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Abstract

As global ocean-bound commerce increases, managing human activities has become

important in reducing conflict with threatened wildlife. This study investigates environmental

factors determining abundance and distribution of blue whales (Balaenoptera musculus),

humpback whales (Megaptera novaeangliae) and their prey (Euphausia pacifica and Thysa-

noessa spinifera) in central California. We provide insights into environmental drivers of the

ecology and distribution of these species, model whale distributions and determine coinci-

dent hotspots of whales and their prey that will help decrease human threats to whales and

protect critical feeding habitat. We developed separate predictive models of whale abun-

dances (using negative binomial regression on count data) and krill abundance (using a

two-part hurdlemodel combining logistic and negative binomial regressions) over a 14 year

period (2004–2017). Variables included in situ surface and midwater oceanographic mea-

sures (temperature, salinity, and fluorescence), basin-scale climate indices, and bathymet-

ric- and distance-related data. Predictions were applied to 1 km2 cells spanning the study

area for May, June, July, and September during each of the 14 years of surveys to identify

persistent distribution patterns. Both whales and krill were found to consistently use the

northeast region of Cordell Bank, the Farallon Escarpment, and the shelf-break waters. The

main identified blue whale hotspots were also krill hotspots, while co-occurrence was more

limited and varied seasonally for humpback whales and krill. These results are valuable in

identifying patterns in important areas of ecological interaction to assist management of

whales. Areas north of Cordell Bank are of particular management concern since they over-

lap with the end of the San Francisco Bay northern shipping lane. Our findings can help

decrease threats to whales, particularly in important foraging areas, by supporting imple-

mentation of vessel management and informing potential conflicts with other human uses.
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Introduction

Our oceans face increasing pressures from human activities, including commercial fishing and

shipping [1–4]. Worldwide, marine vessel density has increased fourfold from the early 1990s

through 2012 [5]. An increase in traffic in conjunction with other human activities (e.g. fisheries,

energy production, climate change) places additional stress upon marine ecosystems, potentially

resulting in loss of biodiversity and declines in endangered species [2,3]. Previous research has

highlighted areas in central California within two National Marine Sanctuaries as important to

foraging humpback (Megaptera novaengliae) and blue whales (Balaenoptera musculus) [6–8].

This high-use whale area near San Francisco Bay has seen numerous documented instances of

ship strikes and 24 reported whale mortalities from 2008 to 2018. National Marine Sanctuaries

protect ecological resources, including endangered whale populations. Modeling spatial patterns

of habitat use by species within the Sanctuaries can help managers make more informed deci-

sions to preserve a healthy, functioning ecosystem and recover depleted animal populations.

Coastal areas where eastern boundary currents occur, such as the California Current Sys-

tem, are characterized as nutrient-rich zones of high primary and secondary productivity [9].

These marine regions are made up of interlinking physical oceanographic processes and

bathymetric features that host a diverse assemblage of marine birds and mammals. Productiv-

ity of California Current System waters varies temporally and spatially, predominantly driven

by seasonal upwelling when coastal winds generate offshore Ekman transport which upwells

nutrient rich deep water to the surface [9–11]. Some of the most biologically productive

regions of the California Current System are near San Francisco Bay. Because of their biologi-

cal significance, these areas have been designated as National Oceanographic and Atmospheric

Administration sanctuaries, including the Greater Farallones (GFNMS), Cordell Bank

(CBNMS) and Monterey Bay (MBNMS) National Marine Sanctuaries.

High levels of primary production in the California Current System support a marine food

web that is dependent upon krill (order Euphausiacea). With a seasonally high biomass, krill

are the main path of energetic transfer between primary producers and predators, including

whales [12]. Two species dominate the euphausiid assemblage in the California Current Sys-

tem, Euphausia pacifica and Thysanoessa spinifera. Euphausia pacifica is the more abundant

euphausiid [13] with densities an order of magnitude greater than T. spinifera [13,14]. Both

species are found in high concentrations within the study region and associated with a variety

of biological and physical factors. Diurnal movements of krill are primarily vertical [15]. Thus,

factors affecting surface circulation (e.g. tidal influence, wind-driven upwelling, shear zones)

can explain the majority of transport and accumulation of krill [e.g., 16].

Complex coastal and offshore bathymetry influences water dynamics which, in turn, aggregate

non-motile and weak-swimming species forming prey hotspots [17–21]. For example, shelf-break

and shelf-edge bathymetry create strong currents and advection that transport krill [22]. These

oceanographic features are thought to create persistent krill aggregations or hotspots [19,22,23].

Over interannual to decadal timescales, basin-wide climate signals like El Niño Southern

Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) affect winds, water tempera-

ture, salinity and their gradients which then affect the primary producers that krill depend on.

The interplay of these cycles means seasonal to decadal variability in conditions can be signifi-

cant in the California Current System. Increased sea surface temperature and decreased salin-

ity in El Niño years lead to reductions in offshore zooplankton biomass [24–26], and the PDO

has a documented strong effect of reducing California Current System zooplankton composi-

tion and biomass [27].

The distribution and abundance of krill help identify important foraging areas for marine

predators. However, krill aggregations tend to be spatially (tens of meters to kilometers) and
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temporally (hours to days) ephemeral [28,29]. Krill predators continuously search for predict-

able dense pockets of their energy-rich prey, so only longer term analyses at finer temporal

and spatial scales can reveal patterns of predator hotspots and how these may change across

seasons and years.

The Federally-endangered blue whale migrates through the California Current System and

exclusively consumes krill. Waters along the California coast are valuable to these migratory,

highly specialized apex predators [30], and their presence is largely driven by the presence or

absence of their prey [31–33]. Blue whales have great energetic demands, consuming up to two

tons of krill daily [34–36]. The Eastern Pacific population of humpback whales was recently

divided into two distinct population segments. The Central American distinct population seg-

ment is listed as Endangered, migrates between breeding grounds off Central America and

feeding grounds off California and Oregon and was estimated to number 411 individuals

based on 2004–2006 data [37]. The Mexican distinct population segment (~2,500 individuals)

is listed as threatened and contributes the majority of the remaining whales migrating along

the U.S. west coast and ranges from California to British Columbia during their migration

[38].

In June 2013, the layout of San Francisco Bay shipping lanes was modified to primarily

increase maritime safety and secondarily reduce the co-occurrence of whales and ships. While

the overall footprint of shipping has decreased, the new design concentrates vessel traffic

through areas important to foraging and migrating whales [6]. At the same time, in recent

years, the number of entangled whales found off San Francisco Bay has increased drastically,

likely due to heightened overlap with Dungeness Crab gear [39]. The combination of shipping

and fishery impacts has made the region off San Francisco Bay one of significant concern for

blue and humpback whales.

When predator and prey hotspots overlap with human use, as occurs off San Francisco Bay,

there is potential for negative interactions. Information about the distribution of exposed spe-

cies, the ecological drivers of those patterns and how they may differ between species can help

formulate effective management plans. Here, we develop predictive models to better under-

stand spatio-temporal patterns in blue whale, humpback whale and krill abundance in central

California. These models provide a robust basis for recommendations to reduce the likelihood

of whale strikes and entanglements. We constructed predictive spatio-temporal models using

14 years of acoustic prey data and visual whale observations in central California, combined

with in situ oceanographic measures, bathymetric features, and large-scale climate indices.

Using modeled predictions of abundance, we (1) identified environmental factors contributing

to krill habitat use, (2) identified environmental drivers of blue and humpback whale occur-

rence and how they differ among months and years, (3) identify patterns in hotspot use and

trophic overlap between blue and humpback whales and krill, and (4) discuss the implications

that foraging hotspots have for management of vessel traffic and fishery bycatch.

Materials and methods

Study area and survey design

We used data collected by the Applied California Current Ecosystem Studies (ACCESS) pro-

gram (www.accessoceans.org), an ongoing collaboration between Point Blue Conservation Sci-

ence, CBNMS, and GFNMS (Fig 1). Surveys were conducted 3–4 times each year from 2004–

2017, during April to October, excluding August. These months were chosen to encompass the

California Current System upwelling period; August was excluded due to resource limitations.

ACCESS surveys consisted of transect lines that are oriented east-west through the Sanctuaries

between Gualala, CA (38.3˚N) and Pescadero, CA (37.2˚N). The transects cross various
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Fig 1. Study area. Study area within the Greater Farallones (GFNMS), Cordell Bank (CBNMS) and Monterey Bay National Marine Sanctuaries

(MBNMS), California, USA, showing ACCESS program bin centers for all cruises as well as the San Francisco shipping lanes and the 200 m isobath.

https://doi.org/10.1371/journal.pone.0235603.g001
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bathymetric features including the continental shelf, shelf break (defined here as the 200 m iso-

bath) and slope defined by the 50 to 1000 m isobaths. No permits were required to conduct this

research because methods do not involve close interaction with marine mammals.

The ACCESS surveys simultaneously record counts of marine birds and mammals, surface

and water-column oceanographic variables, and continuous hydroacoustics to estimate krill

biomass. The observation effort (kilometers of trackline surveyed) varied by cruise and year,

primarily as a function of time constraints and weather conditions. Temperature, salinity, and

chlorophyll-a fluorescence were sampled vertically using a Conductivity-Temperature-Depth

(CTD) profiler at permanent stations, and using a thermosalinograph while underway during

transects. All data collected on transects (whale observations, krill acoustics and thermosalino-

graph measurements) were grouped in 3 km segments, or “bins”, a spatial scale previously doc-

umented as appropriate for modeling fine-scale patterns of marine megafauna habitat use

[20,40]. Each bin’s centroid was subsequently assigned corresponding in-situ transect and

remotely collected environmental data. End-of-line bins (<1 km in length) were discarded to

avoid introducing errors [6,41,42].

Oceanographic variables and generated predictive surfaces

Oceanographic variables of temperature, salinity, and chlorophyll-a fluorescence were

recorded vertically in situ using a Sea-Bird Electronics SBE 19Plus SEACAT CTD profiler

equipped with a WETStar fluorometer. Variables were sampled continuously from surface to

maximum depth and the mean was taken for measurements from 1–9 m (surface variables)

and for the 30–40 m depth range (midwater variables). The two chosen categories span the

range of primary productivity in the photic zone and extend over the entire study area. The

midwater depths (30–40 m) represent depths through which the thermocline ranges during

different seasons and years [43]. Thermocline depth is related to krill abundance and distribu-

tion through effects on primary productivity and changes in shelf retention due to upwelling-

driven cross-shore advection [16,44]. Because of these effects on krill, we expected that includ-

ing a midwater category could improve predictions, as shown in previous modeling [6].

Underway measurements (used for surface variables in conjunction with the CTD cast data

described above) were taken with a ship-mounted flow-through Turner Designs SCUFA fluo-

rometer and a Sea-Bird Electronics SBE 38 CTD. While measured fluorescence is only a rela-

tive indicator of chlorophyll-a concentration, several sampling features help mitigate the

effects of light exposure and temperature on the relationship between our fluorescence mea-

sures and chlorophyll-a. First, fluorescence measurements were corrected for temperature

using established correction factors developed by Turner Designs. Second, the flow-through

nature of the SCUFA allows light acclimation during the passage of phytoplankton from the

ship’s hull through the water collection system to the SCUFA.

Since the environmental predictors were recorded along the vessel track (surface variables)

and at oceanographic stations (midwater variables), we needed to interpolate them across the

study area in order to create a prediction surface. To accomplish this, we created a prediction

matrix of 1 km2 cells covering the study area.

Within surface and midwater categories, we created raster surfaces of temperature, salinity

and fluorescence for each cruise (n = 246 surfaces; three variables at two depths for 41 cruises)

on the 1 km2 prediction matrix using ordinary kriging interpolation with optimization. Kriging

was chosen because it is based on statistical models that include autocorrelation assessments,

thereby avoiding overemphasizing data along transect lines [45,46]. Parameter optimization

was employed to standardize the interpolation process to minimize the mean square error for

predictions, with the assumption that data were isotropic (not directionally dependent);
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measured locations were weighted by applying a default search radius. To ensure our use of iso-

tropic kriging was appropriate, we used ArcGIS’s kriging tools to determine if an anisotropic

search radius improved kriging metrics. We found no strong evidence of anisotropy, however,

likely due to the relatively small study area and very dynamic oceanographic processes.

Common measures of the accuracy of kriging outputs include root mean squared error

(RMSE), mean error (ME), and comparisons to the range of the measured data using leave-

one-out cross validation [47,48]. To ensure the quality of the kriging output, we checked that

1) more than 90 percent of predictions were within the 95% CI of the measured data, 2) more

than 90 percent of predictions were within 2 standard deviations of the mean of measured val-

ues, 3) percent RMSE was less than 30, and 4) the percent ME was less than 2. Kriging models

that did not meet these metrics (n = 43) were de-trended in ArcGIS’s Trend Analysis program

using second order trend removal and re-kriged until all quality metrics were met. We then

predicted each oceanographic variable to the transect bins and model grid for each cruise.

Climate indices

We included 4 oceanographic climate variables as potential model predictors: 1) PDO which is

the first dominant mode of variability in sea surface temperature north of 20˚N [49]; 2) North

Pacific Gyre Oscillation (NPGO) which is the second dominant mode of variability in sea sur-

face height in the northeast Pacific [50]; 3) Southern Oscillation Index (SOI) which is a stan-

dardized index based on the observed sea level pressure differences between Tahiti and

Darwin, Australia [51]; and 4) Upwelling Index (UI) which is the amount of water upwelled

from the base of the Ekman layer per 100 m of coastline (Table 1). We used an average of two

UI values along the California coastline to best match the study region (36˚N 122˚W and 39˚N

125˚W). The UI is a regional index, while the other three indices represent ocean-basin scale

patterns. Monthly mean values of all variables were matched with cruise timing. We included

climate lags in modeling efforts to examine the influence of oceanic conditions up to 3 months

prior to each cruise month.

Bathymetric and distance variables

For each observation point along cruise transects and each 1 km2 prediction cell midpoint, we

calculated water depth and distances to important land and ocean features. Key features

included mainland, Cordell Bank, nearby islands in the Farallon islands archipelago, and to

the 200 m isobath (or shelf-break). The shortest distance to each of these features was calcu-

lated in ArcGIS (10.2, ESRI Redlands, CA) from the midpoint of each 3 km bin or 1 km2 pre-

diction cell. For each bin and cell, depths were calculated in ArcGIS using a bathymetric

surface (California Department of Fish and Wildlife) and we generated a contour index–a met-

ric of ocean floor roughness–using methods outlined in Yen et al. [20].

Acoustic krill biomass

Zooplankton were sampled acoustically every 2 s along transects using a Simrad EK60 echo-

sounder sampling at 38, 120 and 200 kHz. Raw volume backscatter data were post-processed

and integrated into 200 m width by 5 m depth bins using Echoview software (Sonardata, Pty.

Ltd.). To avoid surface and bottom interference, backscatter from 0–5 m and from depths <2

m from the bottom were excluded. The level of noise reduction was adjusted by visually com-

paring echograms until noise at depth appeared equal [52] and time-varied noise was sub-

tracted from each echogram before integration into bins [53].

We estimated target strengths (the ratio of reflected to transmitted sound wave intensity)

for krill using the Stochastic Distorted-Wave Bourne Approximation [54–57]. We used the
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Stochastic Distorted-Wave Bourne Approximation for Antarctic krill by Demer & Conti [56]

to estimate target strengths for 8–30 mm length krill, roughly spanning the size of juvenile,

immature, and adult stages for E. pacifica and T. spinifera.
Decibel differencing and echogram classification was conducted according to methods

detailed in Manugian et al. [53]. Krill biomass (g/m2) was calculated by first apportioning the

acoustic backscatter to a length-frequency distribution of individual krill determined from

trawl surveys concurrent to acoustic sampling. The backscatter was divided by the correspond-

ing individual backscattering cross sections and then multiplied by a length-weight relation-

ship to obtain the mass of krill [52]. The length-weight relationship was derived from sampled

individual krillML = 0.0002L2–0.0017L + 0.005, where L is an individual krill length (mm).

Acoustic data were integrated throughout the water column to 200 m depth and binned to 3

km bins to match other datasets (n = 5,801; maximum biomass: 34,699 g).

Blue and humpback whales

Marine mammal at-sea surveys were conducted during each ACCESS cruise from the vessel’s

flying bridge. Standardized ship-board line-transect methods [58] were used to count whales

Table 1. Description and ranges of variables used to model krill distribution and blue and humpback whale abundance. All variables used in both modeling exercises

with exception of effort (� used only in krill analysis) or detection (�� used only in blue whale analysis) variables.

Variable Description Mean ± SD Min–Max

values

CV

Oceanographic Variables
Temperature, surface Average surface (1–9 m) temperature (˚C) 12.57 ± 2.06 8.2–18.55 0.16

Temperature,

midwater

Average midwater (30–40 m) temperature (˚C) 10.24 ± 1.11 7.99–14.95 0.11

Salinity, surface Average surface (1–9 m) salinity (psu) 33.43 ± 0.33 29.88–34.04 0.01

Salinity, midwater Average midwater (30–40 m) salinity (psu) 33.62 ± 0.26 32.63–34.08 0.01

Fluorescence, surface Average surface (1–9 m) fluorescence (mg / m3) 9.1 ± 10.2 0.03–58.87 1.12

Fluorescence,

midwater

Average midwater (30–40 m) fluorescence (mg / m3) 3.19 ± 3.68 0.14–26.1 1.15

Bathymetric Variables
Distance to

mainland

Distance from bin midpoint to nearest mainland feature (km) 25.15 ± 11.09 1.21–50.46 0.44

Distance to island Distance from bin midpoint to nearest island feature (km) 27.25 ± 17.49 0.06–108 0.64

Distance to Cordell

Bank

Distance from bin midpoint to nearest edge of Cordell Bank (km) 38.54 ± 24.35 0.81–115.47 0.63

Distance to 200 m

isobath

Distance from bin midpoint to 200 m isobath (km) 12.74 ± 11.21 0.02–47.3 0.88

Average depth Average depth at bin midpoint (m) (California Department of Fish and Wildlife) 168.73 ± 224.51 7.18–2075.63 1.33

Contour index Contour index: (max depth—min depth)/max depth (unitless) (California Department of Fish and

Wildlife)

22.87 ± 20.47 0–100 0.90

Climate Indices (present month up to 3-month lag)
SOI Monthly Southern Oscillation Index value (http://www.cgd.ucar.edu/cas/catalog/climind/soi.html) 0.11 ± 1.77 -6.7–4.3

PDO Monthly Pacific Decadal Oscillation value (http://jisao.washington.edu/pdo/PDO.latest) 0.04 ± 1.16 -2.21–2.35

NPGO Monthly North Pacific Gyre Oscillation value (http://eros.eas.gatech.edu/npgo/) 0.21 ± 1.08 -2.1–2.23

UI Averaged Upwelling Index value (36˚N 122˚W and 39˚N 125˚W) (http://www.pfeg.noaa.gov/products/

PFEL/modeled/indices/upwelling/NA/data_download.html)

190.99 ± 81.1 2–389.5 0.42

Effort- or detection bias-related variables
Cell Count � Vertical cells, for which krill were summed (unitless) 266 ± 158 1–741 0.60

Bin Size �� Area of bin surveyed (ln(km2)) 2.75 ± 0.66 0–3 0.24

https://doi.org/10.1371/journal.pone.0235603.t001
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while “on effort”, which was defined as: daylight hours while the vessel was underway at 10

knots [11]. During all cruises, one experienced observer was stationed on each side of the ves-

sel and searched for animals using a combination of the unaided eye and 7 x 50 handheld bin-

oculars while a third observer and data recorder searched from a central position. The total

number of whales counted along each transect line was summed for each 3 km bin and

assigned to each bin’s midpoint. Of 5,801 total bin counts, there were 179 blue whale presences

(3.1%) and 930 humpback whale presences (16.0%).

Krill modeling

All modeling was conducted in R version 3.6.1 [59]. We used Generalized Linear Modeling

(GLM) in package pscl (v. 1.5.2) to predict distribution and abundance of krill using a two-part

(hurdle) model [60]. The first part was a logistic regression model estimated for probability of

observing a positive value vs. zero (3,722 positives; 996 zeros). The second part was a negative

binomial model that was conditional on a positive value in the first part of the model. A hurdle

model was chosen over an equivalent zero-inflated model because we believe there are no

structural zeros (zero counts resulting from an underlying process separate from the sam-

pling). We used log-transformed total volume of acoustically-sampled cells within each bin as

an offset term to account for variable survey effort.

We conducted univariate testing of variables of interest (Table 1) for both parts of the two-

part model; a full model was generated for krill including the most significant explanatory rela-

tionship of each variable for both parts of the model. Depending on the variable, we employed

three univariate testing strategies to select most significant relationships for inclusion in multi-

variable models. For oceanographic and bathymetric variables, we chose either a linear, qua-

dratic, cubic or quartic relationship. Variables were included in the starting model at the high-

est order for which they were significant (p<0.05) in univariate fits. For distance variables, we

tested 4 potential relationships (linear, quadratic, logarithmic, or inverse logarithmic) and

chose the most significant relationship to krill. For climate indices, we selected either a no-, 1-,

2- or 3-month lag index. We included all selected variables in a full model and used manual

backwards stepwise removal, ensuring that AIC values decreased at each step until all variables

included in both parts of the final two-part model were significant (p<0.05). We then calcu-

lated AIC and BIC for all candidate models from each step. If the lowest AIC value was more

than 2 units lower than the next model, we selected that model for the final model. When mul-

tiple models were identified using AIC (were within 2 ΔAIC units), the lowest BIC was used to

select a single model.

Once we generated the final model, we tested potential interactions between year and spe-

cific variables that were in in both the logistic and the negative binomial parts of the two-part

model based on a priori knowledge. Interactions with year were tested for static features (dis-

tance to the 200 m isobath, distance to land, distance to island, distance to Cordell Bank, con-

tour index and average depth) and we built models with significant interactions using the

likelihood ratio to test for improvement over models without an interaction. We validated

model prediction capability using k-fold cross-validation (k = 10, 20 runs each) [53]. Each of

the subsets was used as a “test” dataset and the other nine were combined and used as a “train-

ing” dataset; the procedure was repeated 20 times and we determined the root mean squared

error (RMSE), mean absolute error (MAE) and significance of the cross-validated models.

Variance inflation factor testing for multicollinearity was conducted among the linear portion

of final model variables in each part of the two-part model. To examine spatial autocorrelation

of the model, we calculated the Moran’s I statistic on the model residuals as well as creating

maps of residuals to visually check for spatial patterns.
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Whale modeling

We used a GLM with a negative binomial distribution and log link (packageMASS v. 7.3–

51.4) to predict blue and humpback whale encounter rate (animals encountered per track seg-

ment). The modeling selection process followed the guidelines outlined in the krill section

with a final model threshold of p<0.05 (for variable retention) and using an offset of log-trans-

formed bin survey area to account for effort. We also compared the selected model to a zero-

inflated GLM to determine if a zero-inflated model improved fit by addressing potential zeros

resulting from whales being below the surface and unavailable for detection. In addition to the

predictors in the negative binomial portion of the model, we tested variables affecting detec-

tion probability (swell, visibility, sea state) for inclusion in the zero-inflation portion of the

models. We used the Vuong test to compare the negative binomial models with their zero-

inflated counterparts. Based on the Vuong test results at p< 0.05, none of the zero-inflated

models showed statistical improvement, hence we did not use zero-inflated negative binomial.

We computed the track segment-specific density as:

Di ¼
ni

2� Li � ESWi � gð0Þi

where n is the number of sightings for transect segment i, Li is the segment length (km), ESW

is the effective strip half-width (km), and g(0) is the probability of detection on the transect.

ESW is also 1/f(0), where f(0) is the detection probability density function evaluated at zero

perpendicular distance. To adjust for variability in detection of whales with different survey

conditions, we used the same approaches as previous density estimation modeling [46,61,62].

Following Becker et al. [62], we used track segment-specific ESW and g(0) values (see S1 File).

However, since our study area is much more restricted in size and has unique observation con-

ditions (e.g., dense fog associated with calm waters) compared to the broader eastern Pacific,

we estimated new g(0) and ESW values from ACCESS data rather than using values from Bar-

low et al. [63] and Barlow [64] (See S1 File).

Blue whale, humpback whale and krill, hotspots and overlap

We predicted blue and humpback whale abundance and krill biomass to the 1 km2 prediction

matrix using the final models. Cruises for which there was only 1 or two lines of oceanographic

CTD data were excluded (n = 4). We created average monthly and yearly map sets for each

separate species. Monthly calculations included 2004–17 while annual values included May

through September, excluding August. We did not predict for April or October because these

months were not consistently sampled. It is important to note that months and years were not

sampled equally due to logistics. This has the potential to bias the monthly and yearly averages.

However, where fewer months were sampled in a year, those months were balanced between

higher- (July and September) and lower- (May and June) abundance months, which partially

mitigates the effect of uneven sampling. In addition, monthly averages followed closely with

seasonal patterns found in previous research [34,65]. We also created an all-inclusive (all years,

all months) map for each species’ predicted hotspots using all predictions. For this map, we

first averaged all available monthly predictions within each year, then averaged across years to

equally weight all years despite the inconsistent number of months sampled within years. All

maps were created in ArcMap 10.5 and map sets were scaled as percentiles of predicted values

from the full predicted monthly or annual dataset for the particular species to allow for com-

parison between time periods.

For each month and grid cell we calculated the Getis-Ord Gi
� statistic, which identifies spa-

tial clustering [66]. Significant positive Gi
� z-scores indicate spatial clustering of high values, in
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our case indicating species hotspots. Following Caldas de Castro and Singer [66], we used false

discovery rate to correct the problem of multiple comparisons influencing the determination

of significance for Gi
� values. False discovery rate is an alternative to overly conservative multi-

ple-comparison corrections such as the Bonferroni method, which control the family-wise

error rate. Instead, false discovery rate estimates and minimizes the proportion of false declara-

tions of significance which ensures identification of as many significant clusters as possible

[66]. Using the p-values produced using false discovery rate correction [67], we masked each

raster according to significance and z-score sign, leaving only cells with positive z-scores and

p-values less than 0.05. This created a set of monthly z-score rasters showing density hotspots

of each species. Because we were interested in the relative use of space across time, rather than

identifying hotspots due to differences in monthly abundance, we rescaled the z-scores for

each raster to vary from zero to one. We then summed all rasters to produce a map for each

species that represents the intensity and persistence of hotspot use across our study period.

The values or the resulting summed surface can range from 0 (never classified as a hotspot) to

39 (classified as the top hotspot for all 39 modeled months).

To visualize overlap between each whale species and krill, we calculated the AB ratio for each

month. In the AB ratio, the numerator represents the average product of the differences

between the concentrations of predators and prey and their respective mean concentration, and

the denominator is the product of the average concentrations of predators and prey [68]. AB

ratio measures the increase in predator productivity that can be attributed to spatial overlap

with prey, making it a good way to examine the trophic implications of fine-scale overlap [69].

We calculated the global AB ratio across the entire study region for each year to determine how

trophic overlap varies through time. For each modeled month, we also calculated a local AB

ratio for each raster cell and then took the mean and standard deviation of all AB ratio values

across time. Maps of the mean indicate average trophic importance across the study period and

maps of the standard deviation show the degree of AB ratio variability between months.

Results

Krill habitat association and predicted distribution

Significant variables in the logistic portion of the krill model (which predicted presence/

absence) included all midwater oceanographic variables, distance to bathymetric features

(mainland, island and 200 m isobath), contour index, and 4 climate indices (SOI, PDO,

NPGO, UI); all the above were significant at p<0.05 (S2 and S3 Tables). No problematic multi-

collinearity was found between covariates of the final model. Variance inflation factor was less

than 10 for all variables and below 3 for all non-interaction variables. Significant variables in

the model which predicted krill abundance (part 2 of the model) included fluorescence at both

surface and midwater depths but only midwater salinity, distance to bathymetric features

(mainland, island, Cordell Bank), depth, contour index and four climate indices (SOI, PDO,

NPGO, UI) (S2 and S3 Tables). The final krill model included an interaction in the count por-

tion of the model between year and contour index; none of the other 4 variables examined

demonstrated significant interaction with year.

Locations of high krill density varied across months (Fig 2) and years (Fig 3) for the 14-year

study period. June and July exhibited the greatest amount of predicted krill with the highest values

found along the 200 m isobath and north of Cordell Bank. Spatial patterns were similar across

months, but krill extended further onto the shelf in July and especially June. The greatest amount

of predicted krill occurred in 2017, with maximum values along the 200 m isobath. Two-thousand

and nine, 2010, 2015 and 2016 were also notable for high krill abundance, while 2010 and 2016

had the broadest distribution of krill across the shelf. Two-thousand and seven and 2013 were low
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krill years with densities largely restricted to just offshore from the 200 m isobaths. In most years,

krill were associated with the shelf break, though the strength of that relationship varied with year

(Fig 3). Across all months and years, krill hotspots corresponded with the shelf break; there was

high concentrations around the 200 m isobath and north of Cordell Bank (Fig 4).

Blue whale habitat association and predicted distribution

Three oceanographic variables significantly predicted blue whale abundance (S2 and S4

Tables): surface temperature, surface fluorescence and midwater salinity. In addition, distance

to the 200 m isobaths, depth, 3-month lagged UI and SOI, and PDO remained in the final

model. An interaction between year and 200 m isobath also resulted in a lower AIC score.

Mean blue whale abundance had the highest values in July (Fig 5), though the model fit pre-

dicts peak abundance occurs in the un-sampled month of August (S4 Fig). Abundance varied

more strongly across years than krill or humpback abundance (Fig 6). Moderate densities in

2004 were followed by several years of lower abundance until 2009. The highest predicted

Fig 2. Monthly krill biomass. Predicted krill biomass for May (predictions averaged over n = 8 years), June (n = 7), July (n = 7), and

September (n = 8); each gradation represents a decile. The 200 m isobath and boundaries of National Marine Sanctuaries included in

blue and dashed black, respectively.

https://doi.org/10.1371/journal.pone.0235603.g002
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abundances were in 2010, 2015 and 2016. In 2010 and 2016, higher overall abundances

resulted when blue whales were more broadly distributed across the shelf, while in 2015, they

were strongly associated with the shelf break. In most years, the peak abundances occurred at

Fig 3. Annual krill biomass. Predicted krill biomass, 2004–2017: variations in annual modeled habitat use (predictions averaged over n = 3 months except 2010,

n = 4; 2013–14 and 2016–17, n = 2); Legend as in Fig 2.

https://doi.org/10.1371/journal.pone.0235603.g003
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the 200 m isobath or within 10 km. Two thousand and seven, 2009 and 2012 were exceptions,

with peak density reaching a distance of 30 km in 2009 (S5 Fig). However, on average, blue

whales had high densities centered around the 200 m isobaths and extending onto the shelf,

with the exception of north of Cordell Bank where higher abundances were predicted offshore

(Fig 4). Over the study period, blue whales were about 1.8 to 2.5 times more abundant in the

vicinity of Cordell Bank than in areas around Southeast Farallon Island (Fig 4).

The blue whale model accurately predicted seasonal and spatial abundance patterns when com-

pared to patterns of ACCESS cruise sightings. For example, in May, predictions were very low (Fig

5), and there were only 9 whales seen during ACCESS cruises over the 14 years compared to 158

seen during June cruises. K-fold cross validation showed good predictive capability with RMSE

and MAE of the training and test sets matching closely (Table 2). Visual comparison of model pre-

dictions with sightings showed good concurrence in spatial distributions across months.

Humpback whale habitat association and predicted distribution

Humpback whale habitat use was associated with both midwater and surface measures of all

three oceanographic variables: fluorescence, temperature and salinity. In addition, depth, dis-

tance to the shelf break, distance to islands and four climate indices (UI, PDO, NPGO and

SOI) also remained as significant covariates in the final model (S2 and S5 Tables). Humpback

whale predictors included all the variables selected for blue whales and had similar response

shapes with a few exceptions (Table 2 and S4 and S6 Figs). Humpback whales were associated

with slightly warmer surface temperatures, more moderate midwater salinity and shallower

depths than blue whales (S6 Fig).

Humpback whale predicted density peaked in September, and whales became progressively

more broadly distributed over the season from May through September (Figs 7 and S6). May

density was low and patchy, but highest values were inshore from Cordell Bank. Overall,

Fig 4. Mean predicted abundance of blue whale, humpback whale and krill. Predicted blue and humpback whale abundance and krill biomass, averaged across all

months and years; Legend as in Fig 2.

https://doi.org/10.1371/journal.pone.0235603.g004
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humpback whales were strongly associated with the shelf break, but showed high predicted

abundances over significant regions of the shelf (Fig 4). The largest region of high-abundance

was over Cordell Bank and both to the west and east. Our models predicted lower abundance

years early in the study (2004–2006) and in 2011 and 2013. Peak predicted humpback whale

abundance was in 2017 (the highest predictions), 2016 (the broadest high abundances) and

2015 (Fig 8). Similar to blue whales, lower abundance years tended to have patchier distribu-

tions, but usually also included Cordell Bank as one of the highest abundance areas.

Krill and whale hotspots

Hotspot analysis using the Getis-Ord Gi
� statistic showed overlapping, but distinct patterns of

high spatial use for the two whale species but much stronger concurrence between blue whales

and krill than humpback whales and krill (Fig 9). Blue whales displayed strong hotspots along

the shelf break, especially to the north of Cordell Bank and south of the Farallon Islands. Addi-

tional, lower value hotspots occurred on the shelf off of Bodega Bay and in a region inshore

Fig 5. Modeled monthly blue whale abundance. Predicted blue whale abundance for May (predictions averaged over n = 8 years), June (n = 7), July

(n = 7), and September (n = 8); Legend as in Fig 2.

https://doi.org/10.1371/journal.pone.0235603.g005
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and south of the Farallon Islands. In contrast, humpback whale hotspots were largely from

Cordell Bank south and extended onto the shelf inshore of the shelf break. Krill hotspots were

Fig 6. Modeled annual blue whale abundance. Predicted blue whale abundance, 2004–2017: variations in annual modeled habitat use (predictions averaged over

n = 3 months except 2010, n = 4; 2013–14 and 2016–17, n = 2); Legend as in Fig 2.

https://doi.org/10.1371/journal.pone.0235603.g006
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strongest north of Cordell Bank and offshore of the 200 m isobaths but also extended along the

shelf break to the south.

Trophic co-occurrence of whales and krill

We examined annual variation in trophic overlap (AB ratio) between each whale species and

krill (Fig 10). Significant variability occurred between years for both blue and humpback

whales and in each case, three years showed negative AB ratio values, though the years were

different. Overlap was low or negative from 2006 to 2009 for both species. In addition, blue

whales had a negative ratio in 2011, while humpback whale AB ratio was negative in 2015.

Overall, blue whales had much greater AB ratios than humpback whales.

The time-averaged, spatially explicit AB ratios showed strong trophic overlap of blue whales

with krill in the area off the shelf and north of Cordell Bank (Fig 11). In contrast, this area had

negative AB ratios for humpback whales, indicating krill there are not heavily targeted by this

species. Both species show elevated AB ratios along the shelf break the south of Cordell Bank,

but humpback whales had higher trophic overlap with krill immediately north, east and over

Cordell Bank itself. In addition, high standard deviation of AB ratios are found over a broader

area for blue whales compared to humpback whales. While both species are targeting and

Table 2. (a) Species model results with transformation (L = linear, Q = quadratic, C = cubic, Qu = quartic) and coefficient sign for included model variables. Predictive

models used a two-part model combining logistic and negative binomial regressions for krill (n = 2991) and a negative binomial regression for blue and humpback whales.

The bold variable represents interaction of that variable with year. P-values: ‡< 0.06; � < 0.05; �� < 0.01; ��� < 0.0001. Model assessment metrics for goodness of fit and

predictive ability are also reported. RMSE = root mean squared error, MAE = mean absolute error. Climate indices are abbreviated as in Table 1.

Variable Krill: part 1 (zero) Krill: part 2 (count) Blue Whale Humpback Whale

Temperature, surface Q (-) ��� Q (-) ���

Temperature, midwater Q (+) ��� Q (+) ���

Salinity, surface C (+) ��

Salinity, midwater L (-) � L (+) �� C (+) ��� Q (-) ���

Fluorescence, surface Q (+) ��� C (-)‡ C (-) ��

Fluorescence, midwater L (+) ��� Q (+) ��� Qu (-) ��

Distance to mainland Q (-) �� Q (-) ���

Distance to island Q (+) � Q (-) ��� Q (-) ���

Distance to Cordell Q (-) �

Distance to 200 m isobath Q (+) � Q(-)�� L (-) ���

Average depth Q (-) ��� Q (-) �� L (-) ��

Contour index Q (+) �� L (+) ���

SOI Q (+) ��� Q (+) ��� L (+) ���, 3 month lag L (+) ��, 3 month lag

PDO Q (-) ��� Q (-) � L (-) � L (-) �, 2 month lag

NPGO Q (-) ��� Q (-) ��� L (-) �, 1 month lag

UI value Q (-) ���, 3 month lag Q (+) ���, 1 month lag L (-) ���, 3 month lag L (-) ���, 3 month lag

Model Assessment Metrics

Pseudo-R2 (Nagelkerke) - 0.237 0.160

RMSE (training) 1919.9 0.433 1.519

RMSE (k-fold CV) 1993.3 0.439 1.523

MAE (training) 756.0 0.113 0.651

MAE (k-fold CV) 775.4 0.109 0.621

Null Deviance - 1007.46 2794.8

Residual Deviance - 495.48 2002.7

Model Pr(>Chi) < 0.0001 < 0.0001 < 0.0001

https://doi.org/10.1371/journal.pone.0235603.t002
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utilizing krill along the shelf break, there is some separation in space. Humpback whale trophic

overlap is more persistent in time, but lower than that of blue whales.

Discussion

Krill habitat use

Krill hotspots within the California Current System consistently correspond with the shelf-

break region, particularly waters around and north of Cordell Bank. Our models show the

greatest predicted krill abundance in late spring and early summer. In the later years of our

study, elevated krill densities corresponded with increased upwelling and more productive

ocean conditions [70]. Krill are abundant in regions of increased upwelling and tend to aggre-

gate near or along ocean-floor features like the steep sides of submarine canyons, subsurface

plateaus, islands, or the shelf break [17,19,22,71].

Krill abundance was associated with climate indices and UI. In our modeling process, we

included the possibility of up to a 3-month lag in each climate variable to allow for a delayed

Fig 7. Modeled monthly humpback whale abundance. Predicted humpback whale abundance for May (predictions averaged over n = 8 years), June

(n = 7), July (n = 7), and September (n = 8); Legend as in Fig 2.

https://doi.org/10.1371/journal.pone.0235603.g007
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effect on prey and predators. However, with the exception of UI (which best represents local

conditions), no time-lags on final model climate indices related significantly to krill abun-

dance. Previous studies on euphausiids within the California Current System have found

Fig 8. Modeled annual humpback whale abundance. Predicted humpback whale abundance, 2004–2017: variations in annual modeled habitat use (predictions

averaged over n = 3 months except 2010, n = 4; 2013–14 and 2016–17, n = 2); Legend as in Fig 2.

https://doi.org/10.1371/journal.pone.0235603.g008
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Fig 9. Hotspot intensity for blue whales, humpback whales and krill. Hotspots are the sum of normalized (0–1) Getis-Ord Gi
� significant positive z-scores for modeled

abundances from cruises during May—July and September of 2004–2013. The 200 m isobath and boundaries of the Traffic Separation Scheme are included in solid and

dashed black, respectively.

https://doi.org/10.1371/journal.pone.0235603.g009

Fig 10. Annual AB ratio calculated for blue (A) and humpback (B) whale overlap with krill. Positive ratios indicate strong overlap, zero is no pattern of overlap and

negative values can indicate different habitat use between species or avoidance of predators by the prey.

https://doi.org/10.1371/journal.pone.0235603.g010
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significant associations between krill and UI at 30-, 90-, or 365-day lags, demonstrating the

dependence of adult krill survival and development on both short- and long-term ocean con-

ditions [72,73].

The high productivity of the California Current sustains the krill in this region, which is

specifically known for its upwelling intensity. The positive relationships between krill abun-

dance and midwater salinity, cooler midwater temperature and high surface fluorescence, cap-

ture the increase in krill production that occurs in stratified, mature upwelled waters with

abundant primary producers [16]. In non-productive years (2004–05, 2007 and 2013), our

models predicted krill density to be highest close to the shelf break. In productive years (2008–

11 and 2015–17), krill were predicted to be more broadly distributed over the continental

shelf. However, adjacent and upstream areas are also critical to the krill life cycle, as advection

by ocean currents may be a first-order control on the health and abundance of krill individuals

in northern California waters [74].

Our model showed a strong association between krill and bathymetric-related variables

over the course of the local upwelling period as well as in early fall. Of those, one of the stron-

gest was the shelf break. These results agree with a recent modeling study off central and south-

ern California, where the greatest concentrations of krill were found along the shelf break [16].

Similarly, krill density assessed from independent surveys also found high abundances along

the shelf and near Cordell Bank, though variability in hotspot formation was greater at Cordell

Bank compared to south along the shelf [75].

Blue whale habitat use

Our models confirm previous findings: blue whales prefer habitat near the shelf break and

aggregating bathymetric features that lead to accumulation and retention of krill [31,34,65,76].

We found areas of high blue whale concentration on the outer edge of the continental shelf,

particularly areas east and north of Cordell Bank. Predicted whale abundance was highest in

late summer and fall, with the greatest predicted values in July. Similar to krill, whales were

found in greater abundances in the second half of our study, a period that exhibited increased

upwelling and more productive ocean conditions [70].

Blue whale abundance was associated with climate indices (PDO and SOI), bathymetry and

local oceanography (UI, temperature, salinity, and fluorescence). Several other studies have

shown temperature as the most significant variable in predicting blue whale habitat at various

spatial scales [77–79], and our models showed a similar temperature relationship. Despite the

relatively small area covered by our data, basin-scale indices also had good explanatory power

for blue whale abundance patterns in our region. Recent work has highlighted the apparent

capability of blue whales to sense ocean conditions at a variety of scales [80]. In addition, both

long-term memory and response to dynamic conditions influence the use of persistent prey

hotspots such as Cordell Bank [81].

Overall, blue whale abundance varied greatly among non-productive (2004–07) and pro-

ductive (2008–11) conditions, with whales nearly absent in non-productive years. Benson et al.
[26] found blue whales absent from Monterey Bay in years with El Niño-like conditions con-

comitant with a reduction in offshore zooplankton biomass. Lagged PDO and NPGO were sig-

nificant in predicting whale abundance, and may be related to the timing of peak primary

productivity as it moves north along the California coast. Some individuals consistently target

Fig 11. Mean (A, C) and standard deviation (B, D) of AB ratio calculated across all modeled months for blue (A, B) and humpback (C, D) whale overlap with krill.

Positive mean ratios indicate overlap, zero is no overlap and negative values can indicate different habitat use between species, or avoidance of predators by the

prey. Higher standard deviation indicates greater variation in degree of whale overlap with krill across months.

https://doi.org/10.1371/journal.pone.0235603.g011
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persistent foraging areas such as the greater Farallones region, while others quickly leave in

search of better foraging opportunities [8,81].

Bathymetric-related variables were also strongly associated with whale distribution in our

model. This relationship likely emerges because bottom features create currents and conver-

gences which aggregate krill. Since whales depend on krill patches with high local density,

these features provide reliable foraging resources [18,65,76,82–84]. Other local studies of blue

whales have shown that areas of steep bathymetry are associated with blue whale foraging in

particular. For example, two whales tagged in Monterey Bay targeted prey and frequently dove

to depths between 150 and 200 m, focusing foraging energy along the Monterey Submarine

Canyon [65]. Schoenherr [18] also showed a close relationship between blue whales, euphausi-

ids, and the Monterey Submarine Canyon’s edge. Prey in nearby Monterrey Bay are also aggre-

gated along steep areas such as shelf breaks, which, coupled with highly productive waters,

attract these predators [17,19,22].

Humpback whale habitat use

Compared to blue whales, our model of humpback habitat use included many more local

oceanographic predictors: both surface and midwater measures of all three local ocean vari-

ables remained in the model, suggesting that humpback whales rely more heavily on the

immediate ocean conditions to guide habitat use. This discrepancy may also be indicative of

the different feeding ecology of blue and humpback whales. Blue whales eat krill almost exclu-

sively while humpback whales are generalist feeders, also consuming forage fish such as

anchovy [81,85]. Since forage fish are highly mobile, their distribution may mirror contempo-

raneous oceanography more closely than less mobile krill. For variables in both species models,

the functional shapes of predictors were similar for humpback and blue whales (i.e., the same

transformation was selected) (S4 and S6 Figs). One exception was distance to the shelf break

which decreased linearly for humpbacks compared to the quadratic relationship of blue

whales. This difference matches a known difference in ecology between the species: humpback

whales are more broadly distributed across the shelf and occur further inshore [34].

Hotspots, spatial co-occurrence and management implications

Our models of blue and humpback whales support multiple studies that have identified habitat

and resource partitioning between sympatric whale species [33,34,86–89]. Similar to the find-

ings of Fossette et al. [34], our results show that blue whales are more strongly associated with

the shelf break (and the dense krill there), while humpback whales are more broadly distrib-

uted on the shelf likely due to their ability to switch between krill and fish prey [34,85]. In addi-

tion, our modeled peak of blue whale abundance coincides with that for krill (August), while

humpback whale abundance peaks later in the season (September/October), after krill abun-

dance has begun to decline (Figs 2, 5 and 7). Despite their greater flexibility in diet, humpback

whales are known to extensively utilize krill and may target peak krill production in our region

during migration [34]. However, the better alignment of blue whale abundance with krill

makes sense given that they are exclusively krill predators [81]. The stronger association of

humpback whales with the shelf break in May and June suggests they target krill early in the

season. Later in the season (July and September), a broader distribution across the shelf break

(Fig 7) supports multiple lines of evidence that humpback whales switch to consuming more

forage fish as krill productivity decreases [34,85].

Our model results show good evidence for temporal niche separation and some support for

spatial segregation between blue and humpback whales. Our hotspot and trophic overlap anal-

ysis provides additional verification of resource partitioning. While blue and humpback whale
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hotspots overlap, the highest hotspot areas for krill coincide only with blue whale hotspots (Fig

9). The higher trophic overlap offshore for blue whales coincides with their greater ability to

utilize deeper prey (Fig 11A). Humpbacks, on the other hand, overlap more in shallower

waters and where Cordell Bank aggregates krill at shallower strata (Fig 11C).

Due to their size, blue whales have higher feeding rates than other baleen whale species and

require high density krill patches to achieve positive energetic intake [35,36,90]. For example,

Goldbogen et al. [91] found blue whales dove more than twice as frequently as bowhead whales

to similar foraging depths. Our krill model only predicts average density across space and

time, rather than occurrence of the high-density patches required by blue whales. This differ-

ence may explain why blue whales show distributions and hotspots further inshore than krill

(Figs 4 and 9) that don’t align with the trophic overlap pattern (Fig 11). When krill patches

occur both on and off the shelf, it is more energetically efficient to dive in shallower waters if

patches of krill are of similar density [90]. In addition, during periods with low overall krill

abundance and productivity, patchy but dense krill aggregations may serve as important

resources for blue whales.

Hotspots and high trophic co-occurrence for both blue and humpback whales occur at the

end of the northern shipping lane (Figs 9 and 11). Large whales are vulnerable to ship strikes,

especially in areas where high numbers of vessels are traveling quickly [92–94]. Some research

suggests blue whale populations have not rebounded to pre-whaling numbers in part due to

ship strikes in high vessel-traffic areas [8,94–96] (although see [97]). The incidence of strikes is

most likely underreported [94,96,98,99]; since whales are negatively buoyant, they generally

sink rather than float or strand ashore [100] where they would be more easily observed. Thus,

the true mortality rate is likely more than 10 times higher than the reported number of

stranded carcasses [94,99]. Within the Sanctuaries, there have been 20 reported ship-strike

mortalities and at least 10 injured or possibly killed whales of varied species between 1988 and

2011 [101]. In 2010 alone, there were 5 fatalities, one a near-term pregnant blue whale (J.

Jahncke, personal observation).

In areas of high use by both humans and threatened species, limited management has been

implemented to reduce possible ship strike incidents, although the effectiveness of these

attempts, especially within CBNMS and GFNMS is in doubt [102,103]. In 2013, the overall foot-

print of San Francisco Bay traffic was modified to improve maritime safety. However, while this

action decreased the area of human use in these sanctuaries, it concentrated traffic through the

major whale hotspot north and east of Cordell Bank, highlighted in this paper. Since 2014, the

sanctuaries have implemented a voluntary speed request during the months when whales are

most abundant. However, cooperation with the program has been limited, and still falls well

below what has been achieved in other regions where speed limits are mandatory [103].

Enforceable seasonal restrictions, rather than voluntary requests, have been successfully imple-

mented to protect whales elsewhere (e.g., Stellwagen Bank National Marine Sanctuary). Imple-

menting seasonal restrictions on vessel speed and route usage to avoid whale hotspots identified

in this study can reduce the vulnerability of whales to ship strikes in Sanctuaries’ waters.

Fuel-usage recommendations and regulations are also likely impacting the risk of whale

strikes in CBNMS and GFNMS. Fuel type requirements can change vessel traffic patterns by

requiring different fuels and emissions levels near the coast. Effective as of June 2009, the Cali-

fornia Air Resources Board Ocean-Going Vessel (OGV) Fuel Rule required vessels within 24

nmi of the California coastline to use more expensive low-sulfur fuels [101,102,104]. This ruling

reduced potential vessel-interaction with blue whales when the majority of traffic in and out of

San Francisco Bay shifted routes from use of southern and northern lanes to western lanes,

away from the coast, in attempts to reduce time spent using more expensive low-sulfur fuels

[105]. However, in early 2015, a different federal regulation took precedence over the California
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Air Resources Board, requiring vessels within 200 nmi of the United States to use fuels with an

oil sulphur limit of 0.1% m/m to achieve lower particulate matter emissions [104]. With this

new regulation, the financial incentive to stay off the coast disappeared. Since this change, traffic

has shifted back to using the north and south lanes, likely increasing risk to whales [104].

We encourage managers to utilize our identified hotspots to protect foraging whales by

implementing a seasonal management area to slow vessel traffic and increase caution in these

areas in late spring to early fall. One solution to this challenge would be to eliminate all but the

western lane, focusing traffic back to the route that most avoids whale density and important

feeding habitat (Fig 11). This action, in addition to requiring seasonal speed and route changes,

will help mitigate the number of potential lethal encounters ships have with foraging whales

within the Sanctuaries.
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