensional plane9. Confocal and light 
sheet-based fluorescence microscopy (LSFM) allow the imaging of intact three-dimensional spheroids at the level 
of individual cells17,18. For large spheroids, optical clearing methods increase object transparency by achieving 
refractive uniformity and increase the penetration depth19. The combination of optical clearing and LSFM has 
been used to analyze drug induced cell death in tumor spheroid core regions20. Three-dimensional microscopy 
provides image stacks of fluorescently labelled cell nuclei valuable for the quantitative characterization of the 
three-dimensional environment in spheroids21. Furthermore, nuclei properties correlate with cell proliferation 
activity22 and have shown diagnostic value in oncology23.

A large pool of powerful cell nuclei segmentation methods exists, including iterative thresholding24, level 
sets25, graph cut26, gradient flow tracking27, lines-of-sight28 or watershed methods29. Identifying the approach that 
is appropriate for a wide variety of datasets, fast and robust with respect to high cell density, as well as variations 
in cell nuclei volume, shape and dye distribution, has become a major challenge in image analysis. A system-level 
quantification requires the integration of image segmentation with powerful concepts from other fields such as 
graph theory, computational topology and spatial statistics. For example, the two-dimensional spatial cell net-
work in breast tissue30, malignant glioma31 or Hodgkin’s lymphoma32 has been characterized by cell graphs. For 
the implementation of complex image analysis pipelines, software environments such as Mathematica (Wolfram 
Research Inc.) or Matlab (MathWorks Inc.) offer comprehensive platforms that integrate well-established image 
analysis algorithms with a variety of techniques from other computational fields such as graph theory, statistics 
and computational topology. These platforms can be further extended by integrating packages such as the Insight 
Segmentation and Registration Toolkit (ITK)33, the Visualization Toolkit (VTK)34, Fiji35 and R36.

We developed a robust, multiscale approach for the characterization of large spheroids. Our approach includes 
three-dimensional cell culture, optical clearing, LSFM imaging and system-level image analysis. Algorithms 
from graph theory and computational topology complete the segmentation of cell nuclei. The integration of the 
Laplacian of Gaussian filter into a marker-controlled watershed algorithm provides a robust and accurate cell 
nuclei segmentation with an F score of 0.88. As a reference, our previous detailed analysis of available tools 
yielded F scores of at most 0.828. We extended cell graphs to analyze the three-dimensional spatial cell network 
and introduced the alpha shape as a geometrical model of spheroids. The image analysis pipeline was imple-
mented in Mathematica and a user interface is provided.

We applied our image analysis pipeline to characterize size-dependent differences in the internal morphol-
ogy of spheroids generated from breast cancer cells. Our results revealed the heterogeneity of three-dimensional 
superstructures that could not have been investigated so far. We detected the concentric cell layering for total cell 
numbers above 30,000 cells. The relative thickness of the outer region decreases from 75% to 50% of the spheroid 
radius with increasing cell number. The cell density in spheroids varies between 5 ×  105 and 1 ×  106 cells/mm3. 
Our image analysis pipeline provides the first quantitative representation of the three-dimensional cell environ-
ment in intact, differently-sized spheroids.

Results
The combination of optical clearing and LSFM provides insight into the structure of large  
multicellular spheroids. We applied the complete pipeline to a set of sixteen T47D spheroids that were 
seeded from 500 to 10,000 cells, developed for two weeks, optically cleared and, finally, imaged in toto with 
LSFM37. This resulted in one image stack per dataset with a homogenous signal to noise ratio throughout the 
entire specimen (Fig. 1). Spheroid diameters range from 150 μ m to more than 500 μ m.

Robust and accurate segmentation of cell nuclei in large, densely packed multicellular spheroids.  
An accurate cell nuclei segmentation is essential to characterize spheroids quantitatively. However, imaging large 
samples in toto limits the achievable lateral and axial resolution. Furthermore, the high variability of cell nuclei 
volume and staining in spheroids impedes accurate cell nuclei segmentation. In combination with high cell den-
sity, this results in apparently touching cell nuclei in the images that are difficult to separate (Fig. 1, magnifi-
cation). Our image analysis pipeline identifies cell nuclei accurately and extracts the features required for the 
characterization of spheroids (Fig. 2).

We use local adaptive thresholding as an initial segmentation of candidate regions. An adaptable 
three-dimensional, multiscale Laplacian of Gaussian (LoG) filter detects marker points reliably and reproducibly 
(Supplementary Figure 1). The maximal magnitude of the LoG response is achieved when the scale of the LoG 
matches the size of the cell nucleus. By incorporating multiple scales, the marker point detection algorithm is 
more robust towards variations in cell nuclei volume. We measured minimal and maximal radii rmin and rmax of 
cell nuclei in the datasets (three and six voxels, respectively) to determine the scales σmin and σmax of the LoG filter 
(see Methods section). The resulting marker points are used for a marker-controlled three-dimensional watershed 
segmentation of the cell nuclei (Supplementary Figure 2). The number of marker points determines the number 
of objects that are extracted by the watershed algorithm. The processing time for cell nuclei segmentation was less 
than one hour per dataset.

The segmentation performance was evaluated for three different regions I, II and III (Fig. 3a). The regions 
were chosen to represent the variability in cell nuclei morphology and cellular density (Fig. 3b, second column). 
In region I, the cell density is high, cell nuclei are morphologically very diverse and apparently touch each other. 
Region II contains patches of high and low cell density and exhibits a high morphological diversity. Region III 
contains predominantly small and spherical cell nuclei at a low density. We first evaluated the steps of the segmen-
tation for the three regions qualitatively. The initial segmentation separated image regions that contain cell nuclei 
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from the background. However, this step was not capable of separating clusters of apparently touching cell nuclei 
(Fig. 3b, third column, yellow arrows).

The marker point detection accurately identified the locations of cell nuclei and is robust in terms of size, 
shape and intensity variations (Fig. 3b, fourth column). Apparently touching cell nuclei were separated using the 
marker-controlled watershed algorithm, which was initialized at marker points identified in the marker point 
detection step. Borders between apparently touching cell nuclei were reconstructed and resulting cell nuclei 
shapes are now adequately represented (Fig. 3b, fifth column). In summary, cell nuclei in all three tested regions 
were accurately identified in the final segmentation. To confirm our findings of the visual inspection, we con-
ducted a quantitative performance evaluation of the cell nuclei segmentation (Supplementary Table 1). We gen-
erated ground truth datasets (GT) for the three regions (shown in Fig. 3b) by visually extracting the locations of 
all cell nuclei from dataset L3 (Supplementary Table 4) with a custom program. To assess the segmentation per-
formance, the number of correctly detected (true positives), falsely detected (false positives) and undetected cell 
nuclei (false negatives) were determined by matching the centroids in the GT with those resulting from the seg-
mentation. We then derived the metrics recall, precision and F score. Out of 252 cell nuclei in the GT in region III, 
216 cell nuclei were correctly identified, 36 were not detected and 9 were falsely detected (recall: 0.86, precision: 
0.96, F score: 0.91). For region II, 230 out of 269 were correctly identified, 39 were not detected and 32 were falsely 
detected (recall: 0.86, precision: 0.88, F score: 0.87). In region I, the segmentation performance was 198 true 
positives out of 233 cell nuclei, 35 false negatives and 24 false positives (recall: 0.85, precision: 0.89, F score: 0.87). 
Overall, the number of cell nuclei detected by the segmentation is similar to that in the GT in all three regions. In 
total 110 false negatives and 65 false positives were obtained in all regions, indicating high precision and a low rate 
of under-segmentation (average recall: 0.86, average precision: 0.91, average F score: 0.88). The increased number 
of false positive detections in regions II and III indicates that cell nuclei segmentation in these regions is rather 
difficult. In region III, where cell nuclei have a similar shape and are less densely packed, the performance was 
slightly better. The obtained F scores indicate high efficiency and robustness of the proposed cell nuclei segmen-
tation. Our previous, detailed performance evaluation of established nuclei segmentation approaches for T47D 
spheroids28 yielded F scores less or equal to 0.8.

The range parameters for the initial segmentation and marker point detection are the main parame-
ters that need to be adjusted for cell nuclei segmentation. The average diameter of the cell nuclei provides a 
good starting value for these parameters. A user interface allows easy fine-tuning of the parameter values 
(Supplementary Figures 3–5). For the underlying datasets, the same set of empirically determined parameter 
values was used (Supplementary Table 2, Supplementary Figure 5). However, we observed a robustness of the 
segmentation results with respect to changes in the parameter values.

Quantitative features characterizing spheroids. We distinguish low level features of the cell nuclei that 
are directly obtained from the segmentation and higher order features of the cell neighborhood and the whole 
spheroid. The output of our image analysis pipeline is a comprehensive set of features (Supplementary Table 3). 

Figure 1. Image quality of three-dimensional datasets. Three-dimensional volume rendering (first column), 
single planes along X-Y (second column), single planes along Z-Y (third column) and magnification (fourth 
column) of two spheroids of 500 (upper row, dataset S9) and 10,000 (lower row, dataset L3) seeded cells. For a 
complete list of datasets see Supplementary Table 4. Renderings in the first column were clipped at about the 
center of the spheroids and single planes were taken at the same position. Yellow boxes indicate the parts of the 
images magnified in the fourth column. Microscope: mDSLM. Excitation lens: CZ 5x/NA 0.16. Emission lens: 
CZ 20x/NA 0.50. Scale bars: 50 μ m for the single planes in the second and third column, 10 μ m for magnified 
images in the fourth column.
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Figure 2. Illustration of the main steps of the automated image analysis pipeline. (a) The raw data comprises 
a stack of two-dimensional optical section images, which in this case consists of 218 planes. (b) The image stack 
is interpolated to obtain isotropic voxels and scaled down by a factor of 0.5. (c) Marker positions (indicated as 
white crosses) are identified by multiscale Laplacian of Gaussian (LoG) filtering of the raw image. (d) Regions 
that contain cell nuclei are separated from the image background by local thresholding of the raw image. (e) 
Identified marker points, the preprocessed raw image and the initial segmentation are subjected to a three-
dimensional marker-controlled watershed algorithm, which separates clusters of apparently touching cell 
nuclei. Different colors indicate individual cell nuclei. (f) An alpha shape is constructed from the cell nuclei 
centroids and the boundary region is extracted as the surface (light blue). (g) Cell graphs are generated from 
vertices, which correspond to the cell nuclei (white spheres), and edges, which indicate the neighborhood 
relation between two cell nuclei (white lines). (h) Features of each individual cell nucleus, the cell neighborhood 
and the spheroid are extracted and stored in a tabular format.



www.nature.com/scientificreports/

5Scientific RepoRts | 7:43693 | DOI: 10.1038/srep43693

The alpha shape was computed for the cell nuclei centroids and the boundary region was extracted as the sphe-
roid surface (Fig. 4a). A value of 90 voxels for alpha led to a smooth approximation of the surface (Supplementary  
Figures 6 and 7). From the alpha shape and the extracted surface, we determined the volume, surface area, cen-
troid and the minimal distance of the centroid to the surface.

We observed a strong positive correlation between the number of seeded cells and the spheroid volume 
(Pearson’s correlation coefficient: 0.95). In addition, the spheroid volume was found to be proportional to the 

Figure 3. Quality of cell nuclei segmentation in different regions of a large T47D spheroid. (a) Three-
dimensional rendering of cell nuclei clipped at about the center of an exemplary spheroid (dataset L3, see 
Supplementary Table 4) that comprises 38,783 cells. Colored boxes indicate three regions that exhibit visually 
distinguishable properties. Red box: Cell nuclei in region I appear tightly packed. Green box: cell nuclei in 
region II exhibit diverse morphologies and the intercellular distances differ. Blue box: cell nuclei in region III 
of the spheroid are small, spherical and appear well separated. (b) Exemplary cell nuclei segmentation results 
for the three regions I, II and III. First column: sub-regions of 100 ×  100 ×  100 voxels were copied out of the 
pre-processed raw image. Second column: plane 58 of each sub-region in X-Y view. Third column: the result 
of the initial segmentation for plane 58. The initial segmentation accurately identifies the foreground in the 
image. Locations marked with yellow arrows show cell nuclei clusters that are not yet separated. Fourth column: 
marker points detected by the multiscale LoG filter are overlaid as yellow crosses. Note that for illustration 
purposes, the marker detection was performed in two dimensions. Fifth column: overlay of the final cell 
nuclei segmentation of plane 58 after three-dimensional marker-controlled watershed. This step effectively 
separates apparently touching cell nuclei (yellow arrows). Sixth column: the final segmentation result after 
three-dimensional marker-controlled watershed of the subregions shown in the first column. Different colors 
represent individual cell nuclei. Scale bar: 10 μ m.

Figure 4. Clustering of datasets results in three groups. (a) Plot of spheroid volume versus number of cells 
detected in the spheroid for all datasets. The measurements are well fitted by a linear model with slope 1,118 μ m3/cell, 
Automated clustering of the datasets according to cell number and spheroid volume, returned three groups: small 
(nine datasets, green ellipse), medium (three datasets, black ellipse) and large spheroids (four datasets, light blue 
ellipse). (b) Smoothed histogram of the cell nuclei volume distribution of small, medium and large spheroids.
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final number of cells and we obtained an increase in volume of 1,127 μ m3 per cell (Fig. 4a). This indicates a 
robust linear relation that exists despite the differences in the internal structure of small, medium and large 
spheroids. Based on automated cluster analysis (partitioning around medoids with squared Euclidean distance) 
of spheroid volume and cell number, we separated the datasets into three groups of small (n =  9), medium-sized 
(n =  3) and large (n =  4) spheroids. We determined the mean and standard deviation of the cell numbers (small: 
4,977 ±  2,766, medium: 25,582 ±  454, large: 34,742 ±  2,941) and the mean and standard deviation of the spheroid 
volume (small: 6.0 ×  106 ±  3.1 ×  106 μ m3, medium: 2.7 ×  107 ±  0.04 ×  107 μ m3, large: 4.0 ×  107 ±  0.2 ×  107 μ m3,  
Supplementary Table 4).

The volumes of the identified cell nuclei were not normally distributed (Fig. 4b). All three distributions exhibit 
a peak around 250 μ m3 and an additional shoulder at around 450 μ m3. Focusing on cell nuclei with volumes 
between 300 and 600 μ m3, we did not observe a pattern in their spatial localization (Supplementary Figure 8). 
All distributions were asymmetric with positive skewness (small: 1.77, medium: 1.71, large: 1.71) and high kur-
tosis values (small: 8.48, medium: 7.63, large: 7.70). We obtained the median and the median absolute deviation 
(MAD) values for each spheroid group and found that the median cell nucleus volume in medium and large 
spheroids was slightly lower compared to small spheroids (small: 267 ±  68 μ m3, medium: 234 ±  51 μ m3, large: 
225 ±  61 μ m3). This information does not provide enough detail to analyze differences between the spheroid 
groups.

Thus, we computed the distance of each cell nucleus to the surface of the spheroid to determine its relative 
position in the spheroid. For a comparison between different datasets, the location is defined as the normalized 
shortest distance to the surface (NDS) such that cell nuclei with an NDS of 0 are at the surface and those with an 
NDS of 1 are in the center of a spheroid. We extended cell graphs to three spatial dimensions and computed two 
graph representations that capture the spatial arrangement of cells within spheroids. In these graphs, vertices 
represent the cell nuclei and pairs of vertices are connected by edges representing a pairwise neighborhood rela-
tionship. We distinguish between the proximity cell graph (PCG), in which edges are solely created according to 
the Euclidean distance and the Delaunay cell graph (DCG), in which edges are furthermore only possible between 
vertices that are connected by a line in the corresponding Delaunay triangulation. For both graphs, we used a 
distance threshold of 40 voxels for generating the edges. We employed these two graphs to analyze the internal 
morphology of spheroids. We determined the number of neighbors (i.e., the vertex degree) and the distance to 
neighbors (i.e., the weights of all incident edges) for each vertex in the graphs as cell density measures. The num-
ber of neighbors in the PCG can be interpreted as a measure of local cell density because all cells within a certain 
distance share the neighborhood relationship. We refer to the number of neighbors for a vertex in the PCG as the 
local cell density in cells/unit volume (cells/u.v.), where a unit volume corresponds to 65450 μ m3.

Local cell density features reveal structural heterogeneity at multiple scales in spheroids. We 
inspected all features of the cell nuclei as a function of depth in the spheroid to check for variations along the 
radial direction. Low level cell nuclei features directly extracted from the segmentation did not show any var-
iation along the radial direction of the spheroids. However, higher order features derived from the cell graphs 
that characterize local cell density varied along the radial direction in medium and large spheroids (Fig. 5a, 
Supplementary Figure 9). A prerequisite for any statistical analysis of cell aggregates is that measured features 
show a significant deviation from randomness32,38. To assess the randomness of cellular arrangement, we placed 
cells randomly into the alpha shape of each dataset, computed the cell density features and compared them with 
those found for the real datasets. Thus, we plotted the mean cell density as a function of depth and compared it 
to the random cell position (RCP) model38 (Fig. 5b). We found that the curves for medium and large spheroids 
strongly deviate from the RCP model, whereas in small spheroids a similar curve is obtained. Thus, the spatial 
distribution of cells in medium and large spheroids deviates from randomness, whereas the spatial distribution 
in small spheroids could be generated by randomly positioning the cells. Consequently, we further analyzed the 
features capturing local cell density in medium and large spheroids. Cells at the surface have only few neighboring 
cells (mean cell density ≈  45 cells/u.v.). At 0.5 NDS, the cell density decreases from 65–40 cells/u.v. in large sphe-
roids, whereas a similar decrease from 60–45 cells/u.v. is observed at 0.75 NDS in medium spheroids (Fig. 5a).

To compare our results to the known concentric cell layering in larger spheroids4, we manually subdivided 
medium and large spheroids into three distinct regions surface, outer and core. For the separation of surface and 
outer region we take the transition point between the initial rise and the approximately constant region, resulting 
in a threshold of 0.1 NDS for medium and large spheroids. For the separation of outer and core region we take 
the transition point between the approximately constant region and the decreasing part resulting in 0.75 NDS 
for medium and 0.5 NDS for large spheroids. For the mean cell density, differences were detected for outer and 
core regions in both spheroid groups (Fig. 5c). In medium spheroids, the mean cell density between outer and 
core region differs by 9.4% (outer: 61 cells/u.v., core: 56 cells/u.v.), whereas in large spheroids, the difference is 
17.7% (outer: 65 cells/u.v., core: 53 cells/u.v.). To cross-check these findings, we colored the segmented cell nuclei 
according to the cell density (Supplementary Figure 10). Consistent with the quantification, low cell density was 
observed in the central and surface regions of the spheroids, while the cell density is higher for cells between 
these two regions (Fig. 5d). Within the identified regions, the cell density was not homogeneous and we observed 
patches of high cell density. This result also extends to small spheroids (Supplementary Figure 10). To evaluate the 
contribution of cell divisions to cell density, we manually identified occurring cell divisions in three representative 
datasets (S9, M2 and L3). We found between one (S9) and five (L3) cells that were at the end of the mitotic phase. 
For medium and large spheroids, we could not identify any correlation between the measured cell density and 
the nuclei volume (average Pearson’s correlation coefficient − 0.23) or shape (average Pearson’s correlation coeffi-
cient − 0.11). Similar to the results obtained from the PCG, the mean distance to neighbors determined from the 
DCG was constant up to 0.75 NDS in medium spheroids and increased to 15.5 μ m in the core. In large spheroids, 
a similar increase was already observed at 0.5 NDS (Fig. 5e). Based on the quantitative measures, we determined 
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the average radius of the spheroids, the average thickness of the outer region and the volume of the outer region 
(Fig. 5f, Supplementary Figure 11). On average, medium spheroids have a radius of 191.3 μ m and large spheroids 
have a radius of 213.7 μ m. As indicated by the previous results, the thickness of the outer region in medium sphe-
roids is larger than in large spheroids (143.5 μ m in medium, compared to 106.8 μ m in large spheroids) and the 
volume of the outer region in medium spheroids is smaller than in large spheroids (0.028 mm3 in medium and 
0.033 mm3 in large spheroids, Supplementary Figure 11). We again cross-checked by highlighting the detected 
border between outer and core region in the raw data (Fig. 5g). We found that the quantitatively identified loca-
tion of the border fits with the visually observable boundary.

Discussion
Three-dimensional cell aggregates continue to become more and more important model systems in basic cell as 
well as in translational biology. Common experiments in three-dimensional cell biology rely on chemical39 or 
mechanical40 perturbations of spheroids. Examples include measuring the influence of mechanical confinement 
on the internal morphology of spheroids or the influence of chemical compounds on cell differentiation, prolifer-
ation and viability. These approaches are completed by our method, which enables the quantitative characteriza-
tion of perturbation effects on spheroids.

Despite recent advances in three-dimensional cell cultures and fluorescence microscopy, any quantitative 
analysis of spheroids remains complex. We developed a pipeline including three-dimensional cell culture, optical 
clearing, LSFM imaging and three-dimensional image analysis. Apart from a detailed characterization of sphe-
roids, our image analysis also results in a reduction of large images to simple lists. The number of extracted nuclei 
features goes well beyond those available in most existing programs21,41–44. The output comprises measurements 
obtained from the segmentation extended by features obtained from graph and topological analysis.

The combination of optical clearing and LSFM resulted in full penetration depth, homogeneous intensity dis-
tribution and good axial resolution. We obtained the first comprehensive dataset of high quality images for subse-
quent quantitative characterization of spheroids at the single cell level. Our image analysis pipeline completes cell 
nuclei segmentation by powerful methods from graph theory and computational topology.

The cell nuclei segmentation is objective, robust and exceeds the performance of well-established programs 
such as FarSight and CellProfiler. It is insensitive towards intensity variations and capable of separating apparently 
touching cell nuclei in regions of different cellular density. The initial local segmentation is less sensitive towards 
heterogeneous intensity distributions than global thresholding43–45. The multiscale LoG approach is capable of 

Figure 5. Medium and large spheroids show differences in internal structure. Plot of mean cell density 
versus the normalized distance to the surface for small, medium and large spheroids (a) and the corresponding 
random cell position (RCP) models (b). The RCP models represent an exact analogue of each spheroid with the 
only difference that cell nuclei are randomly positioned (details are in the Materials and Methods section). The 
shaded regions indicate the standard error of the mean (SE). Note that in some cases, due to the small error, the 
shaded region is not visible. Based on the normalized distance to the surface, cell nuclei in the range [0.1, 0.75] 
for medium spheroids, and [0.1, 0.5] for large spheroids are assigned to the outer region, whereas cell nuclei 
in the range [0.75, 0.1] for medium and [0.5, 0.1] for large spheroids are assigned to the core region. (c) Mean 
cell density in the outer and core region for medium and large spheroids. (d) Three-dimensional rendering of 
segmented cell nuclei colored according to their corresponding cell density for a medium (dataset M3) and a 
large spheroid (dataset L2), ranging from blue (35 cells/u.v.) to red (70 cells/u.v.). For a complete list of datasets 
see Supplementary Table 4. Renderings were clipped at the center of the spheroids. (e) Plot of the mean distance 
to neighbors versus the normalized distance to the surface. The shaded regions indicate the standard error 
of the mean (SE). Note that in some cases, due to the small error, the shaded region is not visible. (f) Radius 
of medium and large spheroids and thickness of the outer region. (g) Raw single planes at the center of the 
spheroids shown in d with orange dashed lines indicating the boundaries of the outer region. Scale bar: 50 μ m.
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reliably detecting marker points for irregular nuclear shapes, varying intensity distributions and in regions of high 
cell density42,43,45. In conjunction with results from recent studies43,45, we conclude that the identified combination 
of methods is a promising candidate for a universally applicable cell nuclei segmentation approach.

We demonstrated that alpha shapes provide a good geometrical model of arbitrarily shaped cell aggregates, 
based on the positions of cells and a suitable parameter value for alpha. Compared to the commonly used spheri-
cal harmonics approach46,47, the alpha shape excels in applicability (own unpublished results). The computational 
effort is low and they provide an accurate geometrical model of solid three-dimensional objects of arbitrary shape.

Graph based approaches give a formal and well-researched description of complex, multi-dimensional net-
works. Cell graphs inherently contain the information to compute global and local features that define the cell 
aggregate topology and relationships between individual cells32. To investigate the local cell structures in the 
spheroid, we extended cell graphs to three-dimensional spatial networks and implemented two cell graphs: a 
purely distance-based variant (proximity cell graph, PCG) and a variant that is based on Delaunay triangulation 
(Delaunay cell graph, DCG). By incorporating the alpha shape surface, these graphs capture structural patterns 
as a function of depth in spheroids. PCG and DCG model different modes of cell neighborhood. The PCG pro-
vides a measure of local cell density and connects all cells that interact across long ranges. Neighborhood in the 
DCG is an approximation of which cells are in direct contact with each other. For the PCG, the number of edges 
and hence the computation time increases with the distance threshold. The DCG is less sensitive to the chosen 
distance threshold, since the number of edges is restricted by the Delaunay triangulation. Since the Delaunay tri-
angulation is the dual form of the Voronoi tessellation, an approximation of cellular shape can be readily obtained 
from the DCG44,48. In this study, both cell graphs identified the same structural patterns in spheroids. In the 
future, features extracted from the segmentation can be incorporated into the cell graphs to derive higher order 
information of the underlying system, in particular, spatial correlation of cell morphology, cell type or expression 
profiles.

We applied the complete pipeline to sixteen differently-sized T47D spheroids using identical parameter values 
for the image analysis. Our pipeline provides quantitative data on cell location for advanced statistical analyses37 
and cell nuclei volume, cell number and the spheroid diameter for validation and refinement of mathematical 
models for spheroid growth dynamics13. Our approach differs from the classical approaches for studying sphe-
roid growth dynamics. We generated spheroids from fixed numbers of seeded cells and grew them for the same 
period. This provides the basis for a comparison of the properties of differently-sized spheroids. We found a 
linear relationship between spheroid volume and cell number despite the differences in cell density distribution 
between small, medium and large spheroids. Hence, for a clear distinction between spheroids of different inter-
nal morphology it is insufficient to analyze such global spheroid properties. By extending the classical measures 
with results from cell graphs and alpha shapes, we obtained an objective method to detect local structural prop-
erties and the boundary between the outer and core region in spheroids. An extensive core region in the breast 
carcinoma spheroids arises for a total cell number of at least 30,000 cells. Furthermore, we revealed a structural 
inhomogeneity that goes well beyond the expected concentric layering. The diameter of the core region is not 
proportional to the diameter of the whole spheroid. In larger spheroids, the outer region is relatively thinner (50% 
of the spheroid radius) but has a larger volume than in medium-sized spheroids (75% of the spheroid radius). The 
thickness of the outer region depends on nutrient and oxygen uptake2 that vary with spheroid size49.

Within the spheroids of all sizes, the cell density varies between 35 and 70 cells/u.v. and patches of higher 
and lower cell density occur in the outer region. We could not identify any correlation between the cell density 
differences and cellular growth properties such as cell nuclei volume and the occurrence of cell divisions. The 
low number of cell divisions matches a cell cycle duration of 72 hours for T47D cells as measured in our labo-
ratory (unpublished). We expect the observed heterogeneity in the cell density to have an impact on individual 
cells. Studies based on two-dimensional cell cultures have revealed that cell density affects cellular behavior and 
function50 including cell differentiation51 and the response to compounds52. These findings also extend to real 
tissues53. Hence, the heterogeneity of three-dimensional cell cultures has to be integrated into existing models.

Our approach can be readily applied to analyze spheroid growth dynamics. For example, spheroids could be 
grown from the same number of seeded cells for different periods to study the development of the internal sphe-
roid morphology as a function of time. This approach could be extended to analyze growth dynamics that exceed 
the culturing period by incorporating the growth curves for different numbers of seeded cells into one curve. For 
our data, this approach indicates an exponential growth for the first 28 days, followed by a linear growth (results 
not shown) in agreement with previous work13. Furthermore, these approaches could be extended by antibody 
staining optimized for spheroids54 to link the internal spheroid morphology to cellular properties (e.g. apoptotic, 
necrotic, proliferative). In particular, previous results have indicated a positive correlation between cell nucleus 
volume and cell proliferation22. We found a uniform distribution of large cell nuclei within spheroids of all sizes 
(Supplementary Figure 8) that interestingly deviates from the distribution of proliferating cells in recent images 
of histological sections stained with a proliferation marker9. More detailed investigations could shed light on 
whether this is a cell type specific phenomenon.

Our approach is not restricted to spheroids. Provided high-quality images with homogeneously stained nuclei 
of approximately convex shape, our image analysis can be applied to characterize any three-dimensional multi-
cellular system at multiple scales, ranging from the single cell level to the cell microenvironment and the whole 
system (Supplementary Figure 12). The complete pipeline can be extended to specimens of several mm in diam-
eter that would comprise at least several 100,000 cells. We conclude that studies in three-dimensional cell biology 
need to incorporate quantitative measurements at the level of the single cell, the cell neighborhood and the whole 
system to draw physiologically relevant conclusions (Fig. 6). A multiscale characterization can only be obtained 
by integrating powerful algorithms from other computational fields into traditional image analysis approaches.
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Methods
Spheroid preparation and imaging. Spheroid preparation. Spheroids were formed by liquid overlay 
from non-invasive T47D breast cancer cells. Cell suspensions containing seed numbers of 500, 1,000, 2,000, 5,000 
or 10,000 T47D breast carcinoma cells were placed in U-well plates coated with a non-adhesive surface (Thermo 
Scientific, Nunc HydroCell 96 Well, 174908) that facilitates spheroid formation. The cells were cultured for twelve 
days in order to obtain mature spheroids. Subsequently, spheroids were chemically fixed, washed, stained for cell 
nuclei with the fluorescent dye Draq5 and optically cleared with BABB19 to minimize light scattering.

Image acquisition. Image stacks of optical sections of entire T47D spheroids were acquired with a monolithic 
Digital Scanned Laser Light Sheet-based Fluorescence Microscope (mDSLM) as described previously55. We 
define the illumination axis as X, the detection axis as Z and the axis orthogonal to X and Z as Y. The excitation 
light source is a 638 nm laser operated at 1.6 mW and focused with a Carl Zeiss Epiplan-Neofluar 2.5x/NA 0.06 
objective lens. A Carl Zeiss N-Achroplan 20x/NA 0.5 objective lens, a 680/60 bandpass filter, a regular tube lens 
and a high-resolution Andor Neo 5.5 sCMOS camera with a pixel pitch of 6.5 μ m are used in the emission path. 
Image stacks were acquired with an axial pitch of 1.29 μ m. The cropped regions of interest result in raw image 
stack sizes ranging from 230 Megabytes to 2 Gigabytes.

Cell nuclei segmentation. Pre-processing. Isotropic voxels are obtained by rescaling the Z dimension and 
interpolating missing planes (ImageZScalingFactor). This results in isotropic voxels with a pitch of 0.325 μ m. For 
computational efficiency, the resulting three-dimensional image is resized by a factor of 0.5 (ImageScalingFactor). 
In the resized image, the voxels are isotropic with a pitch of 0.65 μ m. In the following, the raw three-dimensional 
image is termed fr(x, y, z).

Initial cell nuclei segmentation. Noise in fr(x, y, z) is reduced by the convolution with a three-dimensional 
Gaussian kernel of range 3 ×  3 ×  3 (NucleiFilterRange). The average background intensity tglobal of the convolved 
image is determined by Otsu’s global thresholding algorithm56. In the initial cell nuclei segmentation step, local 
thresholding is applied per sectional plane along the dimensions X, Y and Z and the resulting binary images are 
multiplied to obtain the initial segmentation. For each pixel the local threshold tlocal is determined by

γ= +t m t , (1)local local global

where mlocal corresponds to the mean intensity measured in a range of 25 ×  25 pixels (NucleiThresholdRange) 
and tglobal is the determined background intensity. The factor γ  is a parameter of the cell nuclei segmentation that 
controls the impact of the determined background intensity (NucleiBackgroundFactor). For all datasets, γ  was set 
to 0.25. Each pixel with an intensity greater than tlocal is set to 1, all others are set to 0. Holes, i.e. regions that are 
falsely detected as background because of minor segmentation errors, are removed. Therefore, the initial segmen-
tation is inverted to obtain the complement image. Holes are identified as small foreground regions and those 
smaller than a predefined threshold of 250 voxels are removed. This threshold corresponds to about one quarter 
of the mean volume of a cell nucleus and was determined prior to segmentation. The image is inverted again to 
obtain the hole-corrected fb(x, y, z).

Figure 6. Three-dimensional cell biology requires a multiscale image analysis approach. The established 
methods for advanced three-dimensional microscopy and image segmentation need to be extended by 
concepts from other fields including graph theory and computational topology. This will provide a system-level 
understanding of tissue architecture and function.



www.nature.com/scientificreports/

1 0Scientific RepoRts | 7:43693 | DOI: 10.1038/srep43693

Marker point detection. For the decomposition of connected nuclei in fb(x, y, z), we use a three-dimensional 
marker-controlled immersion watershed algorithm. The marker points are obtained by the multiscale Laplacian 
of Gaussian (LoG) blob detection algorithm. Thereby, a blob refers to an approximately convex region of a 
three-dimensional image, in which the intensities vary within a sufficiently small range of values. First, the raw 
image fr(x, y, z) is inverted, resulting in fi(x, y, z). The LoG corresponds to first convolving fi(x, y, z) by a Gaussian 
kernel g(x, y, z; σ). Thus, we get

σ σ= ∗G x y z g x y z f x y z( , , ; ) ( , , ; ) ( , , ), (2)i

where σ is the standard deviation (scale) of the Gaussian kernel g. Then the Laplacian operator ∇ 2 is applied to the 
convolved image to obtain the LoG response. In our approach, the inverted image fi(x, y, z) is processed at multi-
ple scales σ σ σ∈ …{ , , }i min max . The minimal and maximal scales σmin and σmax are determined using the 
relationship

σ=r 2 (3)

between radius r of a blob-like object and the scale σ of the LoG. We measured the minimal (rmin) 
and maximal (rmax) radius of cell nuclei a priori in the images (NucleiSeedDetectionMinRadius and 
NucleiSeedDetectionMaxRadius) and used the relationship above to compute σmin and σmax. To achieve 
scale-invariance, the LoG response at scale σ is normalized by multiplication with σ3 such that the LoG response 
at scale σ is given by

σ σ σ= ∇ .LoG x y z G x y z( , , ; ) ( , , ; ) (4)3 2

For computational efficiency, we iteratively compute the maximum response σ σ…LoG x y z( , , ; , , )max min max  
over scales given by

σ σ σ… = .
σ σσ ≤ ≤

LoG x y z LoG x y z( , , ; , , ) max ( , , ; )
(5)max min max

min max

The maximum response σ σ…LoG x y z( , , ; , , )max min max  is further processed with a maximum transform for 
detection of extended maxima. The obtained binary image is multiplied with the initial segmentation fb(x, y, z) to 
discard extended maxima detected in the background. Extended maxima that are in close proximity to each other 
are merged by increasing the size of the marker points using a morphological dilation operator with a round 
structuring element of two voxels radius (NucleiSeedDilation). The resulting binary image fm(x, y, z) specifies the 
marker points that are used to initialize the subsequent watershed algorithm.

Watershed-based decomposition of cell nuclei clusters. We use the immersion watershed algorithm to achieve 
a decomposition of connected cell nuclei clusters. The algorithm starts at the marker points in fm(x, y, z) as 
sources and iteratively immerses the inverted image fi(x, y, z) according to the intensity. Watersheds are built 
when different sources meet during the immersion process. A partitioning of the image fi(x, y, z) into labelled 
components (1 to number of components) and watersheds (0 s) is obtained. However, the immersion process 
does not necessarily stop at the border of a cell nucleus. Thus, we multiply the resulting matrix with the initial seg-
mentation fb(x, y, z). Objects are selected by incorporating lower and upper volume thresholds (NucleiMinCount 
and NucleiMaxCount). Based on the measurements of minimal and maximal radii of cell nuclei, the cell nucleus 
volume is approximated as a sphere with equivalent radius and we obtained an approximate lower threshold of 
250 voxels and an upper threshold of 42,500 voxels. As the final result of the segmentation, we obtain the matrix 
w(x, y, z). Each labelled component in w(x, y, z) represents a cell nucleus found by the segmentation.

Evaluation of segmentation performance. We generated three ground truth (GT) datasets by cropping three 
sub-regions of 100 ×  100 ×  100 voxels out of the downsized raw images. The centroids of all cell nuclei within 
the sub-regions were visually identified with a custom program. Based on the generated GT, we determined the 
number of correctly detected cell nuclei (true positives, TP), the number of cell nuclei that were falsely detected 
by the segmentation (false positives, FP) and the number of cell nuclei in the GT that were not detected by the 
segmentation (false negatives, FN). To compute these numbers, we used the following algorithm: if exactly one 
centroid of the segmentation is found within a spherical neighborhood of twelve voxels of a centroid in the GT, we 
count it as TP and delete it from the list. If more than one centroid is found within this neighborhood range, the 
closest one is considered as TP. Based on the number of TP, the FP and FN were obtained using FP =  NSC −TP and 
FN =  NGT −  TP, where NSC is the number of centroids determined by the segmentation and NGT is the number 
of centroids in the GT. Based on these measurements we derived the metrics recall, precision and F score28 with 
values ranging from 0 (worst performance) to 1 (optimal performance):

=
+

recall TP
TP FN (6)

=
+

precision TP
TP FP (7)
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= ×
×
+

F score precision recall
precision recall

2
(8)

Feature computation and randomness of the spatial cell distribution. Basic cell nuclei  
features. Based on the segmentation, we extract intensity-related and morphological features of each identified 
cell nucleus. The morphological features include the volume in number of voxels, centroid, intensity-weighted 
centroid, mean, minimum and maximum distance to the centroid, number of voxels on the surface and the 
bounding box. We use principal component analysis to determine the principal directions and the extensions 
along these directions as a measure of shape and orientation of the cell nucleus. Intensity-related features include 
the mean, minimum and maximum intensity and the intensity standard deviation. All intensity-related features 
are rescaled to the interval [0, 1].

Surface approximation. We approximate the surface of the spheroid using the alpha shapes approach based on 
the set P of cell nuclei centroids. To discriminate against false positive detections, all points in P that are within a 
distance of 20 voxels are connected (OutlierDistanceThreshold). The largest connected component is regarded as 
the cell aggregate and remaining components are removed. The surface of the cell aggregate is then approximated 
using Edelsbrunner’s algorithm for alpha shapes57 with parameter alpha (Alpha). The alpha shape approach is 
based on a Delaunay triangulation and works well for point sets P of high density and uniform distribution. If the 
corresponding parameter alpha approaches 0, the alpha shape converges to P; whereas if alpha approaches ∞ , the 
alpha shape converges to the convex hull of P. We set alpha to 90 voxels for all datasets. The obtained alpha shape 
is used to compute the volume, extract the surface and compute the surface area of the spheroid. Having obtained 
the surface of the spheroid, the relative position of each cell nucleus is determined by computing its distance to 
the surface.

Cell graphs. We derive two graph representations from the cell nuclei centroids representing the spatial distribu-
tion of cells within the cell aggregates. The proximity cell graph is given by PCG(V, EPCG) where V is the vertex set 
(i.e. the cell nuclei centroids) and EPCG is the edge set of the graph. In the PCG, cells are neighbors if they are closer 
than a certain distance (EdgeDistanceThreshold). Thus, we obtained an edge (u, w) between two vertices u and w if 
the Euclidean distance between u and w is less than a predefined threshold of 40 voxels. The Delaunay cell graph 
is given by DCG(V, EDCG) where V is the vertex set and EDCG is the edge set of the graph. The DCG graph is con-
structed based on a Delaunay triangulation to approximate which cells are in physical contact. An edge (u, w) was 
created between two vertices u and w if the corresponding points are connected by a line in the Delaunay triangu-
lation and the Euclidean distance between u and w was less than a predefined threshold (EdgeDistanceThreshold) 
of 40 voxels. Consequently, the edge set EDCG is a subset of EPCG and the vertex set V for both graphs is identical. 
Edge weights in both graphs are equal to the Euclidean distance between the corresponding vertices. We extract 
the degree of each vertex as the number of neighbors. Further, the minimum, maximum, mean and standard 
deviation of the distance to neighbors for each vertex v is given by the weights of all edges incident to v.

Random cell position model. We compared the generated cell graphs to those of a mathematical random cell 
position (RCP) model. In this model, we made the following assumptions: (1) cells are distributed uniformly 
within a spheroid. (2) Cell nuclei are represented as non-overlapping spheres with positions drawn from a uni-
form random number distribution. The radius of the spheres was set to the median cell nucleus radius (~6 voxels) 
from all datasets. (3) Cell nuclei positions are restricted to the volume of the spheroid (i.e. the alpha shape) and 
are not allowed outside this volume. (4) The number of randomly generated cell nuclei is the same as the number 
of cell nuclei determined for the real spheroid. For each dataset, we performed ten Monte Carlo simulations of the 
RCP model and obtained the proximity and Delaunay cell graphs in the same way as for the real datasets. In other 
words, we generated an exact analogue of each cell aggregate.

Implementation details. Implementation. The image analysis pipeline was developed in Mathematica 
version 10.2 (Wolfram Research, Inc.). A package containing the custom code of the image analysis pipeline, 
a user interface and two example datasets are available for download at http://www.physikalischebiologie.de/
downloads. Computations were conducted on a workstation that comprises two six-core CPUs (X5650, Intel 
Corporation), 96 Gigabyte DDR3 memory, running Windows Server 2012 R2. Cell nuclei segmentation and 
post-processing took between five minutes and less than one hour per stack. The current implementation is par-
allelized at the initial cell nuclei segmentation step. For all subsequent steps, the complete image needs to fit into 
the main memory.

Three-dimensional reconstruction. Three-dimensional reconstructions were generated using the Arivis software 
(http://www.arivis.com).
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