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a b s t r a c t

The development of nano drug delivery systems (NDDSs) provides new approaches to fighting against
diseases. The NDDSs are specially designed to serve as carriers for the delivery of active pharmaceutical
ingredients (APIs) to their target sites, which would certainly extend the benefit of their unique physi-
cochemical characteristics, such as prolonged circulation time, improved targeting and avoiding of drug-
resistance. Despite the remarkable progress achieved over the last three decades, the understanding of
the relationships between the in vivo pharmacokinetics of NDDSs and their safety profiles is insufficient.
Analysis of NDDSs is far more complicated than the monitoring of small molecular drugs in terms of
structure, composition and aggregation state, whereby almost all of the conventional techniques are
inadequate for accurate profiling their pharmacokinetic behavior in vivo. Herein, the advanced bio-
analysis for tracing the in vivo fate of NDDSs is summarized, including liquid chromatography tandem-
mass spectrometry (LC-MS/MS), F€orster resonance energy transfer (FRET), aggregation-caused quench-
ing (ACQ) fluorophore, aggregation-induced emission (AIE) fluorophores, enzyme-linked immunosor-
bent assay (ELISA), magnetic resonance imaging (MRI), radiolabeling, fluorescence spectroscopy, laser
ablation inductively coupled plasma MS (LA-ICP-MS), and size-exclusion chromatography (SEC). Based
on these technologies, a comprehensive survey of monitoring the dynamic changes of NDDSs in struc-
ture, composition and existing form in system (i.e. carrier polymers, released and encapsulated drug)
with recent progress is provided. We hope that this review will be helpful in appropriate application
methodology for investigating the pharmacokinetics and evaluating the efficacy and safety profiles of
NDDSs.
© 2020 Xi'an Jiaotong University. Production and hosting by Elsevier B.V. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In the past 30 years, the development of nanotechnology was
fruitful and many novel technologies have been applied to disease
diagnosis, pharmaceutical discovery and tissue engineering [1e3].
NDDS is a rapidly developing and most remarkable nanomedicine
technique. Doxil®, liposomal doxorubicin (DOX), was the first
approved NDDS in 1995 for the treatment of AIDS-related Kaposi’s
and ovarian cancer with reduced side effects and passive tumor
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targeting effect [4]. In recent years, many types of NDDSs, such as
liposomes, micelles, polymer-based nanoparticles (NPs), nano-
emulsions, nanogels, inorganic NPs and inorganic/organic (core/
shell) NPs, have been subjected to preclinical and clinical studies
[5].

In NDDSs, small molecular drugs or biotherapeutics are
entrapped or chemically bonded onto nanoparticles. Different from
traditional pharmaceuticals, NDDSs exhibit material physico-
chemical characteristics related to drug delivering properties after
administration [6,7]. The NDDS enhances pharmacological and
pharmaceutical properties of the parent drugs by prolonging cir-
culation time, improving efficacy and targeting, overcoming drug-
resistance, reducing immunogenicity and toxicity [8,9].

The superiority of NDDSs attracted global investment, so the
research funding in nanomedicine from the US National Institutes
of Health (NIH) from 2011 to 2019 is around 623 million US dollars
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[10,11]. However, only 51 nanomedical products have been
approved by the Food and Drug Administration (FDA) till recently
[12]. The low clinical transition ratio was partially due to the
incomplete understanding of the pharmacokinetic properties of
NDDSs [13]. The biological fate of NDDSs remains elusive. The
conventional pharmacokinetic studying methods, such as fluores-
cence labeling, could not track or distinguish in vivo nanocarriers
and payloads simultaneously.

Herein, we review the recent advances of the bioanalytical
techniques for pharmacokinetic research on NDDSs for the first
time. The measurement strategies and results for the released and
encapsulated drug as to the carrier polymer of NDDSs and their
biodistribution are enumerated, and obstacles and perspectives of
these technologies are discussed.

2. Classical NDDS

NDDSs such as liposomes, micelles, polymer-based NPs, nano-
emulsions, nanogels, inorganic NPs and inorganic/organic (core/
shell) NPs have long been developed for delivering APIs to the
specific site of action. Nowadays increased number of NDDSs
appear in preclinical and clinical phases [14].

2.1. Liposomes

Liposomes are lipid-based concentric bilayer vesicles (particle
size z 400 nm) comprising either synthetic or natural phospho-
lipids [15]. The phospholipid molecules typically consist of a polar
phosphate group and two hydrophobic fatty acid chains, which can
spontaneously form a closed, bilayer structure by self-assembling
in an aqueous environment [16]. The hydrophilic phosphate
groups are exposed on the outer and inner surfaces of the lipo-
somes and the hydrophobic fatty chains are packed and piled up in
between [17]. Hence, liposomes are utilized for carrying water-
soluble APIs in the cavity or lipophile APIs within the lipid bilayer
(Fig. 1A). Because of their size, hydrophobic character and surface
electrical charge, liposomes can be rapidly recognized and cleared
Fig. 1. Classical nano drug delivery system (NDDSs) used in drug delivery, including: (A) lipo
(F) W/O nanoemulsion, (G) nanogel, and (H) inorganic/organic (core/shell) nanoparticle (N
by the mononuclear phagocyte system (MPS) [18]. One of the so-
lutions to overcoming this issue is tomodify the surface of liposome
with amphiphilic polymers, such as poly (ethylene glycol) (PEG).
The PEG coating can protect the liposome from enzymatic and
immunologic clearance, hence called “stealth properties”. There-
fore, modifying with PEG (PEGylation) has become awidely applied
strategy to reduce opsonization and prolong circulation time of li-
posomes [19]. The approved Doxil® in 1995 has adopted this
surface-bound methoxy polyethylene glycol liposomal formulation
(STEALTH®), and a half-life of approximately 55 h in humans has
been achieved.

2.2. Polymeric micelles

Polymeric micelles are solid spherical aggregates with size
ranging from 10 nm to 100 nm, composed of amphiphilic co-
polymers containing hydrophobic and hydrophilic blocks [20]. The
micelles can be formed spontaneously by self-assembly when the
concentration of amphiphilic copolymers exceeds the critical
micelle concentration (CMC). With a hydrophobic core and a hy-
drophilic shell layer or corona, polymeric micelles have been used
as carriers for various lipophilic drugs, which significantly increase
the drug concentration in an aqueous medium (Fig. 1B) [21]. After
injection, polymeric micelles are susceptible to being diluted below
the CMC in the blood. This may lead to the dissociation of micelles
into unimers [22]. The CMC is dependent on the factors such as
chemical structure of the polymer as well as the molecular weight
(MW) of each polymeric block. The marketed Nanoxel-PM® is
docetaxel provided in an mPEG-PDLLA micellar formulation [23].
Furthermore, Genexol®-PM is paclitaxel loaded PEG-PLA micelle.

2.3. Polymeric NPs

Polymeric particles in size of 40e400 nm are capable of carrying
APIs in the polymeric matrix or on the surface of the particle by
absorption or conjugation [24]. Polymeric NPs are solid systems
classified into nanospheres and nanocapsules depending on the
some, (B) polymeric micelle, (C) nanosphere, (D) nanocapsule, (E) O/W nanoemulsion,
P).
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type of polymer, the localization of APIs and the production pro-
cedure [25,26]. Nanospheres are essentially monolithic systems
having a solid matrix, whereby the APIs can be either loaded onto
the surface or dissolvedwithin it (Fig.1C). In contrast, nanocapsules
are reservoir systems composed of a polymeric shell, and the APIs
are confined in the inner liquid core or adsorbed on the surface
(Fig. 1D) [27]. Polymeric NPs can be produced from natural poly-
mers such as chitosan or dextran, as well as from synthetic poly-
mers, such as poly(lactide) (PLA), poly (lactide-co-glycolide)
(PLGA), poly(alkylcyanoacrylates) or poly(epsilon-caprolactone)
[28e30]. Synthetic polymers such as PEG, PLA and PLGA have
been approved by FDA for human use over decades [31]. The 2018
approved lipid NP drug Onpattro® contains two kinds of lipids:
heptatriaconta-6,9,28,31-tetraen-19-yl-4-(dimethylamino) buta-
noate (DLin-MC3-DMA) and a-(3’-{[1,2-di(myristyloxy)proponoxy]
carbonylamino} propyl)-u-methoxy, polyoxyethylene (PEG2000-C-
DMG) [32].

2.4. Nanoemulsions

Nanoemulsions are oil-in-water (O/W) or water-in-oil (W/O)
dispersion of two kinds of immiscible liquids. One is dispersed as
droplets in the other one and stabilized by an amphiphilic surfac-
tant [33] (Fig. 1 E and F). The diameter of attained droplet is usually
of 10e600 nm in size. This nanocarrier is adequate for the delivery
of both hydrophilic and hydrophobic drugs, which is ideal for
improving the solubility of hydrophobic drugs in aqueous media
and protecting them from hydrolysis and enzymatic degradation.
Drug release process from nanoemulsion involves solute parti-
tioning from droplets into surfactant layer and then diffusing into
surrounding phase. Nanoemulsions prepared by low-energy
emulsification frequently require large amounts of surfactants for
stabilization. High dose of surfactant will cause cell membrane
fluidization. Therefore, the major disadvantages of nanoemulsions
are their limited stability and low adhesivity. The oil-in-water
nanoemulsion Restasis®, cyclosporine A in castor oil droplets
with polysorbate 80 as the emulsifying agent, has been approved by
FDA in 2002 for the treatment of keratoconjunctivitis sicca [34].

2.5. Nanogels

Nanogels are nanoscale hydrogel particles with size ranging
from 100 nm to 200 nm, composed of cross-linked hydrophilic
polymer network [35]. Nanogels are capable of absorbing water up
to a thousand-fold of their dry weight. The swollen hydrogel forms
a gigantic 3D framework, which can be utilized for entrapping
drugs, polymers and dispersed phase of liquid (Fig. 1G). Nanogels
aremainly used as drug carriers for delivery of both hydrophilic and
hydrophobic drugs [36]. Owing to their swelling/shrinking prop-
erty, flexibility in form, large surface area and highly water content,
a controlled and sustained release manner can be achieved. Many
nanogels formulations are available on the market; most of them
are cosmetic remedies, a number of them are toothpaste formula-
tion and several formulations are personal skin care products
[37,38].

2.6. Inorganic NPs and inorganic/organic (core/shell) nanoparticles

Inorganic NPs include metal andmetal oxides, such as gold (Au),
silver (Ag), platinum (Pt), iron oxide (Fe3O4), titanium oxide (TiO2),
copper oxide (CuO) and zinc oxide (ZnO) [39]. Many of the inor-
ganic NPs have long been used in clinic for various therapeutic
applications, such as platinum compounds for cancer therapy and
silver as antibacterial agents. Similar to organic pharmaceuticals,
inorganic pharmaceuticals can also benefit from NDDSs by
improving their pharmacokinetic performance, such as enhanced
targeting, drug loading, and immune system evasion.

Inorganic/organic (core/shell) nanoparticles are complexation
of inorganic NPs with an organic polymer shell (Fig. 1H) [40]. The
polymeric protective shell can promote purely steric repulsions so
as to reduce the range and strength of electrostatic and van der
Waals interactions between the colloids. The hybrid aggregates are
typically in the size around 100 nm and have remarkable colloidal
stability even against ionic strength variations. Ferumoxytol (Fer-
aheme®) are iron oxide nanoparticles coated with poly-glucose
sorbitol carboxy-methyl-ether, which have been approved by FDA
for treatment of iron deficiency in adults with chronic kidney dis-
ease in 2009 [41].

3. Quantification of the in vivo trafficking of NDDSs

To exert the desired biologically effect, the encapsulated/
embedded APIs must be released from NPs and reach their target
site. Although NDDSs have been applied as drug carriers for over
twenty years, pharmacokinetics studies have always been focused
on the total drug concentrations and the polymers have often been
overlooked. Furthermore, the characterization of the systematic
release profile for the drug loaded particles remains incomplete.
Different from the traditional pharmacokinetic studies of APIs,
beside the released drug, the key aspects of the pharmacokinetic
studies on NDDSs further include encapsulated drug and carrier
polymers. The polymer quantitation and differentiation between
released and encapsulated drugwere themain technical difficulties
bothering the bioanalysis of NDDS. With the technology develop-
ment, methods have been merged for distinguishing the released
and encapsulated drugs in vivo, such as LC-MS/MS, FRET, ACQ and
AIE fluorophores and ELISA (Table S1).

3.1. Quantitation methods for the released and encapsulated drug
in vivo

The NDDS encapsulation preserves the payloads drugs and en-
dows them with prolonged circulation time and solubilization,
which is therefore often referred to as a circulating “reservoir” of
drug. To date, numerous efforts have been dedicated to reveal the
release profiling of NDDSs.

3.1.1. LC-MS/MS
LC-MS/MS is a standard bioanalysis method for small molecule

drugs, which recently is also considered as the preferred choice for
profiling the drug release process of NDDSs in vivo. Distinguishing
the released and encapsulated drug by LC-MS/MS is a critical
challenge. Smits et al. [42] were the first to report an LC-MS/MS
method for the differential quantification of released and encap-
sulated drug of prednisolone phosphate loaded liposomes inwhole
blood and liver tissue. Since released prednisolone phosphate will
be immediately dephosphorylated by phosphatases in vivo, the
prednisolone was utilized as surrogate analyte for the released
drug. Similarly, the determination of released drug from polymeric
micelles was reported in Braal et al.’s study [43]. CriPec® is a
docetaxel-temporarily covalently conjugated micelle (approxi-
mately 65 nm). This conjugate is stable at pH 5.0 at room temper-
ature. The quantitation of the released docetaxel can be therefore
measured free from the interference of the conjugated drug. For the
quantitation of the conjugated docetaxel, the drug needs to be
detached frommicelles at 37 �C and pH 7.4 for three days. Since the
LC-MS/MS method alone cannot differentiate the detached drug
from the previously released drug, the drug-loadedmicelles should
be separated first.

Solid phase extraction (SPE) is widely applied to separate the



Fig. 2. Procedure for the separation of released and encapsulated drug in liposomes by
solid phase extraction (SPE) in plasma sample.

Fig. 3. Illustration of the F€orster resonance energy transfer (FRET) that is being
developed for tracking the bio-distribution of nano drug delivery system (NDDSs).
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released and encapsulated drug. A common SPE procedure is as
follows: 1) sample loading; 2) water washing (liposomes with hy-
drophilic surface will not be retained on SPE column); and 3) hy-
drophobic solvent washing (the adsorbed released drug will be
then eluted) (Fig. 2). Deshpande et al. [44], Su et al. [45] and Xie
et al. [46] have utilized SPE separation method for profiling the
pharmacokinetic behavior of amphotericin B and DOX liposomes
in vivo. A similar approach was adopted by Wang et al., whereby
the release and uptake processes of DOX liposome in health tissues
and in tumors were profiled [47]. This SPE separation method has
also been conditionally applied to separate polymeric NPs. Song
et al. [48] were the first to utilize a similar separation method for
the quantitation of gedatolisib released from PLA-PEG NPs. The
concentration of encapsulated gedatolisib was calculated by sub-
tracting the released gedatolisib values from the total values. In
consideration of the properties of the payload drug, here an MCX
SPE column was employed instead of an HLB SPE column.

Ultrafiltration was also considered as a separation method for
liposomal released and encapsulated drug. Xie et al. [46] investi-
gated the accuracy of this separation method using DOX liposomes
as test sample. The recovery rate of DOX separated by ultrafiltrate
was no more than 10%, which may be related to the adsorption of
DOX to device and plasma proteins.

A new class of separation techniques was developed by Chen
et al. [49]. Based on the specific binding of biotin and streptavidin,
streptavidin-Fe3O4@PDAwas utilized as the separation nanoprobes
to separate biotin-DTX-liposomes from plasma in the presence of a
magnetic field, and 75% recovery efficiency has been achieved.
3.1.2. FRET
FRET is a new tool to reveal the biological fate of NDDSs in vivo.

Its principle involves energy transfer between a donor fluorophore
in its electronic excited state and an adjacent acceptor fluorophore
(1e10 nm) (Fig. 3) [50]. A spectrum overlap between the donor and
acceptor greater than 30% is necessary for an efficiently energy
transfer [51]. In the FRET-based strategies for investigating the
stability and drug release of NDDSs, a FRET pair (donor and
acceptor) should be co-encapsulated in the core of micelles [52,53].
FRET signal decays rapidly regarding exceeding of the energy
transfer distance, which corresponds to the payload release [50].

However, the payload release can be made either by FRET pair
diffusion or by micelles dissociation. In a recent study by Sun et al.,
the in vivo stability of the micelles has been investigated by
immobilizing the FRET pair on the hydrophobic end of the carrier
polymers. The FRET pair loaded polymers were then transformed
into micelle. Therefore, the signal decreasing in vivo is merely
correlated to micelles dissociation (Fig. 4). [54]. To minimize the
impact of FRET fluorophore on micelle properties, only a small
percentage of the hydrophobic endswere loadedwith the FRET pair
(1% for both), and the loading of drug is not influenced.

The FRET method has some restrictions of its own: 1) Re-
illumination caused by repartitioning into hydrophobic con-
structs. The FRET pairs are generally highly hydrophobic com-
pounds, prefer to repartition into hydrophobic constructs such as
membranes, hydrophobic cavities of biomacromolecules or hy-
drophobic cores of physiological micelles. 2) Low sensitivity. Since
the acceptor can be only excited by the donor indirectly, generally
the fluorescence intensity of the FRET system is relatively weak.

3.1.3. ACQ fluorophores
ACQ fluorophores possess excellent fluorescent properties when

dispersed in solution. The fluorescence can be turned off by fluo-
rescent quenching, in case the fluorophores aggregated and formed
stable p-p stack [55]. ACQ fluorophores are usually conjugated
aromatic systems with strong hydrophobicity, which is prone to
aggregate in a hydrophilic solvent, such as water. Based on this
characteristic, ACQ probes are encapsulated in the hydrophobic
core of nanocarriers. The fluorescence emission indicates a
dispersed state of ACQ, which represents intact nanocarriers
(Fig. 5A). Once the nanocarriers are dissociated, the fluorescence is
quenched immediately accompanying with the ACQ probes
aggregating in the aqueous medium. The tiny aggregates can be
dispersed in the solvent and appear as homogenous solutions
without precipitation. This aggregating process is reversible. When
new micelles are introduced, the aggregates can dissolve or
disperse into monomers again in the hydrophobic domains and
regain their fluorescence. Although the ACQ probes are originally
designed for imaging, He et al. applied this strategy for quantitation
of mPEG�PDLLA polymeric micelles in vivo. The near-infrared aza-
BODIPY fluorescent probe P2 was encapsulated in the hydrophobic
core of the polymeric micelles. Excellent linearity of fluorescent
response versus polymeric micelle concentration over the range of
9.77e625 mg/mL was observed [56]. The result of pharmacokinetic
study in rat indicates that ACQ can be an alternative for the bio-
analysis of NDDSs. The major drawback of ACQ method is re-
illumination. Additionally, the application of ACQ is restricted in
hydrophobic NDDSs.

3.1.4. AIE fluorophores
In contrast to ACQ, AIE fluorophores exhibit hardly emission in

dilute solvent. In aggregate state, the free rotation of dye molecules
is restricted, which dramatically boosts emission (Fig. 5B). In the



Fig. 4. Design and working principle of the F€orster resonance energy transfer (FRET) micelles.

Fig. 5. Illustration of (A) aggregation-caused quenching (ACQ) and (B) aggregation-
induced emission (AIE) that are being developed for tracking the drug encapsulated
in nano drug delivery system (NDDSs).
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case of nanocarrier dissociation, the fluorescence of leaked AIE
probes is extremely weak in the environment. Therefore, the AIE
probes can be employed to indicate the state of nanoparticles
in vivo. Till recently, not many reports about monitoring the in vivo
fate of NDDSs with AIE strategy are available. Conventional short-
wavelength one-photon excited AIE material has some drawbacks
in application, such as toxicity, short penetration depth (<100mm),
interference of tissue autofluorescence and photobleaching phe-
nomenon. Furthermore, AIE is hindered by scattering, which relates
to the long-wavelengths of the exciting light and high signal-noise
ratio at a deep focal plane. By comparison, two-photon excited AIE
has the advantages of low biological damage, low-energy irradia-
tion, high-energy fluorescence, reduction of autofluorescence and
excellent penetration depth. Most recently, Zhuang et al. employed
a two-photon excitable AIE fluorescence probe to compare the
pharmacokinetic behaviors of DOX and DOX-loaded micelles
in vivo [57]. The doped TBIS fluorophore endowed mPEG-SS-Poly
(AEMA-co-TBIS) (mPEATss) micelles with great AIE feature
without influencing the drug loading.
3.1.5. ELISA
The ELISA is an immunological assay for detection of biological

molecules such as proteins, antibodies, hormones and cytokines.
ELISA has been also applied in investigating the release profile of
the biomacromolecule loaded nanoparticles. The most prevalent
ELISA method is known as “sandwich” ELISA, for the analyst anti-
gen is stuck between two kinds of antibodies. Wherein, a primary
antibody is first immobilized to the surface of the plate for
capturing the analyst antigen in the serum; therefore, the primary
antibody is also known as capture antibody. The captured antigens
can be followed and recognized by an enzyme-linked antigen-
specific antibody, which is referred as detecting antibody. The
coupled enzyme serves here for an optical detection, signal
amplification and quantitation of the captured analyst antigen [58].

In a study by Wang et al., the sandwich ELISA method was
employed for quantifying the released payloads stromal cell-
derived factor 1 (SDF-1) and bone morphogenetic protein 2
(BMP-2) to evaluate the encapsulation efficiency and release ki-
netics of the chitosan oligosaccharide/heparin (CSO/H) NPs in vitro
[59]. In the work of Azie et al., latent transforming growth-factor
beta (TGF-b) was conjugated to superparamagnetic iron oxide
nanoparticles (SPIONs). The release profile of the active TGF-b from
the SPIONs was subsequently monitored by ELISA [60]. However,
the ELISA has the advantage in sensitivity, but it also has certain
limitations, such as limited varieties of commercial ELISA kits,
narrow linear ranges and cross-reactivity issue.
3.2. Quantitation methods for polymer

After the administration, the polymeric material of NDDSs may
subject to disassembly, distribution, metabolism and excretion. In
contrast to the payload drug, the knowledge to the in vivo fate of
the polymeric materials is insufficient. The pharmaceutical poly-
mer excipients are the main component of NDDS and are generally
considered to be inert ingredients. However, the polymer related
adverse drug reaction (ADR) reports on iatrogenic illnesses keep
increasing, such as hypersensitivity reactions [61], cell vacuolation
[62] or splenomegaly [63]. The accumulation of polymer may have
potential toxicity and has aroused attention of regulatory author-
ities. Several analytical techniques have been developed for the
bioanalysis of the polymeric material in NPs. Nuclear magnetic
resonance (NMR) [64], colorimetric methods [65,66], SEC [67] and
high-performance liquid chromatography (HPLC) [68e71]
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technologies are inadequate in sensitivity. The LC-MS/MS and ELISA
are currently employed techniques for in vivo polymer quantitation
(Table S1).

3.2.1. LC-MS/MS
LC-MS/MS is a common analysis technique in the small molec-

ular drug, which has recently made a great improvement in bio-
analysis of polymers. The major challenge for the quantitative
analysis of polymers by LC-MS/MS lies primarily in their poly-
dispersity, which includes series of homologues with different
degrees of polymerization and MWs. To overcome this challenge,
several mass spectroscopy data acquisition strategies, such as
selected ion monitoring (SIM), multiple reaction monitoring
(MRM), in-source collision induced dissociation (CID) and MSALL,
were applied to the polymer analysis in biological matrices. In this
review, bioanalytical strategies for detecting several important
pharmaceutical polymers are enumerated, including PEG, PLA,
hyaluronan (HA), chitosan, and cyclodextrin (CD).

3.2.1.1. PEG. PEG is one of the most meaningful synthetic polymers
in the pharmaceutical industry, which are produced commercially
from ethylene oxide monomers (Fig. 6A) [72]. It is widely used as
solubilizer, stabilizer, release-modifier or conjugated with drug
molecules (PEGylation) and drug delivery vehicles (liposomes,
micelle and nanoparticles). PEGylation, which can prolong drug
half-life, enhance bioavailability, and reduce immunogenicity of the
vehicle, has been approved by FDA for human use over a decade
[73].

In 2004, Zhang et al. [74] developed a flow injection MS method
for the quantitation of PEG300 in drug formulations under SIM
mode. SIM is a variation of an MRM scanning mode, in which only
the selected precursor ions will be transmitted through the quad-
rupole mass analyzer Q1 and Q3, and the collision energy (CE) of Q2
should be set to the level without causing obvious fragmentation
(Fig. 7A). This method provided a better sensitivity in lower limits
of quantitation (LLOQ, 136 ng/mL) than previously published
methods: gas chromatography-mass spectrometry (GC-MS) (1 mg/
mL) [75], semi-preparative HPLC (0.73 mg/mL) [69], HPLC (50 mg/
mL) [68] and SEC (1.15 mg/mL) [67]. SIM methods are not routinely
utilized to analyze biological samples because of the reduced
selectivity and high background noise. Ashiru et al. [76] developed
the first specific LC-MS/MS method for the quantitation of PEG400
in biological samples. Due to the limited selectivity of SIM, this
method was prone to interference from endogenous substances,
and the obtained LLOQ (2.5 mg/mL) was higher than that of the
previously flow injection MS method.

MRM is a sensitive and selective scan mode, which is commonly
used in the LC-MS/MS bioanalysis of small-molecular drugs. Under
MRM mode, the precursor ions of the analyte are selected by the
first mass spectrometer Q1 and effectively fragmented in Q2. Form
the multiple product ions, a highly specific product ion is selected
by the second mass spectrometer Q3 for detection. With the aids of
the analyte-specific product ion, the selectivity and the signal-noise
ratio could be greatly improved (Fig. 7B). A bioanalytical assay for
PEG400 using MRM analysis in plasma has been exploited by
Bhaskar et al. [77]. In this study, the nine most abundant oligomers
and their common product ion (at m/z 89) were monitored in Q1
and Q3, respectively. Analyte peaks were then summed up to es-
timate the total amount of PEG400 in plasma with an LLOQ of
1.01 mg/mL. This approach may be appropriate for low MW PEGs.
High MW PEGs contain a wide range of homologues and multi-
charged ions, and only a fraction of the ions can be monitored by
MRM, which is inadequate for quantitation.

Warrack et al. [78] reported a combined strategy for the quan-
titation of high MW PEG (1.4-40 kDa) in biological samples. The
polymers first undergo in-source CID, which generates fragment
ions by the declustering potential (DP) in the ion source (Fig. 7C).
The generated fragment ions are subjected to the followingMRM as
surrogate precursor ions. However, detection is still limited by
insufficient fragmentation under DP in the ion source, which ulti-
mately limits the sensitivity of the following MRM scan. The LLOQ
with in-source CID is 300 ng/mL for PEG.

To improve the fragmentation efficiency, Zhou et al. [79]
developed an MSALL based approach for the quantitative analysis of
PEG by liquid chromatography triple-quadrupole/time-of-flight
mass spectrometry (LC-Q-TOF MS). Q-TOF MS is a hybrid MS con-
sisting of Q1, Q2 and a high-resolution TOF mass analyzer. MSALL

scan mode allows all precursor ions to pass through Q1, being
fragmented in Q2. Consequentially, all the product ions were
scanned by the high-resolution TOF analyzer (Fig. 7D). Compared to
previous approaches, MSALL is an effective strategy for quantitation
of PEGs in biological samples. Therefore, this approach is also
applied in quantitative analysis of PEG and PEGylated drug simul-
taneously, such as PEGylated DOX, paclitaxel and gemcitabine
[80e82].

3.2.1.2. PLA. Benefiting from its biocompatibility and low toxicity,
PLA is one of the most widely used biodegradable polymers
(Fig. 6B) [83,84]. Various types of PLA, such as poly-L-lactic acid
(PLLA), poly-D-lactic acid (PDLA), and poly-DL-lactic acid (PDLLA),
are commercially available for medical applications. PLA usually
copolymerized with PEG to produce amphiphilic copolymer, which
can self-assemble into micelles for encapsulating drugs in their
hydrophobic cores. Based on in-source CID technique, Shi et al. [85]
developed an analytical method for quantitation of PEG-PLA in
plasma. The PLA-specific fragment ions were generated in source,
consequentially further fragmented into specific product ions in Q2
(m/z 505.0 / 217.0). Due to their higher sensitivity, these PLA-
specific product ions were selected for the quantitation of PEG-
PLA. The PEG-specific fragment ions were MRM transition moni-
tored for PEG-PLA. This approach was successfully applied to the
pharmacokinetic study of mPEG2000-PDLLA2500-COOH in rats.

3.2.1.3. HA. HA is a linear polysaccharide made up of D-glucuronic
acid and N-acetyl-D-glucosamine, which is abundant in different
types of vertebrate tissues, including connective tissues and
extracellular matrix (Fig. 6C) [86,87]. This polymer is very prom-
ising due to its hydrophilicity, biocompatible, biodegradable, non-
toxic and non-immunogenic features. HA usually interacts with
proteins strongly and exhibits a low ionization efficiency, which
challenges the biological sample preparation and quantitative
analysis by LC-MS/MS. �Simek et al. [88] developed an LC-MS/MS
method for the detection of DOX and oleyl hyaluronan (HA-
C18:1) in plasma and tissue homogenates. The sample preparation
for HA-C18:1 involved two enzymatic work-up procedures by
protease and hyaluronate lyase, respectively. Digestion by a prote-
ase can release HA from protein-binding in the biological samples.
Shortening HA chain by hyaluronate lyase is to achieve a sufficient
ionization efficiency. The developed method was applied to the
pharmacokinetic studies of DOX and HA-C18:1 after i.v. adminis-
tration of DOX loaded HA-C18:1 polymeric micelle. The different
pharmacokinetic profiles of DOX and HA-C18:1 indicated a pre-
mature disruption of HA micelles in vivo.

3.2.1.4. Chitosan. Chitosan is a linear polysaccharide composed of
b-1,4-linked D-glucosamine and N-acetyl-D-glucosamine. Chitosan
is produced by deacetylation of chitin under alkaline or enzymatic
conditions (Fig. 6D) [89,90]. High MW chitosan generally exhibits
less solubility, lower degradation rate and higher toxicity than low
MW chitosan [89,91]. Chitosanwith an MW less than 3.9 kDa has a



Fig. 6. Structures of (A) poly (ethylene glycol) (PEG), (B) poly(lactide) (PLA), (C) hyaluronan (HA), (D) Chitosan, and (E) b-cyclodextrin (b-CD).

Fig. 7. Description of variety scan modes for quantitative analysis of polymers, including: (A) selected ion monitoring (SIM), (B) multiple reaction monitoring (MRM), (C) In-source
collision induced dissociation (CID), and (D) MSALL.
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common name called chitooligosaccharide (COS). Nowadays, the
studies for investigating chitosan by LC-MS/MS are mainly focused
on the characterizing of COS oligomers. Li et al. [92] reported an
MRMmethod for the simultaneous determination of COS oligomers
(D-glucosamine monomer to heptamer) in the chitosan samples.
Since chitosanwas susceptible to fragmentation in an ESI source, an
in-source CID method (without fragment in Q2) was developed for
detection of chitosan (139.7 ± 6.0 kDa), which showed excellent
linearity (r > 0.99) with the LC concentration in a range of
20e10,000 ng/mL.

3.2.1.5. CD. CDs are cyclic oligosaccharides formed by six (aCD),
seven (bCD) or eight (gCD) a-1,4-linked glucose units. The hydro-
phobic cone-like cavity of CD was found capable of loading drugs.
Therefore, formed CD-drug complex is water-soluble and can
improve the physicochemical properties of the loaded drug
(Fig. 6E) [93]. The 2-hydroxypropyl-b-CD (HP-b-CD), a hydroxyalkyl
derivative of bCD, is widely used as pharmaceutical excipient. HP-b-
CD is a mixture of series of homologues and isomers with 2-
hydroxypropyl groups randomly in position and amount
(2,097,151 possible homologues) [94]. Jiang et al. [95] developed a
2D-LC-IF-MS/MS method and an RP-UPLC-MS/MS method for the
detection of HP-b-CD in human plasma and CSF. HP-b-CD prefers to
form sodium adducts with poor fragmentation efficiency. In this
study, ammonium salt was added into themobile phase to suppress
the formation of sodium adducts. In the UPLC-MS/MS method, the
MRM transition at m/z 1326.5 / 383 was selected for the quanti-
fication of HP-b-CD. An LLOQ of 50 ng/mL and 5 mg/mL was ach-
ieved for HP-b-CD in human plasma and CSF, respectively. In the
2D-LC-MS/MS method, the detection is based on in-source CID and
MRM with the LLOQ in human plasma and CSF of 10 ng/mL and
100 ng/mL, respectively. The HP-b-CD undergoes an in-source CID
and generates 2-hydroxypropyl substituted dihydro-pyrylium
fragment at m/z 203. With this ion as surrogate precursor ion, a
fragmentation transition to the product ion of 4-hydroxypyrylium
at m/z 97 was identified and monitored by MRM. The separation
of HP-b-CD was first performed on a HILIC column. However, it was
found that the glycerophosphocholine species in plasma sup-
pressed the detection of HP-b-CD in plasma samples [96]. To
overcome this matrix interference, the chromatography was
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sequentially performed on a C18 guard column and a HILIC column
for the 1D and 2D separation. The 2D-LC-MS/MS method was more
sensitive, while the UPLC-MS/MS method with shorter runtime
could improve the throughput. Both these methods were success-
fully applied to the pharmacokinetic study of HP-b-CD in humans.

3.2.2. ELISA
The development of antibodies that specifically bind to PEG-

conjugates enables the application of ELISA method in PEGylated
drugs detection. The binding affinity of the anti-PEG antibodies to
free PEGs is much weaker than to PEG-conjugates [97]. Richter and
Akerblom were the first scientists who proposed generating anti-
bodies against PEG by immunizing rabbits. The prepared polyclonal
antibodies provide an LLOQ of PEGylated drugs down to about 1 mg/
mL [98]. To further improve the sensitivity, the mouse monoclonal
antibodies were prepared later, which were capable of binding
PEG-conjugates specifically without differentiating their conju-
gates [99e102]. The concentrations of PEG-conjugates in complex
biological samples can be therefore determined via sandwich
ELISA. With the help of anti-PEG sandwich ELISA, detection of PEG
at a concentration as low as 1.2 ng/mL has been achieved.

Danika et al. [103] developed a sensitive LC-MS/MS method
(LLOQ 0.125 mg/mL) for the determination of PCK3145 in mouse
plasma. Although LC-MS/MS has been utilized for quantitative
bioanalysis of peptides, this technique still faces significant chal-
lenges for analysis of PEGylated peptides, such as high poly-
dispersity of PEG, high MW and poor ionization efficiency. They
developed an indirect ELISA method for the detection of PEG-
PCK3145 by PEGylated protein ELISA kit (Enzo Life Sciences). The
concentration of PCK3145 was obtained from the quantification of
PEG-PCK3145. Anti-PEG sandwich ELISA achieved a higher sensi-
tivity (LLOQ 0.132 ng/mL) and widely applications for PEG-
conjugates. The specificity of this technology remains to be
confirmed. Moreover, ELISA method is not suitable for the analysis
of free PEGs, which is a limitation for its application in monitoring
the biological fate of PEG-based NDDSs.

3.3. Quantitation methods for the NPs

The NDDSs delivery-related activity and their uptake mecha-
nism are still unclear, but an increased cell uptake of nano-
structures has been verified by several in vitro and in vivo studies.
The enhanced cell uptake may affect the biodistribution of payload
drugs and therefore has gained great attention in the field of
NDDSs. The MRI, radiolabeling, fluorescence spectroscopy and LA-
ICP-MS are currently employed techniques for in vivo NPs quanti-
tation (Table S1).

3.3.1. MRI
MRI, one of the most commonly used medical diagnostic tech-

niques, possesses unique features including noninvasiveness, no
exposure to ionizing radiation, high contrast in soft tissues and high
spatial resolution [104]. MRI scanner utilizes pulses of radio waves
for exciting hydrogen nuclear and records the emitted radio fre-
quency during the relaxation processes from the excited hydrogen
atoms. Since hydrogen atoms in form of water are abundant in
human tissues and they are different in location, amount and
bonding status, spatially localized spectra of the tissues in terms of
the hydrogen nuclear density can be generated. According to the
different relaxation properties between the hydrogen atoms in
different body fluids and tissues, different contrasts will be gener-
ated. MRI often requires the use of contrast agents for better image
quality. Gd-based contrast agents are the only FDA approved
contrast agents for MRI to be used on patients with all types of
cancers [105].

The intrinsic/background signals will interfere drug distribution
signals, so Gd MRI is not suitable for quantitative clinical measures
of NPs. 19F-MRI offers a quantifiable signal, but the sensitivity is far
from ideal. Magnetic particle imaging (MPI) is a new non-invasive
imaging modality. Employing superparamagnetic nanoparticles
(SPNs) as contrast agents, MPI has been applied to monitor the
biodistribution of NDDSs. MPI can provide a wide range of imaging
depths, linearly quantifiable signals, high sensitivity, and real-time
imaging. Zhu et al. [106] designed a superparamagnetic Fe3O4
nanocluster@poly (lactide-co-glycolide acid) core-shell nano-
composite loaded with DOX, which serves not only as a drug de-
livery system but also as an MPI quantification tracer. The
nanocomposite can be degraded under a mild acidic microenvi-
ronment (pH ¼ 6.5), which leads to a sustained release of DOX and
gradual decomposition of the Fe3O4 nanocluster. The
decomposition-induced MPI signal decay is proportional to the
release rate of DOX over time (R2¼ 0.99). A quantitative monitoring
procedure of the drug release process in cell culture has been
successfully established.
3.3.2. Radiolabeling
Labeling nanoparticles with radionuclides allows tracing the

nanoparticles in vivo and investigating their biodistribution, drug
targeting and clearance quantitatively. Classical methods for radi-
olabeling NPs generally involve functionalizing the particle surface,
core or coating with radio-tag [107]. A main concern of the classical
radiolabeling methods is the introduction of a bulky lipophilic
prosthetic tag or charged metal ion chelate-tag into the system,
which may affect the pharmacokinetic and toxicity profiles of the
original NPs [108]. Efforts have been made to explore alternative
radiolabeling methods for NPs in order to avoid alerting their sur-
face properties. The newly emerging labeling methods include
radiochemical doping, physisorption, direct chemisorption, isotope
exchange, cation exchange, particle beam or reactor activation and
cavity encapsulation [109]. The in vivo biodistribution of radio-
labeled NDDSs can be obtained by modern imaging techniques,
such as positron emission tomography (PET). In Engudar et al.’s
study, liposomes were remote loaded 124I and evaluated by PET/CT
imaging in vivo. A prolonged blood circulation half-life of 19.5 h
was observed for the radiolabeled liposomes. Lower accumulation
of radiolabeled liposomes in the spleen, liver, kidney and tumors
was observed than usually long-circulating liposomes [110].
3.3.3. Fluorescence spectroscopy
Recently, semiconductor NPs, also known as quantum dots

(QDs), have been extensively applied in fluorescence spectroscopy
[111,112]. Fluorescence technology is an efficient approach to
studying the biodistributions of nanostructures in cells and tissues.
Compared with the conventional organic dyes, QDs have optical
transitions in the near-infrared region, where the tissue absorption
is minimal [113]. Kenesei et al. [114] applied spectral imaging
fluorescence microscopy to monitor the distribution of fluorescent
polystyrene nanoparticles modified with PEG or carboxylic acid
groups in male and pregnant female mice. Spectral imaging com-
bined with post hoc spectrum analysis allowed visualizing nano-
particles in various tissues and helped to overcome the limitations
caused by the high autofluorescence of native tissues.
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3.3.4. LA-ICP-MS
ICP-MS has been regarded as a sensitive analytical method for

the determination of ultra-trace levels of metals and metalloids
[115]. LA-ICP-MS is a derived technology of ICP-MS, which is
equipped with a laser ablation system for vaporizing the sample
[116]. By rastering a laser beam across the surface of a cry-
osectioning tissue sample, an LA-ICP-MS imaging is performed,
which can provide a high spatial resolution of the absorbedmetallic
NPs in different tissues. Elci et al. [117] developed an LA-ICP-MS
method to quantitatively image the biodistributions of PEGylated
AuNPs. This imaging approach will provide important tissue/organ
distribution data, which will greatly facilitate the design and study
of nanomaterials for biomedical applications.

3.4. Metabolite profiling methods for NDDSs

The metabolism and elimination of the polymer material are
very important features of NDDSs. The accumulation of the poly-
mers or their metabolites in tissue or in organs such as liver, spleen
or kidneys, is a potential source of iatrogenic illness. Polymers such
as PLA and HA are biodegradable, which can be degraded into low
MW monomers or oligomers and be relative rapidly eliminated
from the body. For non-biodegradable polymers like PEG, the MW
and shape have critical influences on the glomerular filtration and
thereby affect the elimination routes and rate. Copolymer, con-
sisting of biodegradable and non-biodegradable polymer blocks, is
a compromise solution for polymer excipients to balance their
performance and excretion. For example, PEG-PLA block copolymer
consists of low MW PEG and PLA polymers alternate in sequence,
which can be degraded in vivo to non-biodegradable PEG-segments
below the renal excretion cut-off [118]. Therefore, monitoring the
synthetic polymers according to ADME concept is of great signifi-
cance for early detection of progressive accumulation and for pre-
vention of iatrogenic illnesses.

Determining the excretion routes and identifying metabolites
are two important features of the polymer mass balance study.
Hereby, the eliminated polymers in urine, bile or feces should be
analyzed regarding their MW and quantity. These bio-samples can
be subjected to solid-phase or liquid extraction techniques for
recovering and enriching of polymer components. Subsequently,
SEC or LC-MS techniques are generally used to analyze the MW
distribution of the eliminated polymers (Table S1). The aforemen-
tioned fluorescence and radiometric techniques are also applicable
for the quantitation of polymers in excreta samples. Since both the
fluorescence- and radio-labeling techniques are surrogate analysis
methods, they are generally used in conjugation with SEC for the
quantitation of polymers. With the help of radio labeling, the
degradation of poloxamer 188 [119], and HA [120] were investi-
gated. Meanwhile, the degradation of chitosan [121] and PVA [122]
were studied by means of fluorescence. Polymers usually do not
have strong chromophores for UV detection. Refractive index (RI) is
an alternative detection for the quantitation of polymers at high
concentration and of high purity. The quantitation of the degraded
PLGA [123], PLA [124], chitosan [121,125] and HA [126] were per-
formed by SEC or HPLC in combination with RI.

4. Conclusion and perspectives

The ideal NDDSs should provide APIs with the properties of
sustained release, prolonged circulation time, improved stability,
solubility and targeting. Annually, a great deal of pharmacokinetic
information about drug-loaded NDDSs has been reported.
However, the approved nanotechnology-based products are
limited. The low drug pass-through rate may partially attribute to
the inadequate understanding of their pharmacokinetic properties.
The present review discusses the recent advances in the bioanalysis
of NDDSs, including technological progress in the analysis of the
released and encapsulated drug respectively. Besides identifying
their pharmacokinetics activities, the bioanalysis of the polymer
material of NDDSs is also discussed. Among the enumerated
analytical methods, LC-MS/MS is the most comprehensive
approach for either profiling the pharmacokinetic behavior of
NDDSs in clinical trial or for polymer quantitation in vivo.

Because of the huge gap between the released (in-)active in-
gredients and NPs in their pharmacokinetics, a comprehensive
understanding of the in vivo fate of NDDSs is necessary to ensure
their safe clinical applications. There has been a continued demand
for developing efficient bioanalytical methods toward this goal. We
hope this review will contribute to critical implications in the
evaluation of NDDSs in vivo.
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