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Abstract: Extracellular vesicles (EVs) are produced and released by all cells and are present in all
body fluids. They exist in a variety of sizes, however, small extracellular vesicles (sEVs), the EV
subset with a size range from 30 to 150 nm, are of current interest. By transporting a complex cargo
that includes genetic material, proteins, lipids, and signaling molecules, sEVs can alter the state of
recipient cells. The role of sEVs in mediating inflammatory processes and responses of the immune
system is well-documented, and adds another layer of complexity to our understanding of frequent
diseases, including chronic rhinosinusitis (CRS), asthma, chronic obstructive pulmonary disease
(COPD), and upper airway infections. In these diseases, two aspects of sEV biology are of particular
interest: (1) sEVs might be involved in the etiopathogenesis of inflammatory airway diseases, and
might emerge as attractive therapeutic targets, and (2) sEVs might be of diagnostic or prognostic
relevance. The purpose of this review is to outline the biological functions of sEVs and their capacity
to both augment and attenuate inflammation and immune response in the context of pathogen
invasion, CRS, asthma, and COPD.

Keywords: small extracellular vesicles; exosomes; inflammatory airway diseases; chronic rhinosi-
nusitis; otitis media; lung diseases; bronchial diseases; inflammation

1. Introduction

Extracellular vesicles (EVs) are produced and released by all cells and are present
in all body fluids. They exist in a variety of sizes, but of particular interest are small
extracellular vesicles (sEVs), which range in size from 30 to 150 nm [1–3]. They originate
from the endocytic compartment of the producer cell, and, because of their endosomal
origin, sEVs are distinct from larger EVs, such as microvesicles (MVs), which are formed by
“pinching off” the cellular membrane or from apoptotic bodies. Despite extensive research
on EVs, their nomenclature is not fully established, leading to possible overlaps among
various EV subtypes. According to the newest guidelines of the International Society for
Extracellular Vesicles [4], we decided to use the term sEVs in this review for vesicles that are
often also referred to as exosomes in the literature. A growing body of evidence indicates
that sEVs play a major role in intercellular communication in physiological as well as in
pathological conditions [5–7]. While the initially suspected role of sEVs was in eliminating
cellular waste products [8], the growing interest in sEVs has led to an active international
research community as well as improved isolation methods [9] that continuously broaden
our understanding of sEV biogenesis, structure, and functions (Figure 1).
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Figure 1. Small extracellular vesicles present in human plasma may be separated using pre-clearing with differential
centrifugation and a 200 nm filter (not shown), followed by size exclusion chromatography. The isolated sEVs can be
characterized according to the guidelines of the International Society for Extracellular Vesicles [4] with the use of (a)
Cryo-EM microscopy (52,000×) to estimate their size and morphology, (b) western blot for two positive (CD63 and CD9)
and one negative (Grp94) sEV marker, and (c) nanoparticle tracking analysis (NTA), which allows the evaluation of vesicle
size (average diameter = 90.9 nm) and concentration (1.3 × 1011 particles/mL) [9] (modified).

sEVs are uniquely positioned to mediate immune response and inflammatory reac-
tions [10]. In recent years, research interest in sEVs has surged; sEVs have been linked to a
number of human pathologies i.e., chronic rhinosinusitis, asthma, and airway infections,
which are multifactorial in etiology, but unfailingly associated with excessive stimulation of
the immune system. sEVs are present in many types of body fluids, including blood [11,12],
urine [13], saliva [14], bronchioalveolar lavage fluid (BALF) [15], lymph [16], and nasal
lavage fluid [17]. Therefore, sEVs are considered an attractive opportunity for non-invasive
diagnostics with regards to their potential use as a liquid biopsy. In addition, sEVs might be
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a promising approach to monitor disease progression or response to therapy, as shown for
malignant diseases [18]. First attempts have been made to harness the properties of sEVs
and use them for drug delivery [19], and thus utilize them as therapeutic vesicles [20]. EV-
based therapeutics are currently being developed to treat cancer, as well as inflammatory
and autoimmune diseases [21].

In this article, we discuss the contribution of sEVs to inflammatory conditions of the
respiratory tract. Our focus will be chronic rhinosinusitis with nasal polyps (CRSwNP)
or without nasal polyps (CRSsNP), acute upper airway infections, asthma, and chronic
obstructive pulmonary disease (COPD). We will present the role of sEVs in the group of
airway diseases that are associated with a strong inflammatory background. We decided
to exclude cancers of the respiratory system because of their wide etiologic spectrum that
needs to be broadly and particularly addressed. We also address the multifaceted role of
sEVs in infection and their interplay with pathogens, to which the airway epithelium is
invariably exposed. Lastly, we outline the diagnostic and therapeutic possibilities.

2. Small Extracellular Vesicles—Biogenesis, Cargo Components, and Functions
2.1. Biogenesis

The biogenesis of sEVs begins by directing cargos intended for secretion to the early
endosomes (EEs). EEs accumulate intraluminal vesicles and later convert to multivesicular
bodies (MVBs) [5,22]. Upon invagination of the endosomal membrane, a portion of cyto-
plasm is engulfed within the newly formed vesicle. Most MVBs later fuse with lysosomes,
which ensures the degradation of their content by hydrolases. However, vesicles harbour-
ing CD63, LAMP1, LAMP2, and MHCII can avoid degradation and fuse with the plasma
membrane, releasing sEVs into the intercellular space [1,5].

Four endosomal sorting complexes required for transport (ESCRT) play a key role
in both cargo creation and vesicle separation [23]. In the first step, ESCRT-0 and ESCRT-I
direct cargos to the assembly site. Then, ESCRT-II and -III facilitate sEV budding and
fission; sEVs may also be formed in the absence of ESCRT. Several mechanisms have been
described, and one of them involves the formation of transmembrane protein clusters
composed of tetraspanins and other proteins at the sites of MVBs, which then invaginate
to form a vesicle. These mechanisms are distinct but overlapping, and each cell likely
features a population of EVs from different origins [24]. TSG101 (tumor susceptibility gene
101 protein), ALIX, and VPS4 (vacuolar protein sorting-associated protein 4) are proteins
carried by EVs that can be used to determine the origin from MVBs. Syndecan-1 and
syntenin-1 were demonstrated to interact with ALIX and ESCRT-I and -III, and might
be involved in the formation of sEVs [25]. The trafficking and secretion is mediated by
small GTPases from the Rab family, for instance Rab27a and Rab27b [26]. Another crucial
process is the merging of MVBs with the plasma membrane, which is mediated by SNARE
complexes (soluble N-ethylmaleimide sensitive fusion attachment protein receptor) [25].

2.2. Cargo Components

The cargo composition of sEVs highly depends on the cell of origin, as well as on the
status of the secreting cell [27,28]. A comprehensive analysis of nucleic acids enclosed in
sEVs has shown a distinct repertoire of extracellular RNA [29], as well as the presence
of DNA associated with sEVs [4,30]. Furthermore, proteomic analyses have revealed
members of various cellular pathways, including cytoskeletal components, annexins,
signal transducers, metabolic enzymes, and chaperone proteins; sEVs originating from
antigen-presenting cells carry major histocompatibility complex (MHC) molecules and
costimulatory molecules CD86 and CD54 [31]. Certain protein families are particularly
abundant. The most notable examples are tetraspanins, a group of transmembrane proteins
with a role in cell aggregation and motility [32]. Tetraspanins may act as molecular traps,
binding to a variety of proteins and directing them to sEVs. Some family members, such as
CD81, CD63, and CD9, have been proposed as sEV markers [5] (Figure 2). Nevertheless,
the molecular composition of sEVs is much narrower than the repertoire of the parent
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cell. Although these patterns are only beginning to emerge, current observations suggest
the existence of an elaborate mechanism governing the inclusion of molecules to sEVs.
Due to the biological structure of sEVs, their cargo components can either be associated
with the sEV membrane or they can be enclosed in the vesicle lumen [24] (Figure 2,
Table 1). To distinguish the cellular origins of sEVs or the type of disease, several specific
abbreviations were established in the literature. For instance: tumor-derived sEVs: TEX [33],
nasal mucus-derived sEVs: rhinosomes [34], and dendritic cell-derived sEVs: DEX [35].

Figure 2. sEVs are carriers of a complex biologically active cargo [27] (modified). The figure presents selected molecules
carried within sEVs that are involved in inflammatory airway diseases. The biogenesis of sEVs begins when cargos for
secretion are located in early endosomes, (1) which accumulate intraluminal vesicles (2) and later convert to multivesicular
bodies (MVBs) (3). MVBs might fuse with lysosomes and degrade (4) or fuse with the plasma membrane, (5) releasing sEVs
into the intercellular space.

2.3. Functions

sEVs were first described as vesicles secreted upon fusion with the plasma membrane
by maturing reticulocytes [36]. This observation has sparked the idea that sEVs present
an alternative route to eliminate molecules no longer needed for cellular homeostasis or
ones resistant to lysosomal degradation. Raposo et al. revealed that sEVs originating
from B-cells harbor a functional MHCII complex, and are capable of inducing an antigen-
specific T cell response [37]. These findings paved the path for further discoveries of sEV
functions in antigen presentation, immunosuppression, mediation of inflammation, and
viral infection [24]. However, the functions of sEVs appear to be even more complex,
and sEVs are now considered to play a crucial role in cell-to-cell communication [6].
They are capable of reprogramming recipient cells by transporting mRNAs and miRNAs,
which are able to trigger the translation of specific proteins [1]. Their role in transmitting
chemokines, cytokines, and other signaling molecules is of particular interest, as the
complexity of the sEV cargo composition has the capacity to induce effects on recipient
cells. Several biological functions of sEV cargo components have been described in the
literature, including angiogenic/anti-angiogenic effects, tissue regeneration, immune cell
activation, or immunosuppression, as well as metastasis and cancer progression; sEVs
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derived from human mesenchymal stroma cells might have promising therapeutic potential
in allergic airway inflammation. Inhibition of ILC2 (innate lymphoid cells), infiltration of
inflammatory cells, decreased production of mucus in the lung, and reduced Th2 cytokine
levels were associated with human mesenchymal stroma cell-derived sEVs; miR-146a
transported by this EV type could be responsible for these effects [38]. The biological
functions of sEVs are summarized in Table 1.

Table 1. Comparison of articles from our literature search with emphasis on the source of sEVs, their cargo, and biological
effects. Abbreviations: CRSwNP: chronic rhinosinusitis with nasal polyps; CRSsNP: chronic rhinosinusitis without nasal
polyps; P-gp: permeability glycoprotein; TLR: toll-like receptor; PAPP-A: pappalysin A; LncGAS5: long-noncoding RNA
GAS5); NLF: nasal lavage fluid; ADAM10: disintegrin and metalloprotease 10; MEE: middle ear effusion; MUC5B: mucin
5B; hNECS: human nasal epithelial cells; PPAR: peroxisome proliferator-activated receptor; SERPINE1: serpin family E
member 1; PERP: P53 apoptosis effector related to PMP22; PLTP: phospholipid transfer protein; HMEEC: human middle-ear
epithelial cells; hRNP: heterogenous nuclear ribonucleoprotein; miR/miRNA; microRNA; RANKL: receptor activator
of nuclear factor—kappa B ligand; hCPFS: human cholestatoma perimatrix fibroblasts; ARDS: acute respiratory distress
syndrome; EPC: endothelial progenitor cells; MPO: myeloperoxidase; NHBE: normal human bronchial epithelial cells;
BALF: bronchoalveolar lavage fluid; NRG1: neuregulin 1; COPD: chronic obstructive pulmonary disease; tRNA: transfer
RNA; piRNA: Piwi-interacting RNA; snRNA: small nuclear RNA; snoRNA: small nucleolar RNA.

Reference Disease; Source of sEVs sEVs Cargo Possible Biological Function

Nocera et al. [34] CRSwNP;
nasal mucus

• P-gp Possible regulation Th2 cytokine production

Mueller et al. [39] CRSwNP;
nasal mucus

• Cystatin-SN,
• Peroxiredoxin-5,
• Glycoprotein VI

Cysteine protease
inhibition

Innate immune regulation
Activation of TLRs

Antioxidant activity
Activation of platelets

Miyake et al. [40]
CRSwNP;
CRSsNP

nasal mucus

• Cystatin-1
• Cystatin-2

Epithelial barrier
functions

Mueller et al. [41] CRSwNP;
nasal mucus

• PAPP-A Epithelial proliferation
Polyp growth

Mueller et al. [42] CRSwNP;
nasal mucus

• Serpins Polyp fibirin deposition

Zhu et al. [43]
Allergic rhinitis;

nasal mucus,
nasal epithelial cells

• LncGAS5 Suppression of CD4+ to Th1 differentiation,
promoted Th2 differentiation

Zhang et al. [44] CRSwNP;NLF • ADAM10 Angiogenesis Vascular permeability

Val et al. [45] Otitis media,
MEE

• miR-233
• MUC5B

IL- 8 activity
Neutrophil functions

Innate immune responses

Zhou et. al. [46]
CRSwNP,

CRSwNP + asthma;
hNECs

• Proteins involved in p53 and
PPAR signaling pathways

• SERPINE1, PERP, PLTP,
ladinin-1, myosin-9

Tissue repair and remodeling
Immune system signaling

Immune responses to viruses and bacteria
Cell cycle signaling

Cell growth and replication
Cell cycle control

Val et al. [47] Haemophilus influenzae infection;
HMEEC

• hnRNP A2B1
• hnRNP Q
• miR-378-a-3p
• miR-378i
• miR-200a-3p
• miR-378g
• miR30d-5p
• miR-222-3p

Immunity regulation
Inflammatory pathways

Angiogenesis
Neutrophil adhesion

Gong et al. [48] Middle ear cholestatoma;
keratinocites

• miRNA-17 Upregulation of RANKL
Osteoclast differentiation

Li et al. [49] Cholestatoma;
hCPFs

• miR-106b-5p

Angiogenesis
Overexpression of Angiopoietin-2 in human

umbilical vein endothelial cells
Tube formation
Cell migration

Zhou et al. [50] ARDS;
EPC

• miR-126
Reduction of permeability and inflammation

Reduced MPO activity
Lung injury protection

Huang et al. [51] Pneumonia; Adenovirus Infection;
serum

• miR-450a-5p/miR-103a-3p,
• miR-103b/miR-98-5p

Immunoregulatory
function

Bartel et al. [52]
Asthma;
NHBE

nasal lavage

• miR-34a,
• miR-92b,
• miR-210

Th2 response
Dendritic cell activity
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Table 1. Cont.

Reference Disease; Source of sEVs sEVs Cargo Possible Biological Function

Huang et al. [53] Asthma;
Dendritic cells

• OXO40 ligand
CD4+ T cell proliferation

Increase IL-4
Th2 response

Quazi et al. [15] Sarcoidosis;
BALF

• NRG1
Inflammation
Proliferation
Cell survival

Hough et al. [54] Asthma;
BALF

• lipids Inflammation

Torregrosa et al. [55] Asthma;
BALF

• enzymes for leukotriene
biosynthesis

Upregulation of cytokines and leukotrienes in
airway epithelium

Sundar et al. [56] COPD;
plasma

• miRNAs
• tRNAs
• piRNAs
• snRNAs
• snoRNAa

Inflammation
Extracellular matrix and tissue remodeling

3. Role of sEVs in Inflammatory Airway Diseases

Inflammatory airway diseases are complex with regards to their heterogeneous eti-
ologies. The literature about sEVs in inflammatory airway diseases addresses different
aspects of sEV biology, however, the diagnostic/prognostic values of sEVs and their role in
etiopathogenesis are the most frequently investigated topics. In the following sections, we
will focus on different inflammatory airway diseases and present the available sEV-based lit-
erature, with special emphasis on diagnostic/prognostic or etiopathologic aspects of sEVs.
Our main focus will be the role of sEVs in mediating inflammation and immune responses.

Inflammation is triggered by antigen presentation, as well as stimulation by cytokines,
chemokines, and other signaling molecules. The complex inflammatory cascade consists
of several steps that have been shown to be influenced by sEVs, suggesting that sEVs can
play a pro- and anti-inflammatory role. The cargo composition of sEVs is considered to
reflect the state of the parent cell [57,58] and, therefore, depending on the cell of origin, they
may carry a cocktail of signaling molecules and other inflammatory substrates. Examples
include the trafficking of enzymes for leukotriene biosynthesis [59] and Hsp70, which
induces the production of tumor necrosis factor-α (TNF-α), interleukin 13 (IL-13), and
interferon-γ (IFN-γ) in target cells [60]; sEVs can also engage immune cells. Dendritic cells
exchange miRNAs, which are encapsulated in sEVs and alter gene expression and direct
immune response in accordance with the specific miRNA sequence carried [61]. Moreover,
antigen-presenting cell (APC)-derived sEVs can directly stimulate naïve T cells. MHC
complexes on sEVs are recognized by CD8+ lymphocytes, despite the absence of APC, and
invoke an immunogenic response in the presence of co-stimulators [62].

3.1. Upper Airways
3.1.1. sEVs and Chronic Rhinosinusitis (CRS)

Chronic rhinosinusitis is a heterogeneous disease involving inflammation of the
sinonasal mucosal lining. It is a prevalent problem, adversely affecting the quality of life of
5–12% of the global population. The traditional phenotypic classification into CRS with
and without nasal polyps failed to account for the diverse molecular pathomechanisms
underlying the disease. The publications about CRS of the last 10 years have led to a
paradigm shift in the understanding of this disease. It is now considered as a disease
resulting from a maladjusted interplay between environmental cues (pathogen invasion,
microbiome, and permeability of mucosal lining) and the immune system. The European
Position Paper on Rhinosinusitis and Nasal Polyps 2020 [63] turns away from the phe-
notypic classification and focuses on the pathophysiology of the disease instead. Based
on the endotype, CRS is now divided into primary and secondary. It is further defined
by anatomic localization and endotype dominance, classified either into type 2 (associ-
ated with more severe manifestations and resistance to therapy) or non-type. Likewise,
secondary CRS is characterized as localized or diffuse, and further defined by endotype
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dominance [63]. This approach focuses on upstream regulators rather than manifestations,
paving the way for personalized, etiology-driven therapies.

The ability to reproducibly and non-invasively obtain and analyze sEVs from nasal
fluids could offer the possibility of defining CRS endotypes, aligning them with clinical
outcomes, and introducing them into a routine diagnostic workup. A proteomic analysis
of such samples from patients with CRS showed 123 differentially expressed proteins,
pointing to over 40 dysregulated signaling pathways. Significant differences in sEV pro-
teome were found between CRS with polyps (CRSwNP) and the control group. Among
the most promising molecular markers of CRSwNP were cystatin, glycoprotein VI, and
peroxiredoxin-5 [39]. In another study, high levels of epithelial protease inhibitors cystatin-1
and -2 were found in sEVs. Based on this finding, cystatin-2 was proposed as a marker
for CRS, capable of predicting the disease phenotype [40]; sEVs may also contribute to the
formation of polyps due to the upregulation of pappalysin and serpins [41,42].

One of the hallmarks of the CRS phenotypes is the imbalance between Th1 and Th2
cells. While CRSwNP relies on Th2 cells, CRSsNP is dominated by the Th1 response;
sEVs can shift this equilibrium by promoting the differentiation of Th2 and suppressing
Th1 lymphocytes [43]. Ickrath et al. have shown that tissue samples from patients with
CRSwNP feature higher levels of CD8+ than CD4+ T cells. Their study also suggests
the possibility of a local regulation mechanism within the polyp microenvironment [64].
Interestingly, studies have shown that sEVs can have an effect on the profile of T cells.
Stimulation of resting CD3+ T cells with IL-2 and sEVs from their activated counterparts
shifted the T cell profile to CD8+ and changed the cytokine profile [65]. Studies in mouse
models demonstrated that mast cell-derived sEVs may impact B and T cell functions,
ultimately contributing to inflammation [66]. It was shown that sEVs are transported
through the lymphatic system from the periphery to the lymph node, and that B cells,
together with macrophages, are key players in sEV uptake [16].

3.1.2. sEVs and Airway Epithelium

The airway epithelium is the first line of defense against pathogens, and consists of
several different barriers to prevent pathogen invasion. Its antimicrobial properties include
secretion of lysozyme, lactoferrin, hydrogen peroxide, nitric oxide, and mucins. Epithelial
cells express toll-like receptors (TLRs), capable of recognizing pathogen-associated molecu-
lar patterns (PAMPs) and activating an immune cell response [67]. Recent observations
showed that sEVs can modulate the innate immune response in the airway. Bacterial
lipopolysaccharides (LPSs) recognized by TLR4 increased the production of sEVs by ep-
ithelial cells, which carry nitric oxide synthase [68]. In CRSsNP, the expression of TLR2
and TLR4 correlates with neutrophil abundance [69], and it was demonstrated that sEVs
correspond to the expression of TLR receptors in airway epithelium [70].

Nasal polyps are benign outgrowths of sinonasal mucosa, characterized by increased
epithelial cell proliferation, interstitial edema, and increased angiogenesis. Interestingly,
sEVs isolated from the epithelium of CRSwNP patients contain proteins participating
in proliferative pathways and enzymes known for their role in angiogenesis, suggesting
that sEVs are involved in inflammatory tissue remodeling [44,46]. CRSwNP-derived
sEVs contain high levels of permeability glycoprotein (P-gp), which regulates cytokine
secretion [34].

The structures of the middle ear, which connect to the upper respiratory tract and
nasal cavity via the Eustachian tube, are also covered with a respiratory-type epithelium.
The middle ear epithelium (MEE) plays an important role in the development of middle ear
otitis (OME), and is composed of ciliated cells, secretory cells, non-secretory cells, and basal
cells. Secretory cells are responsible for the production of mucins and various anti-microbial
proteins, such as lactotransferrin, lysozyme, defensins, and surfactants [71,72]. Val et al.
were the first to isolate sEVs from the middle ear fluid samples of 16 pediatric patients. Not
unexpectedly, the proteomic analysis showed an enrichment in neutrophil markers and
molecules associated with innate immunity, such as immunoglobulins, MUC5B, and heat-
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shock proteins; also related to neutrophil stimulation were 29 enriched miRNA sequences
unique to the middle ear samples, including the most abundant miR-223 [45]. On the cellu-
lar level, it was shown that human middle ear epithelial cells treated with Haemophilus
influenzae lysate secrete sEVs containing heterogeneous nuclear ribonucleoproteins, such
as hnRNP A2B1 and hnRNP Q, and also miRNAs that might be involved in immunity
regulation [47].

It is also suspected that sEVs play a role in the pathogenesis of chronic otitis media
with cholestatoma. In middle ear cholestatoma patients, sEVs derived from keratinocytes
might induce osteoclast differentiation. This was observed after the addition to fibroblasts
co-cultured with osteoclast precursor cells. Downregulated miR-17 enclosed in sEVs, which
regulates Tnfsf11 expression in fibroblasts, appears to be responsible for this effect [48].
Another in vitro study showed that human cholesteatoma perimatrix fibroblast-derived
sEVs promote angiogenesis through downregulation of miR-106b-5p in sEVs, leading to
the overexpression of Angiopoietin-2 in human umbilical vein endothelial cells (HUVECs).
Furthermore, sEVs contributed to enhanced tube formation and cell migration [49]. These
findings posit sEVs as important factors in the pathogenesis and progression of OME and
chronic otitis media with cholesteatoma.

3.1.3. sEVs and Bacteria in Upper-Airway Inflammation

There is a close cooperation between the host’s immunity and the microbiome. Chronic
inflammatory processes, such as CRS, are often associated with decreased microorgan-
ism diversity and an imbalance within the microbiome, which likely contributes to the
perpetual inflammatory signaling. This notion is confirmed by observations that poten-
tially pathogenic bacterial species may be present, albeit in low proportions, in healthy
patients [73,74]. At the same time, sEVs secreted by microbiological flora shape the host’s
immune response, and can be a causative factor in inflammatory conditions [75]. Bacteria-
derived sEVs contain various molecules, including proteins, nucleic acids, lipids, and
glycans. It is likely that these sEVs impact different cytotoxic and immunomodulatory
mechanisms to ultimately facilitate the survival of the pathogen. Another important fact is
that bacteria-derived sEVs transport LPS that is known for its immunomodulatory func-
tions [76]. Bacterial EVs were shown to interact with various cells, including dendritic cells,
macrophages, and neutrophils; sEV-associated PAMPs allow binding to receptors present
on the surface of immune cells, and activate immune response pathways that result in
pro-inflammatory cytokine production. Additionally, it is suggested that sEVs may convey
antigens to stimulate the immune response [77,78]. Participation of bacterial-derived sEVs
in the regulation of gene expression is also suspected. For example, Pseudomonas aeruginosa-
derived sEVs were able to suppress the expression of the group of MHC proteins in lung
macrophages [79]. On the other hand, some data indicate a positive and non-pathogenic
role of bacteria-derived sEVs to the functionality of the healthy microbiome [80]. Metage-
nomic analysis of bacteria-derived sEVs isolated from the nasal lavage fluid of CRS patients
also revealed their high abundance with decreased diversity. Several differences between
CRS and non-CRS patients were discovered, since some bacterial groups were decreased
in the CRS group, while increased in non-CRS individuals. Additionally, CRSwNP was
correlated with a more prominent presence of Staphylococcus aureus and its EVs [81]. Re-
search on bacteria-derived sEVs is a relatively new but growing field of knowledge that
will contribute to a better understanding of the molecular basis of diseases and the search
for new therapeutic solutions. Especially in inflammatory diseases of the respiratory tract,
where the physiological microbiome meets environmental factors, including pathogenic
microorganisms, this could be of importance.

3.1.4. sEVs and Respiratory Viruses

Upper-airway viral infections are the most frequent illnesses of the respiratory tract,
with adults experiencing the common cold 2–4 times a year and children 6–10 times
a year [82]. Acute exacerbation of chronic airway conditions, especially asthma and



Diagnostics 2021, 11, 222 9 of 15

COPD, are also frequent clinical problems. In both instances, viral infections are the most
common cause [83]. On a cellular level, viruses can exploit the host’s machinery for vesicle
biogenesis and use it to their advantage [84]; sEVs from infected cells carry viral genetic
material, proteins, and, in some cases, whole viruses. As one vesicle contains several virus
particles, this type of transmission is highly infectious [85]. For non-enveloped viruses, the
phospholipid bilayer of the sEV serves as a protective barrier from neutralizing antibodies.
To spread, viruses also exploit the cellular sEV release mechanism. This process prevents
cytolysis, which is a very immunogenic event [8]. However, sEVs have a complex and
contextual role in disease, as they can both mitigate and exacerbate the course of the
disease. To that end, sEVs present in tracheobronchial mucus contribute to its antimicrobial
function by presenting α-2,6-linked sialic acid on their surface, which is known to bind
and neutralize human influenza virus particles [86].

Consistent with their role as messengers at the intersection of inflammation and im-
mune response, sEVs released from cells during respiratory syncytial virus (RSV) infection
were found to contain both viral RNA (mRNA, rRNA, and short non-coding RNA) and
proteins. These sEVs were not infective and had no diagnostic value, but were able to
induce chemokine release from monocytes and epithelial cells in vitro [87]. Similarly,
human rhinovirus (RV) triggers the release of the pro-inflammatory protein Tensacin-C,
which is associated with sEVs. This in turn leads to increased cytokine production by
macrophages [88].

Paracrine communication between alveolar macrophages and lung epithelial cells
plays an important role in the damage and repair of alveoli. Scheller et al. analyzed
sEV-associated miRNAs in BALF from patients with influenza A induced acute respiratory
distress syndrome (ARDS). In comparison to samples from healthy volunteers, four miR-
NAs were significantly deregulated. Most striking was the overexpression of miR17-5p,
which was shown to enhance viral replication in vitro by downregulation of Mx1 antiviral
factor [89]. In contrast, a beneficial role of sEV-associated miRNAs was described in a
mouse model of LPS-induced acute lung injury. An intratracheal administration of sEVs
that contained miRNA-126 derived from endothelial progenitor cells facilitated the regener-
ation of the alveolar epithelium [50]. Lastly, miRNAs associated with serum-derived sEVs
were proposed as biomarkers of adenoviral pneumonia in the pediatric population [51].

3.2. Lower Airways
sEVs in Bronchial and Lung Diseases

EVs, including sEVs, participate in the regulation of immune cell functions during
inflammatory diseases of the airways. Current research suggests that sEVs are important
players in the pathogenic states of bronchial epithelium, such as the development of
asthma; sEVs are released from airway epithelium and carry miRNAs (miR-34a, miR-92b,
miR-210) that may impact the Th2-dependent immune response in asthma [52], and sEVs
derived from mesenchymal stroma cells influence Treg suppression through the activation
of peripheral blood mononuclear cells (PBMCs) to secrete IL-10 and TGF-β. Due to their
capacity in the interaction with B cells and monocytes, but not with CD4+ T cells, sEVs may
lead to Treg suppression. That might be of high importance in the asthma pathogenesis and
in consequence be a potential therapeutic target [90]. In patients with asthma, dendritic
cells treated with thymic stromal lymphopoietin (TSLP) secrete sEVs containing OX40
ligand. This triggers CD4+ T cell proliferation, increases the levels of IL-4, and directs
the Th2 response [53]. Interestingly, it was shown that sEVs are also able to transfer
mitochondrial components from myeloid-derived regulatory cells to T cells [91]. Other
studies demonstrated the potential of EVs to transport mtDNA [92], as well as functional
respiratory complexes [93]. In mouse models and cell culture models of allergy and asthma,
increased levels of sEVs were demonstrated. Stimulation with epithelial-derived sEVs that
carried IL-13 induced proliferation of inflammatory cells. Inhibition of sEV secretion also
resulted in a decrease in inflammation [94].
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Previous studies demonstrated that sEVs transfer proteins and miRNA between pri-
mary human tracheobronchial cells to the adenocarcinoma cells of the lung, contributing
to the activity of recipient cells [95]. It was demonstrated that pro-inflammatory properties
of BALF-derived sEVs may induce and foster the progress of inflammation in sarcoidosis.
They carry increased levels of NRG1, which can be important for cell survival and prolifera-
tion, and are common in cancer [15]; sEVs from BALF of asthmatic patients carry an altered
lipid composition, which may be important for the developed inflammation [54]. Other
studies emphasize the role of sEVs in the acute lung injury (ALI) and ARDS generated
in mouse models through inflammatory and non-inflammatory agents. Levels of EVs in
BALF were elevated, affecting macrophages and enhancing lung inflammation [96]. In
mice, macrophages that are involved in ALI pathogenesis secrete sEVs that stimulate other
macrophages to produce TNF-α. In addition, lung epithelium-derived IL-25 downregulates
proteins involved in sEV secretion in macrophages, and consequently inhibits sEV release
and TNF-α secretion [97]. Analysis of BALF-derived sEVs from asthmatic and healthy
patients indicated changes in their properties. In the context of asthma, sEVs contribute to
an upregulation of cytokines and leukotrienes in airway epithelium [55].

Studies conducted on models of asthma and COPD have shown that bacterial and vi-
ral infections of the respiratory system lead to an increased release of EVs and a heightened
secretion of cytokines, which stimulate neutrophils [98]; sEV secretion from airway epithe-
lia is subject to regulation. Cigarette smoke can upregulate this process. In contrast, thiol
antioxidants may inhibit this process and have a beneficial effect in COPD and other respi-
ratory pathologies [99]. Another study examining plasma-derived EVs, including sEVs,
isolated from patients with COPD, tobacco users, and non-smoking healthy individuals
showed differential miRNA expression, which suggests their use as biomarkers [56].

4. Future Perspectives: Diagnostic and Therapeutic Potential

sEV research is a relatively new but rapidly growing field of research, and sEVs emerge
as promising prognostic, diagnostic, and therapeutic tools for future clinical use [100,101].
Despite the great potential of using sEV-based methods in clinical practice, to the best
of our knowledge, none have been approved so far. In inflammatory airway diseases,
sEVs isolated from different body fluids, such as serum, plasma, nasal lavage fluid, or
bronchoalveolar lavage fluid, have been shown to carry a complex molecular cargo that
has great potential to be utilized for diagnostic purposes. One example are the specific
miRNAs that are found in sEVs isolated from the serum of children suffering from human
adenovirus-induced pneumonia [51]. Another example for the prognostic and diagnostic
value of sEVs are the airway-associated cancers. Pleural lavage-derived EVs carry a
signature of miRNAs (miRNA-1-3p, miRNA-144-5p, miRNA-150-5p) that are promising
biomarkers for lung cancer diagnosis [102]. Serum-derived sEVs in non-small lung cancer
carry miR-1269a, which serves as a diagnostic marker, and also plays an oncogenic role
by regulating FOXO1 [103]. A significant research effort will be necessary to unravel the
complexity of biological functions of sEVs. Safe usage in clinical applications will require a
standardization of isolation procedures from clinical material and cell culture, as well as
unification of analytic methods.

5. Summary

A growing body of evidence suggests that sEVs might be useful as biomarkers in
many diseases [102,104–106], as well as prognostic agents providing information about
the phase of disease or predicted therapy outcomes [107–109]; sEVs transfer specific cargo
components depending on the cell of origin, and ensure a safe environment for transported
compounds. This allows their delivery to both neighboring and distant cells, which is an
important modality of communication between tissues and organs. Furthermore, sEVs are
involved in antigen presentation, and can activate immune cells, which allows them to
stimulate or inhibit immunological pathways; sEVs are considered safe, are well-tolerated
by the organism, and, therefore, show great potential for drug transport or vaccination.
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Regulation of sEV secretion that enhances or inhibits their release might be an interesting
therapeutic strategy. Finally, their ubiquitous presence in body fluids gives hope for their
use in liquid biopsy [33].
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