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Abstract

Since environmental effects of molecular traits are often questioned we analyze here the molecular effects of
cadmium (Cd) on lipid pathways and their effects on tissues development. Lipids are an important energy source for
the developing embryo, and accumulate in the ovary and hepatopancreas of decapod crustaceans. The extend of Cd
affecting lipid storage and metabolism, is studied here with the freshwater crabs Sinopotamon henanense. Crabs
were exposed to water-born Cd at 1.45, 2.9, 5.8 mg/l for 10, 15, and 20 days. With significantly increased Cd
accumulation in exposed crabs, lipid content in hepatopancreas and ovary showed a time-dependent and
concentration-dependent reduction, being at least one of the reasons for a lower ovarian index (OI) and
hepatopancreatic index (HI). After 10-day exposure increased triglyceride (TG) level in hemolymph and up-regulation
of pancreatic lipase (PL) activity in the hepatopancreas suggested an increased nutritional lipid uptake. However, two
processes led to lower lipid levels upon Cd exposure: an increased utilization of lipids and a down-regulated
lipoprotein lipase (LPL) led to insufficient lipid transport. 10-day Cd exposure also triggered the production of β-
nicotinamide adenine dinucleotide 2'-phosphate reduced tetrasodium salt hydrate (NADPH), as well as to the
synthesis of adenosine triphosphate (ATP) and fatty acids. With increasing exposure time, the crabs at 15 and 20-
day exposure contained less lipid and TG, suggesting that more energy was consumed during the exposure time.
Meanwhile, the level of NADPH, ATP and the activity of PL, LPL, fatty acid synthase (FAS), acetyl-CoA carboxylase
(ACC) activity was down-regulated suggesting an impairment of the crab metabolism by Cd in addition to causing a
lower lipid level.
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Introduction

Due to anthropogenic sources, such as burning of coal in
power stations and metal smelting, the trace heavy metal
cadmium (Cd) is increasingly released to the environment [1,2].
Cd pollution is also frequently found in aquatic systems, such
as rivers in China like the Yellow River and Yangtze River
[3,4,5]. Cd could lead to acute or chronic intoxication of
organisms and cause a variety of adverse effects, such as
functional changes in the porcine renal proximal tubular
epithelial cell line [6] and Cd-induced hepatopancreatic cell
necrosis and apoptosis in crab [7]. In addition, Cd could cause
an increase of reactive oxygen species that challenge the
cellular antioxidant system, and lipid peroxidation in
crustaceans [8,9,10]. The impairment of lipid induced by Cd
has also been detected in the duck Cairina moschata and the
European eel Anguilla anguilla, and might directly affect their

migration [11,12]. Consequently，toxicity from Cd on aquatic
organisms is becoming a global environmental problem that
results in the disturbance of entire aquatic ecosystems [13,14].
The decline and extinction of species also occurred in some
populations [15,16].

During crustacean ovarian development, especially in the
phase of yolk accumulation, a large amount of lipid is stored in
the ovary and hepatopancreas [17,18]. The lipid stored in eggs
will be mobilized for energy production in the course of
embryogenesis. Therefore, crustacean fecundity, survival, and
egg growth are associated with lipid content and composition in
the ovary [19,20]. The hepatopancreas, as a vital organ for
crustaceans is used for lipid storage and synthesis and plays a
major role in crustacean growth and reproduction. Lipids stored
in the hepatopancreas are used for energy generation. They
are also directly transferred to the ovary during ovarian
development [21,22,23]. So did Chen et al. [24] observe a
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significant reduction of lipid content in the hepatopancreas of
Chinese mitten crab in the stable phase of ovarian maturation.
When environmental conditions deteriorate, such as during
scarcity of food, energy is mainly derived from the consumption
of lipids stored in crustacean tissues [25,26]. Undoubtedly,
lipids are important for aquatic benthic animals, such as the
freshwater crab, Sinopotamon henanense, which is widely
distributed in the freshwater environments in the Yangtze River
drainage, Huaihe River drainage and Yellow River Valley of
China. This crab species lives at the interface of sediment and
water column where Cd is deposited [27,28]. Despite the fact
that crabs in their aquatic habitat are commonly subjected to
multiple contamination sources, very few studies were focusing
as yet on the effect of Cd on lipid storage and metabolism in
brachyurans.

In the present study, we evaluate the possible impact of Cd
on hepatopancreas and ovary, the two major tissues of Cd
accumulation and lipid metabolism in the freshwater crab, S.
henanense [24,29]. This also allowed insights to he
mechanisms of decreased reproduction fitness and reduction
of population size. The experimental Cd concentrations chosen
were close to that of environmental Cd contaminations, such as
Cd pollution incidents in Shaoguan city of Guangdong North
River, 2005; and the Longjiang Cd pollution event in Hechi,
Guangxi, 2011 [30].

In order to test the effects of Cd, we measured lipid content,
triglyceride (TG) levels in hemolymph, as well as enzyme
activity involved in lipid digestion, lipid transport and lipid
synthesis. Lipids from food can be broken down into fatty acids,
diacylglycerols and monoacylglycerols by hydrolysis of
pancreatic lipase (PL, EC 3.1.1.3). These are thereafter
absorbed into the hemolymph. Then, these lipids are
transported through the lymphatic system to other organs in the
form of lipoproteins [31]. Among the circulating lipoproteins,
lipoprotein lipase (LPL, EC 3.1.1.34) is the key enzyme
involved in the decomposition of TG [32]. With the hydrolysis of
LPL, TG molecules are hydrolyzed to glycerol and free fatty
acids [33,34]. These low-molecular substances were used for
energy metabolism or stored in tissues [35]. We also analyzed
the activity of two important rate-limiting enzymes in the
anabolism of lipids: acetyl-CoA carboxylase (ACC, EC 6.4.1.2)
and fatty acid synthase (FAS, EC 2.3.1.85) [36]. In addition, we
determined the levels of ATP and NADPH, and the activity of
ATP and NADPH dependent enzymes in hepatopancreas and
ovary since both substances provide energy and reductive
materials (H+) for fatty acid synthesis, respectively. In the
respiratory metabolism, three main pathways (glycolysis, the
tricarboxylic acid cycle, mitochondrial electron transport)
contribute to ATP production [37]. Their activities are involved
in three pathways, glucokinase (GK, EC 2.7.1.1), NAD+-linked
isocitrate dehydrogenase (IDH, EC 1.1.1.41) and cytochrome C
oxidase (COX, EC 1.9.3.1). These were studied along with
NADPH-dependent enzyme activities, including glucose-6-
phosphate dehydrogenase (G6PDH, EC 1.1.1.49) and 6-
phosphogluconate dehydrogenase (6PGDH, EC 1.1.1.44)
belonging to the pentose phosphate pathway. Malic enzyme
(ME, EC 1.1.1.40) being a key enzyme in the citrate-malate-
pyruvate shuttle, and NADP+-linked isocitrate dehydrogenase

(IDH, EC 1.1.1.42) transforming isocitrate into α-ketoglutarate
[12]. To indicate the effect of Cd on ovarian and
hepatopancreas development, we further analyzed the ovarian
index (OI) and hepatopancreatic index (HI) which are common
indicators to evaluate tissue development in crustaceans and
are associated with lipid content in tissues [24,38,39].

Material and Methods

Ethics Statement
The place where crabs were caught is privately owned. With

the permission from the owner of the land, our study were
carried out. We also confirm that the current studies did not
involve endangered or protected species.

Animals and Treatments
Adult female freshwater crabs were caught from Qinyang,

Henan province in China on 29 June 2011, and were
subsequently selected for examination. Before the experiment,
crabs were acclimated for 3 weeks in acid cleaned glass
aquaria filled with city water (dissolved oxygen 8.0-8.3 mg/l, pH
7.50 ± 0.13). During acclimatization, the temperature was kept
at 20 ± 2 °C, and the aquaria were shielded using a black
plastic to reduce optical disturbance. After acclimatization of 3
weeks, healthy similar-sized crabs, averaging 21.0 ± 0.7 g in
weight (mean ± S. D., n = 160) were randomly divided into four
experimental groups of 40 individuals each and allocated to a
control group and three treatment groups exposed to 1.45, 2.9,
and 5.8 mg/l CdCl2 corresponding to 1/160, 1/80, one-fortieth of
the 96h LC50 according to Wang et al. [40] for 10, 15 and 20
days. Crabs in each treatment were also placed in five different
tanks. To keep a constant Cd concentration, the water was
renewed every two days with batches of the same
concentration. During the exposure period, crabs were fed a
commercial feed (Hanye, Beijing, China), containing 30%
protein and 15% fat every evening (5 % animal wet weight/
day).

Sample preparation
Haemolymph and tissues were sampled after 10, 15 and 20

days. Before sampling, crabs were anesthetized by placing
them on ice for 15 min. After the whole body wet weight of
crabs was weighed, heparin (400 units per kg body weight)
was injected into the abdomen. A haemolymph sample of 0.2
ml was taken 5 min later, centrifuged to collect serum, and
frozen temporarily at -20 °C for the subsequent measure of
LPL activity and TG levels.

After dissection of the cephalothorax, hepatopancreas and
ovary were immediately sampled and their weights were
recorded. The tissues were divided into several parts and
stored at -80 °C for the measure of lipid, ATP, and Cd
concentrations in tissues.

Tissue pieces (0.1 g) were homogenized with ice-cold buffer
(1:9, w/v) consisting of 20 mM Na2HPO4, 10 mM MgC12, 1 mM
phenylmethylsulfonyl fluoride (PMSF), and adjusted to pH 7.8.
The homogenate was centrifuged by a refrigerated centrifuge
(Eppendorf 5415R, Hamburg, Germany) for 15 min at 1,468 g
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at 4 °C. The clear supernatant was removed and used for the
measurement of NADPH and protein levels and enzyme
activities.

Cd determination
The analysis of Cd concentration in hepatopancreas and

ovary was carried out according to the method of Ma et al. [25].
Samples (0.2 g) of every experimental condition were dried in
an oven at 80 °C for 48 hours, and were then digested by 10 ml
HNO3 (analytical grade) and 5 ml perchloric acid (analytical
grade) over a hot plate at 120 °C under a reflux cap. Cd
concentration in tissues was measured by electrothermal
atomic absorption spectrophotometry (SHIMADZU AA-6300,
Kyoto, Japan). The standard Cd solution (Shanxi Environment
Protection Department, China) was used as a control of metal
concentration. Cd concentration was expressed as µg/g tissue
wet weight.

OI, HI and Lipid analysis
OI and HI were defined as the percentage of tissue wet

weight relative to the whole body wet weight (tissue wet weight/
body wet weight × 100). The lipid in tissues was extracted
using the method of Folch et al. [41] which is very suitable for
the extraction of lipids. The hepatopancreas and ovary (0.5 g)
were extracted in 10 ml of methanol-chloroform (1:2 v/v) for 12
hours. The lipids dissolved in organic solvents were
evaporated, and then the total lipid fraction was weighted and
results were expressed as the lipid portion as the percentage of
tissue wet weight.

TG quantification and enzyme activity assay
TG levels in the haemolymph, LPL and PL activities were

detected by colorimetry, using the kit (Nanjing Jiancheng
Bioengineering Institute, China) according to the
manufacturer’s instructions. The activities of FAS and ACC in
the samples were measured by the double antibody sandwich.
Elisa kits were purchased from the Immuno-Biological
Laboratory (Gunma, Japan) and R&D Systems (Minneapolis,
Minnesota, U.S.A.).

Measurements of ATP, NADPH and dependent enzyme
activities

Tissue pieces were homogenized with boiling distilled
deionized water (1:9, w/v). The homogenate was centrifuged
for 10 min at 1,468 g at 4 °C. The supernatants were collected
for the measurement of ATP concentrations using the
phosphomolybdate colorimetric assay (Nanjing Jiancheng
Bioengineering Institute, Nanjing, China). According to the
manufacturer’s instructions, the activity of GK and COX were
detected by colorimetry using kits (ATP, GK: Nanjing
Jiancheng Bioengineering Institute, Nanjing, China; COX:
Gemmed Scientifics Inc, Washington D.C., U.S.A.).

The content of NADPH was measured using a
spectrophotometer (SpectraMax M5, Molecular Devices Corp.,
San Francisco, CA, U.S.A.) by the modified method of Zhang
et al. [42]. The activity of NADPH-dependent enzymes
(G6PDH, 6PGDH, NADP+-linked IDH and ME) and NAD+-linked

IDH was detected according to the method of Alp et al. [43] and
Pierron et al. [12].

Based on the following generation of NADPH, NADH and
their increased absorbance at 340 nm, the above enzyme
activity was determined and expressed in nmol/min mg protein.
All assays were performed under saturated substrate
conditions in phosphate buffer (20 mM Na2HPO4, 10 mM
MgCl2, final volume, 0.8ml; pH 7.8). The final reaction mixtures
were selected to provide optimal activities with homogenates
and were as follows:

G6PDH: 1mM glucose-6-phosphate, 0.3 mM NADP+.
6PGDH: 0.5mM 6-phosphogluconate, 0.3 mM NADP+.
ME: 5 mM malate, 0.3 mM NADP+.
NAD+-linked IDH: 0.5mM isocitrate, 0.3 mM NAD+.
NADP+-linked IDH: 0.5mM isocitrate, 0.3 mM NADP+.
The protein concentration in the clear supernatant fraction

was determined using the method of Bradford [44], and bovine
serum albumin was used as a standard.

Data analysis
By the least-significant difference (LSD) of the one-way

analysis of variance, all the data representing mean values of
five independent sets of experiments and are represented by
means ± standard deviation (S.D.), were used to evaluate
differences between control and exposed crabs. Probability
values less than 0.05 were considered significant. Statistical
computations were performed with SPSS 15.0.

Results

Cd bioaccumulation
The results of Cd bioaccumulation in the hepatopancreas

and ovary after sub-chronic Cd exposure are presented in
Figure 1. Cd concentrations in exposed crabs increased
significantly, and showed a distinct time- and dose-dependent
pattern in both tissues. The highest Cd concentration of 50.99
± 6.63 µg/g (w wt) was observed in hepatopancreas at 20-day
of 5.8 mg/l exposure. Moreover, the Cd levels of
hepatopancreas were much higher than those of the ovary at
the same Cd exposure.

Effect of Cd on OI, HI, Lipid Content and TG Level
After Cd exposure, the overall lipid content of

hepatopancreas in exposed crabs decreased compared to the
control (Figure 2d), and a significant difference to the control (P
< 0.05) was observed in all Cd treatment concentrations for 10,
15 and 20 days. Moreover, the HI in all exposure groups
except the 1.45 mg/l Cd at 10-day exposure showed a lower
level than the control (Figure 2b). However, there was no
significant difference in ovarian lipid content and OI from the
10-day exposure group (Figure 2c; Figure 2a). With time,
significantly lower lipid and OI levels were observed at 15 and
20 day exposures. In the experiment of the TG level in the
haemolymph, significant increases were found at 5.8 mg/l Cd
exposure at 10 days (Figure 2e). However, the TG level at 15-
and 20-day exposure showed a significant reduction compared
to the control.

Effects of Cd on Lipid in the Crab S. henanense
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Figure 1.  Cadmium concentrations in the tissues of control and exposed crabs.  Data of hepatopancreas (a) and ovary (b)
are expressed as mean ± standard deviation (n = 5). Statistical significance is denoted by * p < 0.05 compared to the respective
control.
doi: 10.1371/journal.pone.0077569.g001

Figure 2.  Effects of Cd on ovarian index, hepatopancreatic index, triglyceride and lipid content.  Ovarian index (a),
hepatopancreatic index (b), triglyceride levels in hemolymph (e) and lipid content expressed as percentage (weight of lipid/ tissue
samples, FW: fresh weight) in the ovary (c) and hepatopancreas (d) for control and exposed crabs after 10, 15, and 20 days of
experimentation. Data are expressed as mean ± standard deviation (n = 5). Comparison between the control and treatment groups
is notified as * p < 0.05.
doi: 10.1371/journal.pone.0077569.g002
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Activities of enzymes involved in lipid metabolism after
Cd exposure

The activity of LPL which plays a key role in lipid transport
was lower than the control, and showed a time- and dose-
dependent pattern (Figure 3b). Significant differences were
also observed following the exposure to 2.9, 5.8 mg/l Cd at 10-
days and all Cd concentrations at 15 and 20-days. As seen in
Figure 3a, the activity of PL at 10-day exposure significantly
increased (p < 0.05). However, the PL showed a significant
reduction at 15- and 20-days exposed crabs compared to the
control. The activity of FAS and ACC involved in lipid synthesis
at 10-day exposed crabs was higher than the controls (Figure
3b - 3f). With time both enzymes showed a lower activity, and a
significant reduction of ACC activity was observed at higher
concentrations at 20-days.

ATP level and dependent enzyme activities in response
to Cd exposure

ATP is also necessary for the synthesis of fatty acids. Figure
4 shows the results of ATP levels and the activity of enzymes
involved in the mitochondrial metabolism after Cd exposure.
After 10-day exposure, the ATP level in hepatopancreas and
ovary of exposed crabs was significantly higher than that of the
control group, and the activity of NAD+-linked IDH (Figure 4e;
Figure 4f) and COX (Figure 4g; Figure 4h) was significantly up-
regulated. However, there was no significant change observed
in the GK activity in exposed crabs. Compared to the control

and the 10-day exposure, the ATP level decreased and a
significant change (p < 0.05) was observed at higher
concentrations at the 15- and 20-day exposure. A similar result
was found in the activity of NAD+-linked IDH, COX and GK.

NADPH level and dependent enzyme activities in
response to Cd exposure

The level of NADPH, an important co-factor required in the
synthesis of fatty acids, was significantly higher in
hepatopancreas and ovary of crabs exposed to Cd for 10 days
than in the control (Figure 5a; Figure 5b). Moreover, the
activities of NADPH synthesizing enzymes were all significantly
enhanced, such as G6PDH, 6PGDH, ME and NADP+-linked
IDH (Figure 5c - Figure 5j). After 15-days exposure, NADPH
levels in hepatopancreas were still higher than in the control,
but no significant change was found in the ovary. However, the
NADPH level at 20-day exposure decreased compared to the
10- and 15-day exposure, and a significant difference was
observed in the ovary of crabs exposed to 5.8 mg/l Cd
concentration. The enzyme activity associated with NADPH
was down-regulated as well.

Discussion

Cd bioaccumulation
We found Cd accumulation in both hepatopancreas and

ovary of exposed crabs. The Cd concentration in the ovary of

Figure 3.  Effect of Cd on lipid digestion, lipid transport and lipid synthesis of Sinopotamon henanense.  Activity of
pancreatic lipase (PL, a), lipoprotein lipase (LPL, b) fatty acid synthase (FAS) in the hepatopancreas (c) and ovary (d) and acyl-CoA
carboxylase (ACC) activity in the hepatopancreas (e) and ovary (f) of control and exposed crabs after 10, 15 and 20 days of
experimentation. Comparison between the control and treatment groups is notified as * p < 0.05.
doi: 10.1371/journal.pone.0077569.g003
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exposed crabs was much greater than in the control, but much
lower than in hepatopancreas at the same exposure conditions.
This was similar to previous studies with the shore crab
Carcinus maenas [45] and white shrimp Litopenaeus vannamei
[46]. The high accumulation of Cd in hepatopancreas was
possibly caused by its role in detoxification. Oxidative stress is
an important mechanism of Cd toxicity. Cd could alter
antioxidant defense systems and stimulate the formation of
reactive oxygen species (ROS) such as hydroxyl radicals and
singlet oxygen [47]. ROS could cause oxidative stress by
reacting with macromolecules and lead to damages, such as
apoptosis and membrane lipid peroxidation [7,48]. Studies from
our laboratory also found alterations in the levels of
malondialdehyde (MDA) which is the final decomposition
product of lipid peroxidation caused by ROS, and the activities

of superoxide dismutase (SOD), glutathione peroxidase (GPx)
and catalase (CAT) after Cd exposure [8,40,49,50]. In the
defense against Cd-stress, one of the metal-binding proteins is
metallothionein (MT), a small protein with a significant
concentration of cysteine. Cysteine contains a sulphydryl group
that has a high affinity to Cd. In a previous study, Ma et al. [29]
found that the MT level in hepatopancreas of Cd-exposed
crabs was much higher than in the control and in other tissues.
Therefore, the hepatopancreas could tolerate high Cd
concentrations.

Impairment of Cd on Lipid Storage and Metabolism
Crabs that were Cd-exposed contained less lipid compared

to the control, which was consistent with some previous studies
in other animals such as the duck Cairina moschata [11],

Figure 4.  Effect of different Cd concentrations on ATP levels and dependent enzyme activities.  Data are expressed as
mean ± standard deviation (n = 5). Comparison between the control and treatment groups is notified as * p < 0.05. ATP levels:
(hepatopancreas, a; ovary, b), Glucokinase (GK: hepatopancreas, c; ovary, d), NAD+-linked isocitrate dehydrogenase (IDH:
hepatopancreas, e; ovary, f), and cytochrome C oxidase (COX: hepatopancreas, g; ovary, h).
doi: 10.1371/journal.pone.0077569.g004
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european eel Anguilla anguilla [12], rat [51], freshwater crayfish
Procambarus clarkii [52], and flower shrimp Penaeus
semisulcatus [53]. A significant reduction of lipid content in

hepatopancreas of Cd-exposed crabs was observed after three
experimental durations. We interpret these results with the
function of lipids in the hepatopancreas. Firstly, the main

Figure 5.  Effect of different Cd concentrations on NADPH levels dependent enzymes activities.  Data are expressed as
mean ± standard deviation (n = 5). Statistical significance was denoted by *p < 0.05. NADPH levels: (hepatopancreas, a; ovary, b),
Glucose-6-phosphate dehydrogenase (G6PDH: hepatopancreas, c; ovary, d), 6-phosphogluconate dehydrogenase (6PGDH:
hepatopancreas, e; ovary, f), malic enzyme (ME: hepatopancreas, g; ovary, h), NADP+-linked isocitrate dehydrogenase (IDH:
hepatopancreas, i; ovary, j).
doi: 10.1371/journal.pone.0077569.g005
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function of the hepatopancreas is detoxification, which causes
a higher MT level and up-regulation of antioxidant enzyme
activity after Cd exposure [8,29]. This could have led to the
increased energy demands in exposed crabs, which was
confirmed by increased TG levels in the haemolymph, ATP
levels, NAD+-linked IDH and COX activity after 10-day
exposure. Since laboratory experiments of Xuan et al. [54] did
not observe a significant reduction in carbohydrate and protein
after 7 and 14 days Cd exposure, the lipid stored in
hepatopancreas could be one of the main carbon sources used
for ATP production. Another important function of the
hepatopancreas is to provide lipids for the ovary [39]. The lipid
transport mechanism existing in crustaceans such as in the
crab Pachygrapsus marmoratus [20] and kuruma prawn [19]
may be one of the reasons for a non-significant reduction of
lipids in the ovary after 10-day exposure. Moreover, the lipid
concentration of the hepatopancreas and ovary was closely
associated with the ovarian index (OI) and hepatopancreatic
index (HI). These are two common indicators to evaluate tissue
development. The relationship between lipid content and HI, OI
was confirmed by the change of HI, OI the change of lipids in
the tissues of exposed crabs. A significant reduction of lipid
levels in the tissues after Cd exposure could lead to a lower HI
and OI, suggesting that hepatopancreatic and ovarian growth
were seriously affected by Cd. The effect of Cd on the ovary
could cause embryonic deformity and reduce hatching rates of
fertilized eggs [55,56,57], affect the reproductive biology of
crabs in general which is the focus of our future investigations,
and may lead to the reduction of population size and other
disturbances in aquatic ecosystems.

To further explore the causes of lipid impairment, we studied
the activity of LP involved in lipid digestion. The results of the
present study after 10-day exposure showed that LP activity
was increased compared to the control, which was similar to
the results of Firat and Kargin [58] and explain the increased
TG levels in the haemolymph of exposed crabs. The increase
of PL activity and TG level likely indicates the increased need
for energy, but this trend was reversed in the reduction of lipids
stored in tissues. Therefore, it was necessary to take into
account the effect of Cd-exposure on lipid transport. LPL, a key
enzyme involved in lipid transport in the haemolymph, was
analyzed [59]. A significant down-regulation of LPL activity
could also impair the lipid transport from food to tissues after
10-day exposure. This could provide another explanation for a
lower lipid content.

The result of Cd on lipid metabolism demonstrated that fatty
acid biosynthesis in 10-day exposed crabs could be affected by
Cd. There were increased activities of two key enzymes (ACC
and FAS) and the indispensable energy factors (ATP and
NADPH) in the fatty acid synthesis following Cd exposure.
However, an increase of lipid content in the hepatopancreas
and ovary was not observed. Lucia et al. [11] explained that Cd
triggered the synthesis and the mobilization of long chain fatty
acids, and these were subsequently transported to the
mitochondria for energy production to relieve Cd toxicity and
reduce oxidative stress. Indeed, one of the principal metabolic
purposes of long chain fatty acids is the production of ATP, and
exposed crabs also showed a significant up-regulation of ATP

levels and related enzyme activities [60]. Another explanation
is that Cd-induced lipid peroxidation leads to the decomposition
of polyunsaturated fatty acids in membrane systems, which
could cause the impairment of the hepatopancreatic cell
membrane structure [7,61]. Newly generated fatty acids could,
therefore, be used for the renewal of damaged lipids [62,63].

In the defense against oxidative stress induced by Cd, one of
the major intracellular antioxidants is glutathione (GSH) which
neutralizes reactive oxygen species by the synthesis of
oxidized glutathione disulfide (GSSG). The cycling of GSSG to
GSH depends on NADPH [64]. NADPH as a reductant
provides a necessary co-factor that plays an essential role not
only in lipogenesis, but also in the entire antioxidant system
[40,65]. After 10-day exposure, NADPH levels both in
hepatopancreas and ovary were up-regulated. Cd seems to
strongly stimulate the potential of NADPH production by
increasing the activity of G6PDH, 6GPDH, ME and NADP+-
linked IDH. According to our results on Cd affecting the lipid
synthesis, we suppose here that after Cd exposure the NADPH
in tissues is mainly used for GSH re-cycling.

After longer exposure (especially 20-day exposure), the
impairment of Cd on lipid storage and metabolism became
more serious. A higher Cd accumulation in tissues compared to
the control and the 10-day exposure indicates higher energy
expenditure. However, massive mobilization of lipids from
tissues during Cd exposure might have caused a lower lipid
level and a shortage in energy supply that was also indicated
by lower TG and ATP levels. Our results showed, moreover, a
reduction of the NADPH levels after 20-day exposure. These
effects of Cd resulted in a reduction of Cd resistance, which
could trigger the down-regulation of PL, LPL, ACC, and FAS
activity. A negative impact of Cd on lipid digestion, lipid
transport and fatty acid synthesis leads to an even more
serious impairment of the lipid metabolism.

Conclusions

The experimental results of the present study indicated an
impairment of lipid concentrations in hepatopancreas and ovary
in the Cd exposed freshwater crab, Sinopotamon henanense.
We explain this impairment with the effect of Cd on lipid
digestion, lipid transport, and energy metabolism. The lower
activity of PL after a long period of Cd exposure suggests that
less lipids were assimilated by crabs. The inhibition of Cd on
LPL activity can cause a more serious impairment of lipid
transport. Under Cd exposure, crabs showed high-energy
needs, which may originate primarily from lipid consumption.
However, a significant decrease of lipid levels in the tissues
after a longer exposure for 15 and 20 days caused a
substantial shortage in energy supplies. Moreover, the lower
lipid concentrations in the ovary after Cd exposure could lead
to lower HI and OI, suggesting that Cd also affected the
hepatopancreatic and ovarian development of crabs. This may
have ecological repercussions through its effects on
reproductive fitness and subsequent population growth.
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