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BACKGROUND: C-reactive protein (CRP) is gaining credibility as a prognostic factor in different cancers. Cox’s proportional hazard (PH)
model is usually used to assess prognostic factors. However, this model imposes a priori assumptions, which are rarely tested, that
(1) the hazard ratio associated with each prognostic factor remains constant across the follow-up (PH assumption) and (2) the
relationship between a continuous predictor and the logarithm of the mortality hazard is linear (linearity assumption).
METHODS: We tested these two assumptions of the Cox’s PH model for CRP, using a flexible statistical model, while adjusting for
other known prognostic factors, in a cohort of 269 patients newly diagnosed with non-small cell lung cancer (NSCLC).
RESULTS: In the Cox’s PH model, high CRP increased the risk of death (HR¼ 1.11 per each doubling of CRP value, 95% CI: 1.03–1.20,
P¼ 0.008). However, both the PH assumption (P¼ 0.033) and the linearity assumption (P¼ 0.015) were rejected for CRP, measured
at the initiation of chemotherapy, which kept its prognostic value for approximately 18 months.
CONCLUSION: Our analysis shows that flexible modeling provides new insights regarding the value of CRP as a prognostic factor in
NSCLC and that Cox’s PH model underestimates early risks associated with high CRP.
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Patients with advanced non-small cell lung cancer (NSCLC) have a
grim prognosis; most will die in less than a year (Schrump et al,
2008). Identifying patients at higher risk of very short survival
times is important for optimal clinical management. Furthermore,
the patients’ understanding of their prognosis influences their
willingness to receive life-extending therapy (Weeks et al, 1998a).
Yet, estimation of expected survival times remains a clinically
difficult (Glare, 2005; Watine et al, 2006; Kellett, 2008) and an
emotionally challenging task (Berry, 2008).

In recent years, different biological markers have been suggested
to improve prognostication of cancer (Mahmoud and Rivera,
2002; Maltoni et al, 2005). Among them, inflammatory markers,
especially C-reactive protein (CRP), have been suggested to predict
survival in different cancers (McMillan, 2008; Koch et al, 2009),
including NSCLC (Kato et al, 2000; Forrest et al, 2003, 2004). In
these published studies of NSCLC mortality (Kato et al, 2000;
Forrest et al, 2003, 2004), the prognostic value of CRP was assessed
using the Cox’s proportional hazard (PH) model (Cox, 1972).

To improve both prognosis and clinical management, an
accurate assessment of the independent relationships between

putative prognostic factors, such as CRP, and mortality is
paramount. To ensure valid conclusions and accurate risk predic-
tion, prognostic studies should rely on statistical methods that
correctly represent the actual structure of empirical data and the
true complexity of the biological processes under study. From this
perspective, it is imperative to verify the assumptions underlying
the statistical models to be used in the analysis (Altman et al,
1995). The Cox’s PH model imposes the assumption that the
mortality hazards associated with different patterns of covariates
(‘risk profiles’) are proportional, which implies that the estimated
effects of prognostic factors on the hazard are a priori constrained
to remain constant over the entire follow-up time (Cox, 1972). This
crucial assumption is rarely tested in prognostic studies of cancer
mortality (Altman et al, 1995). Yet, in different cancers, it has
been shown to be inconsistent with the actual effect of various
prognostic factors, whose effect on mortality did change over time
(Gray, 1992; Hess, 1994; Kooperberg et al, 1995; Rachet et al, 1998;
Quantin et al, 1999; Lambert et al, 2005; Remontet et al, 2007;
Binquet et al, 2009). In such situations, an inappropriate use of the
Cox’s PH model may lead to biased results, inaccurate prediction,
loss of statistical power, and incorrect conclusions (Altman et al,
1995; Abrahamowicz et al, 1996).

Furthermore, conventional statistical models, such as the Cox’s
PH model, rely on the linearity assumption, according to which
the relationships between continuous prognostic factors and the

Received 17 August 2009; revised 8 February 2010; accepted 15
February 2010; published online 16 March 2010

*Correspondence: Dr B Gagnon; E-mail: bruno.gagnon@clinepi.mcgill.ca

British Journal of Cancer (2010) 102, 1113 – 1122

& 2010 Cancer Research UK All rights reserved 0007 – 0920/10 $32.00

www.bjcancer.com

C
li
n

ic
a
l

S
tu

d
ie

s

http://dx.doi.org/10.1038/sj.bjc.6605603
http://www.bjcancer.com
mailto:bruno.gagnon@clinepi.mcgill.ca
http://www.bjcancer.com


respective outcome measure (logarithm of the hazard in the case of
Cox’s PH model) are linear. This would imply that, for example,
the relative risk of mortality is the same when comparing (a) an 80-
year old vs a 60-year-old subject, and (b) a 40-year old vs a 20-year
old, because in both cases there is a 20-year age difference. Again,
in the last two decades, several epidemiological and clinical studies
have shown that the linearity assumption is seriously violated for
many prognostic and risk factors, and its a priori acceptance may
lead to important biases and misleading conclusions (Hastie and
Tibshirani, 1990; Sleeper and Harrington, 1990; Gray, 1992;
Royston and Altman, 1994; Abrahamowicz et al, 1997; Remontet
et al, 2007; Royston and Sauerbrei, 2008). Thus, the methodo-
logical arguments and the empirical evidence indicate that both the
PH and the linearity assumptions should be carefully verified in
prognostic studies.

Our aim is to re-assess the ability of CRP to predict survival in a
cohort of patients recently diagnosed with non-resectable NSCLC
before receiving chemotherapy. To this end, we used the flexible
generalisation of the Cox’s model, which permits testing the
conventional PH and linearity hypotheses, and avoids imposing
the a priori assumptions underlying the Cox’s PH model. If
these hypotheses were rejected, non-proportional and/or non-
linear effects of particular prognostic factors were estimated
(Abrahamowicz and MacKenzie, 2007).

PATIENTS AND METHODS

Patients

Since May 2001, clinical data of patients with lung cancer, observed
at the Jewish General Hospital Pulmonary Oncology Clinic (POC)
in Montreal, Quebec, Canada, were prospectively recorded in a
computerised database. These data included, among other charac-
teristics, age, sex, stage, ECOG performance status (Oken et al,
1982), smoking status, type of first-line chemotherapy regimen, and
the blood parameters listed in Table 1. The level of CRP started to
be measured in January 2002 by one POC physician and, after
January 2005, by all POC physicians. A majority of the blood tests
were taken within 3 days before the first chemotherapy dose.

For the purpose of this study, we extracted the data for patients
treated between 9 April 2002 and 18 September 2008, and
terminated their follow-up on 15 March 2009. Dates of death were
obtained from clinical charts. The study was approved by the
Institutional Review Board of the Jewish General Hospital.

Statistical analyses

Data analyses Descriptive statistics were used to compare the
baseline characteristics of subjects for whom CRP was available
and who were, thereby, included in the analyses, vs those excluded.

In the main analyses, we used multivariable survival analytical
methods for right-censored time-to-event data (Cox, 1972). Time 0
was defined as the date of the first chemotherapy treatment and the
event of interest was death because of any cause. Patients who were
alive at the end of the study, on 15 March 2009, were censored. In
preliminary analyses, we assessed the distributions of continuous
variables and used a logarithmic transformation with base 2 for the
only two variables with considerable positive skewness: CRP and
lactate dehydrogenase (LDH).

Statistical models Two different types of survival analytical
models were used. First, we used both the univariate and the multi-
variable Cox’s PH models (Cox, 1972), which a priori imposed the
PH assumption and, for continuous covariates, the linearity
assumption.

The second model represented a flexible generalisation of the
Cox’s model, recently developed and validated by Abrahamowicz

and MacKenzie (Abrahamowicz and MacKenzie, 2007). The
general idea of flexible modeling is to avoid restrictive a priori
assumptions underlying standard statistical models and model the
effects of prognostic factors through flexible functions, the shapes
of which are estimated directly from the data, rather than being
imposed by the model. Such flexible models use various, typically
computationally intensive, statistical techniques, such as regres-
sion splines (Ramsay, 1988), generalised additive models (Hastie
and Tibshirani, 1990), or fractional polynomials (Royston and
Sauerbrei, 2008). The flexible model used in our analyses uses
quadratic regression splines, that is, piecewise quadratic poly-
nomials that can recover a large variety of clinically plausible
functions and, thus, accurately estimate both non-PH and non-
linear effects of continuous predictors (Abrahamowicz and

Table 1 Patients’ characteristics (N¼ 269)a

Variables Descriptive statistics

Age: mean (s.d.) 64.3 (11.0)
Sex: female n (%) 136 (50.6)
Stage: IIIA/IIIB n (%) 70 (26.0)

IIIB+pleural effusion/IV n (%) 199 (74.0)

ECOGb performance status:
0–1 n (%) 213 (79.2)
2 n (%) 56 (20.8)

Smoking status: Never n (%) 41 (15.2)
Ever n (%) 228 (84.8)

Chemotherapy type:
Single-agent n (%) 66 (24.5)
Double-agent n (%)c 203 (75.5)

Pathology:
Adenocarcinoma n (%) 177 (65.8)
Large cell carcinoma n (%) 22 (8.2)
Squamous cell carcinoma n (%) 32 (11.9)
Undifferentiated carcinoma n (%) 38 (14.1)

CRPd:
Mean (s.d.) 36.2 (53.6)
Median {quartile} (range) 13.1 {4.9, 39.9} (0.3, 316.8)

Log2 CRP:
Mean (s.d.) 3.8 (2.2)
Median {quartile} (range) 3.7 {2.3, 5.3} (�1.7, 8.3)

Albumind:
Mean (s.d.) 40.2 (4.1)

LDHd:
Mean (s.d.) 248.8 (199.4)
Median {quartile} (range) 211 {169, 263} (98, 2500)

Log2 LDH:
Mean (s.d.) 7.8 (0.6)
Median {quartile} (range) 7.7 {7.4, 8.0} (6.6, 11.3)

Calciumd: mean (s.d.) 2.35 (0.19)
Alkaline phosphatased: mean (s.d.) 104.2 (59.2)
Haemoglobind: mean (s.d.) 130.2 (17.1)
Plateletd: mean (s.d.) 326.7 (117.2)
Neutrophil countsd: mean (s.d.) 7.09 (3.55)
Lymphocytesd: mean (s.d.) 1.59 (0.70)
Percentage of weight loss: mean (s.d.) 4.9 (6.6)

Abbreviations: CRP¼C-reactive protein; LDH¼ lactate dehydrogenase. aN¼ 269
for all variables except for calcium for which N¼ 264. bEastern cooperative oncology
group. cAll include platinum-based chemotherapy. dNormal values: CRP p10 mg l – 1;
albumin 35–52 g l – 1; LDH 110–210 U l – 1; calcium 2.12–2.62 mmol l – 1; alkaline
phosphatase 56–120 U l – 1; haemoglobin 140–180 g l – 1; platelet 140–440� 109 l – 1;
neutrophil counts 1.60–7.70� 109 l – 1; and lymphocytes 0.80–4.40� 109 l – 1.
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MacKenzie, 2007). Throughout the paper, we use the term ‘flexible
spline-based model’ to refer to the flexible generalisation of the
Cox’s PH model that uses quadratic regression splines to model
time-dependent and/or non-linear covariate effects with quadratic
regression splines, as in (Abrahamowicz and MacKenzie, 2007).

The flexible spline-based model allowed us to test, for each
continuous prognostic factor, the two assumptions underlying
the Cox’s PH model: (a) the PH hypothesis that the effect of the
predictor remained constant over time and (b) the linearity of the
effect on the log hazard (linearity hypothesis). If one or both of
these assumptions were rejected for a given prognostic factor, then
the flexible spline-based model permitted an accurate re-modeling
of its effect on the hazard. Specifically, if the PH hypothesis was
rejected, with Po0.05 for a non-parametric model-based like-
lihood ratio test (LRT), then splines were used to model the time-
dependent hazard ratio (HR), that is, to estimate how the strength
of the predictor’s effect on the hazard changes with increasing
follow-up time (Abrahamowicz and MacKenzie, 2007). Conversely,
if the linearity hypothesis was rejected, then splines were used to
assess how the risk (log hazard) changed with increasing predictor
value. If these hypotheses were not rejected (P40.05), then, to
avoid over-fit bias (Abrahamowicz and Ciampi, 1991) and adhere
to the model parsimony principle, the predictor effect was
estimated as, respectively, constant-over-time HR and/or linear
function. For binary predictors, only the PH hypothesis was
tested and, if rejected, the time-dependent effect was estimated
(Abrahamowicz et al, 1996).

Univariate analyses The analyses started with a series of
separate, univariate Cox’s PH models, each evaluating one of the
following baseline characteristics, initially considered as potential
prognostic factors for NSCLC mortality (Table 1): (a) categorical
variables: sex, stage (IIIA and IIIB without pleural effusion vs IIIB
with pleural effusion and IV), performance status (ECOG 0– 1
vs 2), smoking history (ever vs never), chemotherapy regimen
(double vs single agents) and tumour pathology, and (b) conti-
nuous variables: age, log-transformed CRP (log2 CRP), albumin,
log-transformed LDH (log2 LDH), calcium, alkaline phosphatise
(ALP), haemoglobin, platelet, absolute neutrophil count (ANC),
lymphocyte count, and percentage of weight lost.

Next, we estimated a series of univariate flexible spline-based
models, each for a single prognostic factor, which tested the PH

and, for continuous variables, the linearity assumptions, without
adjustment for the other variables.

Strategies for building multivariable models Building a flexible
multivariable model is challenging, especially if potential pre-
dictors are correlated (Sauerbrei et al, 2007). To build parsimo-
nious final multivariable models, we used a multi-step procedure
(Binquet et al, 2008). The flow chart in Figure 1 illustrates the
consecutive steps of the analyses, explains how the results of the
earlier steps affected the later steps, and identifies which results are
presented in which table.

(1) At the first step, we first included all the aforementioned
variables, listed in Table 1, in the multivariable Cox’s PH model
and then used the stepwise selection procedure, with Po0.05 and
P40.05 for the two-tailed Wald test as the criteria for, respectively,
variables inclusion and elimination from the model. The selected
variables were included in the final multivariable Cox’s PH model.
In addition, we have forced into the final Cox’s PH model the
performance status (ECOG 0 –1 vs 2), even if it has a marginally
nonsignificant effect in our analyses (P¼ 0.086), because it is an
essential criterion for the treatment of unresectable NSCLC (Pfister
et al, 2004).

(2) The next step of the multivariable model building process
accounted for the fact that a variable may not be a significant
predictor of survival in the Cox’s PH model, which imposes
a priori the PH and linearity assumptions, but may still have a
significant time-dependent or non-linear effect (Abrahamowicz
and MacKenzie, 2007). Therefore, the second step of the model
building process involved fitting a series of separate flexible spline-
based models, each of which tested the time-dependent and, for
continuous variables, non-linear effects of a single variable, while
adjusting for the PH-and-linear effects of all other variables
selected at step 1 (Binquet et al, 2008). In other words, each model
fitted at step 2 expanded the multivariable Cox’s PH model built at
step 1 by estimating and testing time-dependent and non-linear
effects of a single predictor. On the basis of the results of the
tests carried at the first and the second steps, we identified
those variables that had statistically significant effects (Po0.05)
in at least one of the following: (a) Wald test of the association
in the multivariable Cox’s PH model selected by the stepwise
selection in step 1, and/or (b) non-parametric LRT’s of time-
dependent and/or non-linear effect(s) in the respective flexible

Step 3: Adding all TD/NL effects selected at step
2 to the final multivariable Cox’s PH model.
Elimination of non-significant TD/NL effects

(P>0.05)

Potential prognostic factors
for NSCLC mortality

Step 1: Multivariable Cox’s PH model.
Stepwise selection with P< 0.05 as the criterion for

both entry and stay

Step 2: Series of flexible spline-based model, one
for each predictor, adjusting for the PH-and-linear

effects of all other variables selected at step 1.
Selection of significant TD/NL effects (P< 0.05)

Table 4Final multivariable flexible
spline-based model

Table 3
Final multivariable Cox’s

PH model with variables selected
at step 1 and/or step 2

Figure 1 Flowchart of multivariable models building.
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spline-based model, estimated at step 2. Only those variables
that met criteria (a) and/or (b) were included in the final
multivariable versions of both Cox’s PH model and the flexible
spline-based model.

(3) To build the final multivariable flexible spline-based model,
we first expanded the final Cox’s PH model by including all ‘non-
parametric’, that is, time-dependent and/or non-linear, effects
that were statistically significant (Po0.05) at step 2. We then
eliminated all those ‘non-parametric’ effects that became non-
significant (P40.05) when adjusted for other ‘non-parametric’
effects as well as for all variables selected, and forced into the
multivariable model, at steps 1 and 2. As a result, the final
multivariable flexible spline-based model included only those
time-dependent and non-linear effects that remained statistically
significant even when adjusted for each other, while all other
variables selected for both final multivariable models were
represented by parametric constant-over-time (PH) linear effects
(Binquet et al, 2008).

In the final flexible spline-based model, we tested the
overall statistical significance of the effects of those continuous
variables, which were represented by both non-linear and
time-dependent functions. To this end, we used the 5-degree-of-
freedom (df) non-parametric LRT that compared the deviance
of the final flexible model with that of the corresponding
reduced flexible model, from which a given variable was
completely eliminated (Abrahamowicz and MacKenzie, 2007).
The resulting P-value indicated the overall statistical significance
of the independent association between the hazard and the
variable, after having accounted for its non-linear and time-
dependent effects.

The goodness-of-fit of the Cox’s PH model vs its flexible spline-
based extension was compared with the Akaike’s information
criterion (AIC) (Akaike, 1974), which accounted for the increased
complexity of the flexible spline-based model. A decrease of 10 or
more AIC points indicates an important improvement in the
model’s predictive ability (Quantin et al, 1999).

Model validation To further compare the predictive ability of
our final flexible spline-based model with that of the Cox’s PH
model, with the same predictors, we relied on the ‘internal’ cross-
validation procedure (Harrell, 2001). Specifically, we used the
five-fold cross-validation algorithm (Rachet et al, 2003; Binquet
et al, 2008), which involved splitting our sample of 269 patients
into five randomly selected, mutually exclusive subsets of equal
size. Then, the following two steps were repeated five times,
separately for the Cox’s PH and the flexible spline-based
model. (1) One of the five subsets (validation subsample) was
left out and the model was estimated using data from only
the four other subsets. (2) The regression coefficients from step
1 were used to calculate the partial deviance for the respective
validation subsample, that is, to assess how well the outcomes
in that subsample were predicted by a given model (Binquet
et al, 2008). Finally, the five deviance values, each from
a different subset, were summed up to obtain the cross-validated
partial deviance of the entire data set. As each subset-
specific deviance was calculated based on the model that did
not depend on the data in the corresponding validation subset,
the lower cross-validated deviance indicated the model
expected to better predict the outcomes in an independent data
set from a similar population (Rachet et al, 2003; Binquet et al,
2008).

Descriptive analyses and conventional Cox’s PH regression
were performed using the SAS statistical package (SAS Institute
Inc., Cary, NC, USA), while the flexible spline-based model was
implemented with a customised programme (Abrahamowicz and
MacKenzie, 2007) written in the C programming language
(Abrahamowicz et al, 1996).

RESULTS

Patients’ characteristics

The CRP level was determined in 64 (39%) among 163 patients
diagnosed with NSCLC who received chemotherapy between April
2002 and January 2005, and in all 220 consecutive patients between
January 2005 and 15 September 2008. In all, 13 patients were
excluded because of missing covariate values and 2 because of
outlier values for platelet (o40 000� 10�6 l – 1). Therefore, 269
(70%) out of 383 patients were available for the analyses. Table 1
presents baseline characteristics of the patients included in the
study. For all 269 study subjects, we had complete data on all
covariates shown in Table 1, with the exception of five (2%)
patients, who had missing data on calcium. Excluded patients had
similar characteristics, except that they received single-agent
regimen of chemotherapy more frequently than the patients
included in the analyses (results not shown).

The minimum follow-up was 3 days (acute complications after
initiation of chemotherapy), with a median follow-up of 8.6
months and median survival of 9.2 months. During the follow-up,
211 (78.4%) patients died. No patients were lost to follow-up.

Univariate survival analyses and multivariable model
building

Left part of Table 2 summarises the results of separate, univariate
Cox’s PH models, each evaluating one of the potential predictors.
The third column of Table 2 shows that in the univariate Cox’s PH
models, all variables, with the exception of age and tumour
pathology, had statistically significant (Po0.05) or marginally
significant (0.05oPo0.10) crude unadjusted associations with the
hazard. However, the two last columns show that, in univariate
flexible spline-based models, either the PH or the linearity
assumptions were violated (Po0.05 for the respective test) for
several variables.

In the multivariable Cox’s PH regression analyses, the stepwise
selection procedure eliminated age, sex, tumour pathology,
calcium, haemoglobin, platelet, and percentage of weight lost, as
their adjusted PH-linear effects were all statistically nonsignificant
(P40.05). In the multivariable Cox’s PH model, the constant-over-
time, linear effects of albumin and ALP were also nonsignificant
(third column of Table 3). However, both variables were kept in
the final multivariable models because of their significant effects in
respective flexible spline-based models, estimated at the step 2 of
the model building process (see ‘Statistical analyses’). As shown in
the two last columns of Table 3, while adjusted for other predictors
selected into the final multivariable models, both time-dependent
(Po0.001) and non-linear (P¼ 0.024) effects of albumin, as well as
the non-linear effect of ALP (P¼ 0.034), were all significant.

Final multivariable Cox’s PH model

The left part of Table 3 summarises the results of the final
multivariable Cox’s PH model. C-reactive protein was found to be
a very significant independent predictor of survival, with a 11%
increase in the risk of death for each doubling of its value (adjusted
HR¼ 1.11, 95% CI: 1.03–1.20, P¼ 0.008). Among binary prog-
nostic factors, smoking (ever vs never), higher baseline cancer
stage (IIIBþ pleural effusion vs IIIA/IIIB), and type of chemother-
apy regimen (single- vs double-agent regimen) were all indepen-
dently associated with significantly higher mortality, while higher
performance status (ECOG 2 vs 0 –1) showed a trend toward worse
prognosis (P¼ 0.086). In addition to CRP, other significant conti-
nuous predictors were LDH, with more than a two-fold, 116%
increase in the risk of death for each doubling of its value, lower
lymphocyte count, and higher ANC (third column of Table 3).
In contrast to the univariate Cox’s PH model (third column of
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Table 2), in the final multivariable Cox’s PH model, albumin
was not a significant predictor of mortality (HR¼ 1.02, 95% CI:
0.97– 1.06, P¼ 0.485).

Final flexible spline-based multivariable model

At the step 3 of the model building process, we first built a large
flexible spline-based model that included all ‘non-parametric’
(time-dependent and/or non-linear) effects that were identified as
significant (Po0.05) in either of the two rightmost columns of
Table 3. After having adjusted for all other non-parametric effects
included in this large model, both the time-dependent and the
non-linear effects of ANC, as well as the non-linear effect of ALP,
became nonsignificant (data not shown). Accordingly, all three
effects were eliminated from the final flexible spline-based model.
In contrast, the time-dependent and non-linear effects of both
albumin and log2 CRP retained their statistical significance and,
thus, were kept in the final flexible model.

Table 4 summarises the results of the final flexible spline-
based multivariable model, with the same predictors as the multi-
variable Cox’s PH model shown in Table 3. In the final flexible
spline-based model, only log2 CRP and albumin had signi-
ficant non-parametric effects. For the eight other covariates, the
adjustment for non-linear and time-dependent effects of log2 CRP
and albumin do not materially alter the HRs, relative to the
Cox’s PH model, and all conclusions regarding their statistical
significance are the same in both final multivariable models
(Table 3 vs Table 4).

For log2 CRP and albumin, the last column of Table 4 shows
P-values for the 5-df tests of the overall statistical significance
of their adjusted effects on the hazard. Both P-values are below
0.01, indicating that, after having accounted for their non-linear
and time-dependent effects, both variables have highly significant
associations with mortality. For albumin, this finding is striking in
contrast to its completely nonsignificant effect in the multivariable
Cox’s PH model (P¼ 0.485 in Table 3).

Table 3 Results of the multivariable Cox’s PH model (N¼ 269)

Variables
HR

(95% CI)a
P-value for test of

no association
P-value for
test of PH

P-value for
test of linearity

Stage: (IIIB+pleural effusion/4 vs IIIA/IIIB) 1.815 (1.268, 2.597) 0.001 0.204 N/A
ECOGb performance status: (2 vs 0-1) 1.348 (0.958, 1.896) 0.086 0.165 N/A
Smoking status: (ever vs never) 2.087 (1.349, 3.230) 0.001 0.135 N/A
Chemotherapy type: (single vs double) 1.539 (1.082, 2.188) 0.016 0.067 N/A
Log2 CRP: (per doubling of CRP values) 1.108 (1.027, 1.196) 0.008 0.039 0.130
Albumin: (per kc of 1 g l – 1) 1.015 (0.974, 1.058) 0.485 o0.001 0.024
Log2 LDH: (per doubling of LDH values) 2.159 (1.700, 2.742) o0.001 0.636 0.590
Alkaline phosphatase: (per md of 10 U l – 1) 1.019 (0.993, 1.047) 0.150 0.075 0.034
Neutrophil counts: (per m of 1� 109 l – 1) 1.082 (1.037, 1.129) o0.001 0.027 0.041
Lymphocytes: (per k of 1� 109 l – 1) 1.307 (1.050, 1.626) 0.016 0.550 0.460
Deviancee 1902.2
AIC 1922.2

Abbreviations: AIC¼Akaike’s information criterion; CRP¼C-reactive protein; LDH¼ lactate dehydrogenase; PH¼ proportional hazard. N/A: the test of linearity is not
applicable to categorical covariates. aAdjusted hazard ratio (HR) and 95% confidence interval (95% CI). bEastern cooperative oncology group. ck: decrease. dm: increase.
eDeviance¼�2*log-likelihood.

Table 2 Results of univariate Cox’s PH models (N¼ 269)a

Variables
HR

(95% CI)b
P-value for test of

no association
P-value for
test of PH

P-value for
test of linearity

Age 1.009 (0.996, 1.021) 0.180 0.119 0.268
Sex: (male vs female) 1.458 (1.109, 1.917) 0.007 0.817 N/A
Stage: (IIIB+pleural effusion/4 vs IIIA/IIIB) 2.031 (1.454, 2.837) o0.001 0.426 N/A
ECOGc performance status: (2 vs 0–1) 2.034 (1.488, 2.782) o0.001 0.047 N/A
Smoking status: (ever vs never) 1.934 (1.278, 2.927) 0.002 0.253 N/A
Chemotherapy type: (single vs double) 1.845 (1.353, 2.515) o0.001 0.153 N/A
Pathology: adenocarcinoma Ref Ref Ref N/A

Large cell carcinoma 1.072 (0.670, 1.716) 0.771 0.124
Squamous cell carcinoma 0.934 (0.611, 1.428) 0.753 0.610
Undifferentiated carcinoma 1.283 (0.858, 1.917) 0.225 0.193

Log2 CRP: (per doubling of CRP values) 1.175 (1.102, 1.252) o0.001 0.002 0.078
Albumin: (per kd of 1 g l – 1) 1.098 (1.061, 1.136) o0.001 o0.001 0.190
Log2 LDH: (per doubling of LDH values) 2.336 (1.877, 2.909) o0.001 0.130 0.093
Calcium: (per me of 1 mmol l – 1) 2.025 (0.897, 4.571) 0.089 0.533 0.137
Alkaline phosphatase: (per m of 10 U l – 1) 1.044 (1.020, 1.068) o0.001 0.443 0.930
Haemoglobin: (per k of 10 g l – 1) 1.094 (1.009, 1.186) 0.030 0.087 0.394
Platelet: (per m of 10� 109 l – 1) 1.011 (0.999, 1.023) 0.063 0.044 0.623
Neutrophil counts: (per m of 1� 109 l – 1) 1.117 (1.071, 1.164) o0.001 0.010 0.030
Lymphocytes: (per k of 1� 109 l – 1) 1.490 (1.214, 1.829) o0.001 0.132 0.702
Percentage of weight loss: (per k of 1%) 1.020 (1.000, 1.041) 0.049 0.157 0.204

Abbreviations: CRP¼C-reactive protein; LDH¼ lactate dehydrogenase; PH¼ proportional hazard. N/A: the test of linearity is not applicable to categorical covariates. aN¼ 269
for all variables except for calcium for which N¼ 264. bUnadjusted hazard ratio (HR) and 95% confidence interval (95% CI). cEastern cooperative oncology group. dk: decrease.
em: increase.
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In the final flexible spline-based multivariable model, log2 CRP
had a statistically significant time-dependent effect, as the PH
assumption was rejected (P¼ 0.033), and a significant non-linear
relationship with the logarithm of the mortality hazard (linearity
rejected at P¼ 0.015). Figure 2 shows the implications of the joint
violation of the PH and linearity assumptions for the predictive
ability of baseline CRP. The thick black line in Figure 2 shows the
linear, constant-over-time effect of increasing the baseline CRP, as
estimated in the multivariable Cox’s PH model. As the Cox’s model
imposes the PH assumption, this linear effect is assumed to apply
to all times during the follow-up. In contrast, the dashed curves in
Figure 2 represents the effect of baseline CRP estimated in the
flexible spline-based model, for different times elapsed because the
CRP was measured. Each curve shows how the current risk of all-
cause mortality, at that specific follow-up time, changes with the

increasing value of the baseline CRP. The fact that the curves rise
steeply confirms that higher CRP is associated with an important
risk increase. However, the slope of the curves differs across
different intervals of CRP values: the risk increases are much
steeper between 5 and 30 mg l – 1 than outside this interval
(Figure 2), which reflects the important non-linear effect of CRP.
The steep increases in mortality in the middle range of CRP values
indicate also that any dichotomisation of these values, regardless
of the potential cut-off, will entail an important loss of
information, as patients with substantially different actual risks
will be predicted to have the same risk. For example, at 3 months
of follow-up, CRP¼ 50 mg l – 1 is associated with an almost two-fold
risk increase relative to CRP¼ 11 mg l – 1 (the top curve in Figure 2),
even if both values are above the conventional CRP cut-off of
10 mg l – 1.

The curves in Figure 2 become gradually less steep as the follow-
up time increases. This reflects the significant time-dependent
effect of CRP and indicates that the effect of high baseline CRP on
mortality gradually decreases with increasing time since its initial
measurement. Indeed, Figure 2 suggests that the baseline CRP
retains some predictive value only for the initial 12– 18 months. In
sensitivity analyses, we investigated the potential time-dependent
effect of the dichotomised CRP, with the conventional 410 mg l – 1

cut-off (Mahmoud and Rivera, 2002; Maltoni et al, 2005; McMillan,
2008). As in the primary analyses, with the non-linear effect of
continuous CRP, the PH hypothesis was rejected for binary CRP
(P¼ 0.035). Furthermore, the time-dependent estimate for the
dichotomised CRP was very similar to that for continuous CRP,
with a gradual decrease of its effect over time (data not shown).
In the first 8 months after the initiation of chemotherapy, patients
with baseline CRP410 mg l – 1 had a two-fold higher mortality
than patients below the cut-off, with the same values of all other
prognostic factors, but 2 years after diagnosis their relative risk
increase was as small as 20% (data not shown).

In the final flexible spline-based model, albumin also had
significant non-linear (P¼ 0.038) and, especially, time-dependent
effects (Po0.001). The three dashed curves in Figure 3, cons-
tructed similarly to Figure 2, show how the hazard of mortality
changes with increasing value of baseline albumin, respectively,
at 3, 6, and 9 months of follow-up. At 3 months, patients with low
initial albumin, between 25 and 30 mg l – 1, have approximately
a two-fold higher risk of death than those with the sample mean
value of approximately 40 mg l – 1 (the steepest curve, at the top of
Figure 3). In contrast, by 9 months of follow-up the curve becomes
very flat, indicating that initial albumin value has no predictive

PH
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Flexible: t = 6
Flexible: t = 9
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Figure 2 Results of the Cox’s PH and flexible spline-based multivariable
modeling of the effect of CRP on survival. The bold line represents the
linear estimate from the Cox’s PH model. The curves correspond to the
flexible spline estimates at different times from 3 months (t¼ 3) to 18
months (t¼ 18) after the initiation of chemotherapy. Each curve shows
how the adjusted hazard ratio at the corresponding time, relative to the
value of 4 mg l�1, changes with increasing value of C-reactive protein.

Table 4 Results of the flexible spline-based model (N¼ 269)

Variables HR (95% CI)a P-value for test of no association

Stage: (IIIB+pleural effusion/4 vs IIIA/IIIB) 1.859 (1.284, 2.691) o0.001
ECOGb performance status: (2 vs 0–1) 1.336 (0.923, 1.935) 0.116
Smoking status: (ever vs never) 2.248 (1.419, 3.561) o0.001
Chemotherapy type: (single vs double) 1.462 (0.990, 2.160) 0.041
Log2 CRP: (per doubling of CRP values) * 0.003 (overall P-value)#

Albumin: (per kc of 1 g l – 1) ** 0.001 (overall P-value)#

Log2 LDH: (per doubling of LDH values) 2.281 (1.661, 3.142) o0.001
Alkaline phosphatase: (per mof 10 U l – 1) 1.012 (0.980, 1.041) 0.366
Neutrophil counts: (per md of 1� 109 l – 1) 1.072 (1.025, 1.122) 0.001
Lymphocytes: (per k of 1� 109 l – 1) 1.313 (1.035, 1.666) 0.012
Deviancee 1873.3
AIC 1909.3

Abbreviations: AIC¼Akaike’s information criterion; CRP¼C-reactive protein; LDH¼ lactate dehydrogenase. aAdjusted hazard ratio (HR) and 95% confidence interval (95% CI).
bEastern cooperative oncology group. ck: decrease. dm: increase. eDeviance¼�2*log-likelihood. *Both the time-dependent (P¼ 0.033) and non-linear (P¼ 0.015) effects were
significant. The estimated non-linear effects, at selected follow-up times, are shown in Figure 2. **Both the time-dependent (P¼ 0.0001) and non-linear (P¼ 0.038) effects were
significant. The estimated non-linear effects, at selected follow-up times, are shown in Figure 3. #P-value for a likelihood ratio test, with 5 degrees of freedom, of the null
hypothesis of no association, obtained by comparing the deviances of (i) a flexible model where both time-dependent and non-linear effects of a given variable are modeled by
splines, vs (ii) a simpler ‘reduced’ model, which does not include the variable being tested (see the section on ‘‘Statistical analyses’’ for details of the test).
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value at or beyond 9 months after it was measured (the curve at the
bottom of Figure 3). This sharp decrease in the prognostic value of
baseline albumin during the follow-up reflects its very significant
time-dependent effect (Po0.001). This also explains why albumin
was completely nonsignificant in the multivariable Cox’s PH model
(P¼ 0.485), in which its estimated effect was a priori constrained
to be constant over time. By imposing this constraint, totally
inconsistent with the actual, very significant time-dependent effect
of albumin, the Cox’s PH estimate, represented by a thick black
line in Figure 3, suggested decreasing albumin had only a very
weak effect on increased mortality hazard. This masked the
important short-term increase in risk for patients with low
baseline albumin, below 35 mg l – 1, shown by the flexible spline
estimate, for t¼ 3 months, in Figure 3.

Goodness-of-fit and model validation

The final flexible spline-based multivariable model, which accoun-
ted for the significant time-dependent and non-linear effects of
both log2 CRP and albumin, yielded an important improvement in
the fit to our data, as reflected by the much lower value of AIC than
for the multivariable Cox’s PH model, with the same variables
(AIC¼ 1909.3 in Table 4 vs 1922.2 in Table 3).

The five-fold cross-validation confirmed that the flexible spline-
based multivariable model could be expected to better predict the
relative risks in an independent sample from a similar population,
as its cross-validated deviance was substantially lower than for
the Cox’s PH model with the same predictor variables (1230.5
vs 1263.6).

DISCUSSION

We have re-assessed the role of the CRP and other biomarkers in
the prognosis of NSCLC. We considered a larger number of
potential prognostic factors (Table 1) than most previous studies
of NSCLC mortality (Brundage et al, 2002; Watine et al, 2006) and
tested the important assumptions underlying the Cox’s PH model,
on which those studies relied (Kato et al, 2000; Forrest et al, 2003,

2004). To this end, we have used a new, flexible spline-based model
that permitted testing of the conventional PH and linearity
assumptions, and accounting for their violations (Abrahamowicz
and MacKenzie, 2007). The results confirmed the advantages of
such flexible modeling by revealing statistically and clinically
significant violations of both assumptions for CRP and albumin.
Below, we explain in detail the important clinical implications of
accounting for these violations for the prognosis of individual
patients survival in NSCLC.

The multivariable Cox’s PH model in Table 3 suggested that the
risk of mortality increased by approximately 11% for each
doubling of CRP, and the underlying linearity assumption would
imply that the same increase applied to the comparisons of CRP of
(a) 4 vs 8 mg l – 1, as (b) 8 vs 16 mg l – 1. Yet, our flexible spline-based
model indicated that the linearity assumption was violated
(P¼ 0.015), and that the actual risk increase was much steeper
between CRP values of 8 and 16 mg l – 1 (Figure 2). A majority of the
published cancer prognostic studies dichotomise CRP at 10 mg l – 1

(Mahmoud and Rivera, 2002; Maltoni et al, 2005; McMillan, 2008),
and the Glasgow Prognostic Score uses the same cut-off (Forrest
et al, 2003). Yet, Figure 2 shows that while patients with
CRP410 mg l – 1 are, on average, at much higher risk than those
below this cut-off, the risk of death increases continuously between
4 and 50 mg l – 1, with steepest increases between 8 and 20 mg l – 1.
Consequently, at 3 months of follow-up, CRP¼ 50 mg l – 1 is asso-
ciated with almost two-fold higher risk than CRP¼ 11 mg l – 1, even
if both values fall above the conventional 10 mg l – 1 cut-off. Thus,
our flexible, non-linear estimate of the CRP effect helps avoiding
inaccurate risk assessment and loss of prognostic information,
which would be induced by conventional dichotomised or linear
estimates (Ramsay, 1988; Hastie and Tibshirani, 1990; Royston
and Altman, 1994; Greenland, 1995; Abrahamowicz et al, 1997;
Benedetti and Abrahamowicz, 2004).

Second, the PH assumption imposes that in the Cox’s PH model
the relative risk associated with each prognostic factor remains
constant during the entire follow-up period. Thus, the HR between
any two baseline CRP values is a priori constrained to be the same
at the time of its measurement as, for example, 12 months later.
However, our flexible spline-based analyses rejected the PH
hypothesis for CRP, and indicated that it retains the prognostic
value for approximately a year (Figure 2). The gradual loss of
prognostic ability of the baseline CRP may occur because (a) some
patients, with high initial CRP value, for unknown reasons,
responded to chemotherapy better than others, (b) in patients with
oesophageal squamous cell cancer, CRP polymorphism may
gradually modify tumour progression (Motoyama et al, 2009),
and/or (c) correlation between the baseline CRP and its current
values decreases over time. Future studies should examine the
latter conjecture, by using time-dependent covariates to model the
effect of updated CRP values.

For albumin, our flexible spline-based model revealed a
dramatic decrease in its prognostic value over time (Po0.001).
Figure 3 shows that low baseline albumin, below 30 mg l – 1, is
associated with a statistically significant and clinically important
mortality risk increase in the first 3 months of follow-up. However,
the effect of baseline albumin on mortality rapidly declines
thereafter, and becomes practically null after approximately 9
months. This rapid loss of prognostic value explains why albumin
was completely nonsignificant in the multivariable Cox’s PH model
(P¼ 0.485), which estimates the average relative risks across the
follow-up (Abrahamowicz et al, 1996).

In conclusion, the Cox’s model, by imposing the incorrect PH
assumption, failed to identify albumin as an important early prog-
nostic factor for NSCLC mortality. Clinical observations suggested
that low albumin might indicate an unfavourable prognosis,
especially in the near future (Nixon et al, 1980; Hill, 1987; Heys
et al, 1992). Still, our flexible spline-based model showed the
statistical significance of time-dependent changes in the effect of
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Figure 3 Results of the Cox’s PH and flexible spline-based multivariable
modeling of the effect of albumin on survival. The bold line represents the
linear estimate from the Cox’s PH model. The curves correspond to
the flexible spline estimates at different times from 3 months (t¼ 3) to
9 months (t¼ 9) after the initiation of chemotherapy. Each curve shows
how the adjusted hazard ratio at the corresponding time, relative to the
value of 40 mg l�1, changes with decreasing value of albumin.
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albumin, and detected the dramatic effect of low baseline albumin
on NSCL mortality in the next 3–4 months. Thus, flexible analyses
enhanced both the validity and the accuracy of conclusions
regarding prognostic value of albumin.

The implications of the violation of the conventional PH and
linearity assumptions are relevant for clinicians. By accounting
for the time-dependent changes in the effects of both markers, the
flexible model helps them to realise that the risk of death
associated with high CRP and low albumin is very high for the
first 6–12 months after diagnosis. Furthermore, by accounting for
important non-linearities of the relationships between the marker
values and the hazard, the flexible model improves substantially
clinicians’ ability to identify high-risk subgroups. For example, the
Cox’s PH model incorrectly suggests that only a small increase
(23%) of risk of death occurs with an increase of baseline CRP
from 4 to 16 mg l – 1, while in the more accurate, flexible model it is
associated with a much higher (80%) risk increase. Such objective
prognostic information, when provided in the timely manner, may
influence patients’ crucial decisions, possibly making them more
likely to decline life-prolonging therapy and to opt for comfort
care (Weeks et al, 1998b), which is too often not discussed in the
first 4 –7 months after diagnosis (Huskamp et al, 2009). It is
noteworthy that disclosure of accurate prognostic information may
not be associated with the loss of hope, even in a dramatic
situation (Mack et al, 2007).

Our analyses confirm the higher baseline cancer stage as a
powerful independent prognostic factor for NSCLC mortality
(Martin et al, 1999; Forrest et al, 2003). In contrast, the adjusted
effect of performance status did not reach statistical significance,
possibly because of limited statistical power and/or misclassi-
fication, as physicians tend to underestimate the performance
status (Ando et al, 2001). As in other studies, smoking (Carney,
2002) and neutrophil count (Watine, 2000) were associated
with increased mortality. In our study, LDH was a powerful
prognostic factor: the hazard increased more than two-fold
with each doubling of LDH. The effect of LDH was independent
of CRP and albumin, suggesting that LDH affects survival through
a biological process other than inflammation. Evidence shows
that upregulation of LDH-5 is common in NSCLC and, when
associated with overexpression of the Hypoxia-inducible factor 1,
induces a strong anaerobic glycolytic metabolism and a
reduced dependence on oxygen, resulting in decreased survival
(Koukourakis et al, 2003). Of interest, the PH assumption was not
violated for LDH, suggesting that this pathway remains unchanged
over time.

Our findings regarding both CRP and albumin confirm the
paramount importance of testing the assumptions underlying the
very popular Cox’s PH model (Altman et al, 1995). The striking
differences between the estimated effects of both variables obtained
with the Cox’s PH model vs the flexible spline-based model are
reflected in Figures 2 and 3. Overall, our results illustrate potentially
serious clinical and research implications of imposing these
assumptions a priori, which may lead to a failure to identify
important prognostic factors, such as albumin in our study,
inaccurate identification of high-risk groups, or spurious contra-
dictions between the results of short- vs long-term prognostic
studies. These results are in line with several other clinical and
methodological studies indicating important violations of PH and/or
linearity hypotheses (Ramsay, 1988; Sleeper and Harrington, 1990;
Hastie and Tibshirani, 1990; Royston and Altman, 1994; Greenland,
1995; Rothman et al, 1995; Abrahamowicz et al, 1997; Benedetti and
Abrahamowicz, 2004; Royston et al, 2006; Spix et al, 2008). The PH
assumption can be tested with simple parametric or non-parametric
tests available in a standard statistical software packages (Wei,
1984). If the PH hypothesis is rejected, the time-dependent effect of
the prognostic factor can be estimated with flexible survival models,
using either fractional polynomials (Sauerbrei et al, 2007) or splines
(Gray, 1992; Hess, 1994; Kooperberg et al, 1995; Abrahamowicz et al,

1996; Abrahamowicz and MacKenzie, 2007), including the method
incorporated in the R package (Grambsh and Therneau, 1994). To
test the linearity hypothesis and estimate non-linear effects of
continuous predictors on the hazard, one can use splines (Gray,
1992; Kooperberg et al, 1995; Abrahamowicz and MacKenzie, 2007;
Remontet et al, 2007), or fractional polynomials (Royston and
Altman, 1994; Sauerbrei et al, 2007; Royston and Sauerbrei, 2008),
incorporated in STATA (StataCorp LP, College Station, TX, USA),
R (R Foundation for Statistical Computing, Vienna, Austria)
package mfp (Sauerbrei et al, 2006), and a SAS (SAS Institute
Inc.) macro (Sauerbrei et al, 2006).

The flexibility of modeling offered by splines and fractional
polynomials ensures that the estimated effects are represented by
smooth functions rather than by ‘step-functions’, resulting from
categorisation of continuous variables or of the follow-up time,
which impose clinically implausible ‘jumps’ in the risk, at arbitrary
selected covariate or time values. Furthermore, the flexibility of
these modeling tools permits an accurate recovery of a large
variety of curves with a single estimator, thus, avoiding the loss of
efficiency and inaccurate statistical inference induced when the
analyst uses several alternative parametric transformations of the
covariate or time axis (Hastie and Tibshirani, 1990; Quantin et al,
1999; Mahmud et al, 2006).

Our study has some limitations. First, we relied on retrospective
analyses of data collected prospectively on a small number of
patients, for a clinical quality assessment program, in a single
centre. Prospective collection increases data accuracy and reduces
risk of selection or misclassification biases. However, as in other
prospective studies, self-reported data on weight loss may be
affected by recall bias. This might have attenuated the estimated
effect of weight loss and explain its nonsignificance in the
multivariable models. Second, the study population does not
include all the consecutive patients observed in our POC clinic
between January 2002 and January 2005 when only some
physicians did test their patients for CRP. However, it is unlikely
that patients of different physicians had different characteristics,
because POC physicians act as a group practise. Indeed, there were
no clinically relevant differences between included and excluded
patients on any measured variable, except for the frequency of
single vs double chemotherapy regimen. During the study period,
double regimen was considered advantageous for the higher risk
patients (Lilenbaum et al, 2000; Lilenbaum, 2003).

Finally, because our data are limited to a single clinical centre,
the generalisability of our results and conclusions needs to be
assessed in an independent study. This will also permit a direct
‘external’ validation of our flexible spline-based model. Still, the
‘internal’ cross-validation, which approximates validation in an
independent sample (Harrell, 2001; Binquet et al, 2008), indicated
that our flexible spline-based model substantially improved
prediction over the Cox’s PH model.

Among numerous biological markers being currently investi-
gated (Brundage et al, 2002), recent reports suggest that neuron-
specific enolase (NSE) may be an independent prognostic factor
for survival in NSCLC (Maeda et al, 2000; Jacot et al, 2001;
Ferrigno et al, 2003). However, NSE could not be included in our
analyses, as in our institution it is used infrequently and only for
diagnostic purposes (Hatzakis et al, 2002). Future research should
assess if adjusting for NSE may affect the results of flexible
analyses of NSCLC mortality.

CONCLUSION

Our study has important clinical and research implications.
From a research perspective, it illustrates the importance of using
flexible survival models to both test the assumptions under-
lying the popular Cox’s PH model and accurately estimate the
relative risks that may change considerably during the follow-up.
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From a clinical perspective, it shows that while both albumin
and CRP are important prognostic factors for NSCLC mortality,
in this small retrospective study, their prognostic value does
not extend beyond, respectively, 6 or 12 months after the initial
measurement.
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