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Given the emergent interest in biomarkers for mood disorders, we assessed gene
expression in the choroid plexus (CP), the region that produces cerebrospinal fluid (CSF),
in individuals with major depressive disorder (MDD). Genes that are expressed in the
CP can be secreted into the CSF and may be potential biomarker candidates. Given that
we have previously shown that fibroblast growth factor family members are differentially
expressed in post-mortem brain of subjects with MDD and the CP is a known source of
growth factors in the brain, we posed the question whether growth factor dysregulation
would be found in the CP of subjects with MDD. We performed laser capture microscopy
of the CP at the level of the hippocampus in subjects with MDD and psychiatrically normal
controls. We then extracted, amplified, labeled, and hybridized the cRNA to Illumina
BeadChips to assess gene expression. In controls, the most highly abundant known
transcript was transthyretin. Moreover, half of the 14 most highly expressed transcripts
in controls encode ribosomal proteins. Using BeadStudio software, we identified 169
transcripts differentially expressed (p < 0.05) between control and MDD samples. Using
pathway analysis we noted that the top network altered in subjects with MDD included
multiple members of the transforming growth factor-beta (TGFβ) pathway. Quantitative
real-time PCR (qRT-PCR) confirmed downregulation of several transcripts that interact
with the extracellular matrix in subjects with MDD. These results suggest that there
may be an altered cytoskeleton in the CP in MDD subjects that may lead to a disrupted
blood-CSF-brain barrier.
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INTRODUCTION
The choroid plexus (CP) is composed primarily of capillary beds,
the pia mater and a large number of epithelial cells. The CP pro-
duces cerebrospinal fluid (CSF), removes byproducts, plays a role
in neuroendocrine signaling and provides structural support for
the brain (Skipor and Thiery, 2008; Wolburg and Paulus, 2010).
Yet to date, no human post-mortem gene expression studies of
the CP have been published.

As the CP is found largely in the lateral ventricles, it is
often co-dissected with surrounding brain tissue. This is par-
ticularly evident in dissections of the human hippocampus, a
brain structure known to respond to antidepressants and play
a role in neurogenesis (Cameron and McKay, 2001; Mallei
et al., 2002; Duman, 2004; Bachis et al., 2008). Given the
proximity of the CP in the lateral ventricle to the hippocam-
pus and the ability of the CP to secrete proteins into the
CSF that can act on the hippocampus, it is surprising that
this structure has not been previously studied in individu-
als with mood disorders. The CP has, however, been shown
to exhibit alterations following chronic stress in rats, a model

known to induce depression-like behavior (Sathyanesan et al.,
2012).

It is also important to consider the disease relevance of the
source material. We do not know, for example, whether proteins
found in the CSF are related to gene expression in the CP or are
derived from other brain areas. Previous studies have reported
differences in growth factor levels in the CSF (Kahl et al., 2009;
Kiec-Wilk et al., 2010; Takebayashi et al., 2010). However, con-
flicting evidence exists that differential expression of a growth
factor in gray matter did not translate to detectable differences in
expression or levels in the blood or CSF (Lanz et al., 2012). This
suggests that growth factors in the CSF might arise from many
different tissue sources, including the CP.

Although nothing is known about gene expression in the CP in
MDD subjects, a significant amount of literature has previously
focused on the role of the hippocampus. For example, there is
evidence for altered gene expression in the human post-mortem
hippocampus in individuals with MDD (Sequeira et al., 2007,
2009). However, gene expression studies should be interpreted
with caution, as hippocampal dissections also likely contain CP.
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In the present study, we used laser capture microscopy to selec-
tively isolate the CP from control and MDD post-mortem human
brain prior to assessment of gene expression using microarrays.
An unbiased approach was also used to determine the top net-
work and functions that may be altered in the CP in subjects with
MDD. A subset of mRNAs differentially expressed by microar-
ray analysis was then validated by qRT-PCR. This study was the
first to determine gene expression in the CP in normal controls.
We also observed differences in gene expression between normal
controls and individuals with MDD.

METHODS AND MATERIALS
POST-MORTEM TISSUE QUALITY AND DEMOGRAPHICS
All human brains were obtained from the Brain Donor Program
at the University of California—Irvine, and the studies were
approved by both the University of California—Irvine and the
University of Michigan Institutional Review Boards. Written
informed consent was obtained from the next-of-kin of the
deceased. Information regarding diagnosis, treatment and other
clinically relevant variables were obtained from medical records,
the coroner’s investigation and family interviews. Table 1 shows
a list of subject demographics for controls and individuals with
MDD used in this study. Six subjects per group were used for
microarray analyses, and an additional four subjects per group
were added for the qRT-PCR validation study. No significant

differences in age, gender, post-mortem interval or brain pH were
detected between groups. All subjects also had an agonal fac-
tor score (Gustafsson et al., 2003) of 0. Previous studies found
that AFS and brain pH are the strongest factors influencing gene
expression (Li et al., 2004). Therefore, all brains used in this study
had a pH greater than 6.6. The brains were removed at the time
of autopsy, cooled to 4◦C and then sliced into 0.75 cm coronal
slabs which were then immediately stored at −80◦C to preserve
integrity (Jones et al., 1992). The slabs were then manually dis-
sected while kept frozen at −80◦C by trained staff into various
brain region blocks, including the hippocampus which was used
for this study.

mRNA IN SITU HYBRIDIZATION
Previously dissected blocks from the post-mortem human hip-
pocampus were sectioned (−20◦C) at 10 μm and stored at
−80◦C. One section was placed onto a SuperFrostPlus slide
(Thermo FisherScientific, Waltham, MA) and stored at −80◦C
until processing. Every 50th section was selected for mRNA
in situ hybridization throughout the hippocampus, as previ-
ously described (Lopez-Figueroa et al., 2004). Briefly, slides were
fixed in 4% paraformaldehyde, rinsed in 2X SSC, incubated in
an acetic anhydride/triethanolamine solution and dehydrated.
Sections were then hybridized with 35S-UTP and 35S-CTP cRNA
probes overnight at 55◦C. The next day, slides were washed,

Table 1 | Demographics for choroid plexus samples included in the mircorarray and qRT-PCR studies.

ID Diagnosis Age Sex Brain pH Race PMI Cause of death SSRI

1834 Control 40 M 6.76 C 12.3 LTMC NO

2619 Control 48 M 6.79 C 20.2 SMC NO

2805 Control 45 M 6.86 C 21.0 SMC NO

3520 Control 74 F 7.21 C 18.5 SMC YES

3572 Control 49 M 6.68 C 27.5 SMC NO

4327 Control 56 M 6.64 C 9.0 SMC NO

2292 Control 55 M 6.89 C 15.0 SMC NO

2248 Control 64 F 6.83 C 19.3 SMC NO

3519 Control 65 M 6.88 AA 13.5 SMC NO

4350 Control 68 M 6.67 AA 25.9 SMC NO

2267 MDD 19 M 7.11 C 18.0 SUICIDE NO

2944 MDD 52 M 6.82 C 16.0 SMC YES

3071 MDD 49 M 7.00 C 31.0 UNDETERMINED YES

4260 MDD 48 F 6.62 C 12.0 UNDETERMINED NO

4323 MDD 53 M 6.75 C 33.5 SMC NO

4326 MDD 59 F 7.15 C 15.0 ACCIDENT NO

3169 MDD 35 M 7.04 C 24.75 ACCIDENT YES

2315 MDD 58 M 6.93 C 24.0 SUICIDE YES

2208 MDD 72 F 7.13 C 21.0 SUICIDE YES

4272 MDD 72 F 6.61 C 27.7 SUICIDE YES

Abbreviations: F, female; M, male; MDD, major depressive disorder; C, Caucasian; AA, African American; PMI, post-mortem interval; LTMC, long-term medical

condition; SMC, sudden medical condition; SSRI, selective serotonin reuptake inhibitor (at the time of death).

Bold represents subjects used in the microarray study.

All subjects in the cohort were well-matched for age, gender, post-mortem interval, agonal factor and pH and used in the qRT-PCR study.

Averages ± s.e.m. are: age—control (56.4 ± 3.5), MDD (51.7 ± 5.0); pH—control (6.8 ± 0.5), MDD (6.92 ± 0.06); PMI—control (18.2 ± 1.86), MDD (22.3 ± 2.26);

level—control (5.0 ± 0.02), MDD (4.9 ± 0.2).
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rinsed in increasing stringency of SSC, dehydrated and exposed
to Kodak Biomax MR film (Eastman Kodak, Rochester, NY).
Exposure time was empirically determined using test slides to
visualize the region of interest. The cRNA probes were synthesized
from human cDNA cloned in-house. The GAD67 (NM_000817,
738-964) cRNA probe was used to determine the anatomical
level of the human hippocampus, and the transthyretin (TTR;
NM_000371, 477-701) cRNA probe was used to visualize the
CP. In situ hybridization autoradiograms were then digitized
and scanned using the ScanMaker 1000XL Pro Flatbed Scanner
(Microtek, Carson, CA) and SilverFast Ai Imaging software
(LaserSoft Imaging, Sarasota, FL).

LASER CAPTURE MICROSCOPY (LCM)
The hippocampus was identified using GAD67 mRNA in situ
hybridization, see Figure 1. The hippocampus was identified
based on the C-like shape of the dentate gyrus. Transthyretin has
been shown from mouse studies to be highly abundant in the
CP and can be used as a reliable mRNA marker of this tissue
(Marques et al., 2011). Sections containing the CP were processed
through the following dehydration protocol: room temperature
for 30 s, 75% ethanol for 30 s, dH20 for 30 s, 75% alcohol for
30 s, two 95% alcohol washes for 30 s, 100% alcohol for 30 s, two
xylene washes for 5 min each, and left to air dry for 20 min. Laser
capture microscopy of the CP was performed at the level of the
caudal hippocampus (levels 4–6, based on Amaral and Insuasti,
1990). Two field-of-views of the CP from one section was cap-
tured using the AutoPix LCM system (Arcturus, Mountain View,
CA) onto CapSure Macro LCM caps (Arcturus, Mountain View,
CA). Laser settings were set to 70 mW and 1.5 ms. Figure 2 shows
a low magnification image (4X) of the CP before and after capture
(area circled in red). The large blood vessels were not captured
resulting in a sample of primarily epithelial cells.

RNA ISOLATION AND AMPLIFICATION
Total RNA was extracted from adherent cells (on LCM caps)
using the PicoPure RNA isolation kit (Arcturus, Mountain View,
CA). Cell extracts were stored at −80◦C between RNA extrac-
tion and final isolation. An optional DNAse treatment was
used in the isolation process. RNA was eluted in a final vol-
ume of 11 μl. Quality and quantity of cRNA was determined
on the Agilent 2100 Bioanalyzer using Picochip kits (Agilent,

Palo Alto, CA). The quality of 18S and 28S peaks were deter-
mined as previously described (Bernard et al., 2011). For an
average area of 2.7 mm2, we obtained an average concentration of
1 ng/μl and RNA quality was determined as previously described
(Kerman et al., 2012). This process yielded an average of 11 ng
of total RNA. The total isolated RNA was then amplified by
the RiboAmp Plus 1.5-round RNA Amplification kit (Molecular
Devices, Sunnyvale, CA). The final biotin-labeled cRNA was gen-
erated with the Bioarray High Yield RNA transcription kit (ENZO
life sciences, Plymouth Meeting, PA). The quantity was deter-
mined on the Nanodrop ND-1000 spectrophotometer (Thermo
Fisher Scientific Inc., Waltham, MA). After amplification, the
total biotin-labeled cRNA was an average of 5 μg per sample.

MICROARRAY ANALYSIS
Equal amounts (750 ng) of amplified total RNA sample from each
human sample was hybridized to HumanHT-12v4.0 Expression
BeadChips and scanned on the BeadStation system (Illumina
Inc., San Diego, CA) following the manufacturer’s instructions
(Turner et al., 2011). Each Beadchip provides coverage of more

FIGURE 2 | Laser-capture microscopy images from the same subject

before and after capture. Representative images from the laser capture
microscope (4X). The hippocampus is to the left and the choroid plexus
within the lateral ventricle is located inside the circle. (A) Representative
image of the choroid plexus before laser capture. (B) Representative image
of the choroid plexus after laser capture. Notice that the choroid plexus has
been removed from the area inside the circle.

FIGURE 1 | Identifying the choroid plexus by mRNA in situ

hybridization. (A) Representative image of GAD67 gene expression to
identify the hippocampal level for each subject. The dentate gyrus is the
C-shaped structure in this image depicting level 5 of the hippocampus.

(B) Representative image of TTR gene expression used to identify the
choroid plexus for each subject. The choroid plexus is the dark region
ventral to the hippocampus. (C) Representative image of GAD67 and
TTR overlays.
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than 47,000 probes. The microarray data was quantile normal-
ized in BeadStudio using Illumina’s error model (Illumina Inc.,
San Diego, CA). Fold-changes and p-values were calculated from
the average array signal. Data were also analyzed by Ingenuity
Pathways Analysis Software v8.0 (Ingenuity©Systems, Redwood
City, CA). The Functional Analysis tool identified biological func-
tions and/or diseases that were most significant to the data set.
Molecules from the dataset that had a fold-change cutoff of
1.1, a p-value less than 0.05 and were associated with biological
functions and/or diseases in Ingenuity’s® Knowledge Base were
considered for the analysis. To follow-up on the top pathway iden-
tified by Ingenuity Pathway Analysis, we evaluated gene ontology
using Cytoscape v2.8.2 with a BinGO plug-in.

qRT-PCR
Table 2 shows a list of primers used for qRT-PCR validation.
Amplified cRNA (1 μg) was reverse transcribed using the iScript
cDNA synthesis kit (Bio-Rad Laboratories, Hercules, CA) in a
total reaction volume of 20 μl. cDNA (1 μl) was used as the
template for real-time PCR assays with a MyiQ real-time PCR
system (Bio-Rad Laboratories). The quantitative PCR was con-
ducted in duplicate using iQ SYBR Green Supermix, according to
the manufacturer’s instructions (Bio-Rad Laboratories). Relative
expression of the gene of interest was normalized to β-actin
expression in each sample. It is important to note that β-actin
did not differ between controls and individuals with MDD. The
expression level of the gene of interest was evaluated using the
2−(��Ct) method and values for each gene were expressed as fold-
changes (Livak and Schmittgen, 2001). The PCR product quality
was monitored using post-PCR melt-curve analysis at the end of
the amplification cycles.

STATISTICAL ANALYSES
For qRT-PCR, a Student’s t-test was performed using SPSS (IBM,
Armonk, NY). For pathway analysis, a right-tailed Fisher’s exact
test was used to calculate a p-value determining the probabil-
ity that each biological function and/or disease assigned to that
data set is due to chance alone. For gene ontology, Benjamini &
Hochberg false discovery rate (FDR) correction was applied to the
dataset.

RESULTS
CONTROLS
The most highly expressed known transcript in the human post-
mortem CP was transthyretin (TTR). The primary role of TTR
is to transport thyroxine (T4) and retinol in the brain (Fleming
et al., 2009). However, TTR also has proteolytic activity (e.g.,
neuropeptide Y and β-amyloid). TTR protein levels had previ-
ously been associated with depression, such that low levels of TTR
have been correlated with high suicidal ideation and low 5-HIAA
(Sullivan et al., 2006). A previous study also found TTR to be
downregulated in the CSF of individuals with MDD (Ditzen et al.,
2011). However, TTR gene expression was not altered in the CP
in MDD subjects in our study.

Supplementary Table 1 lists the 11,506 transcripts that were
significantly detected across all samples in the control CP.
Notably, half of the 14 mostly highly expressed transcripts were

Table 2 | List of primers used in the qRT-PCR study.

Accession no. Symbol Primers (forward, reverse) Length (bp)

NM_001004019.1 FBLN2 GACTCCTGTGGCTTCTGGAC 164

CGTGTCTCTGGTCCTCAGGT

NM_002477.1 MYL5 CTGTTTGGGGAGAAGCTGAG 120

CATCAGCAGACGCTTGATGT

NM_002474.1 MYH11 GGGGAGAAAGTCACCGAAAT 143

AACTGTGCGTGTCTGAGGTG

NM_002473.3 MYH9 GCCACCTGCACAGGTATTTT 196

TGCCGTAAGTCTCAATGCAG

NM_002470.1 MYH3 GAGGAGGCTGATGAACAAGC 148

TCCTGCTGGAGGTGAAGTCT

NM_005767.3 P2RY5 AAATTGGACGTGCCTTTACG 116

TAACCCAAGCACAAACACCA

NM_004137.2 KCNMB1 GTGAAGTCATTGCCTGCTCA 180

GGAGAACTCAGGCACAGAGG

NM_138957.2 MAPK1 CCAGACCATGATCACACAGG 163

CTGGAAAGATGGGCCTGTTA

Abbreviations: FBLN2, fibulin 2, transcript variant 1; MYL5, myosin, light chain

5, regulatory; MYH11, myosin, heavy chain 11; MYH9, myosin, heavy chain

9; MYH3, myosin, heavy chain 3; P2RY5, purinergic receptor P2Y, G-protein

coupled, 5; KCNMB1, potassium large conductance calcium-activated chan-

nel, subfamily M, beta member 1; MAPK1, mitogen-activated protein kinase 1,

transcript variant 1.

transcripts that encode ribosomal proteins. However, none of
these transcripts were altered in subjects with MDD.

SUBJECTS WITH MDD
In general, there were 169 transcripts differentially expressed
between MDD subjects and controls, see Supplementary Table
2 for the complete list. The majority of these transcripts (75%)
were downregulated with only a small percentage of transcripts
upregulated (25%). The fact that the majority of the transcripts
were downregulated is similar to what we have observed in the
hippocampus in subjects with MDD (unpublished observations).

When Ingenuity pathway analysis was performed on the
dataset, the top five significant functions were connective tis-
sue disorder, dermatological diseases, developmental disorder,
genetic disorder, and metabolic disease. The top two signif-
icant pathways were hepatic fibrosis and calcium signaling.
The top network focused on transforming growth factor-beta
(TGFβ). As shown in Figure 3, all of the transcripts associ-
ated with the TGFβ network were downregulated in MDD
subjects compared to controls. Gene ontology analysis con-
firmed that growth factor binding (corrected p-value: 0.00885)
was the most significant function in this dataset. Indeed,
seven members of the TGFβ network validated by this anal-
ysis. TGFβ signaling is known to play a role in cytoskeletal
dynamics and actin reorganization (Baghdassarian et al., 1993;
Gagelin et al., 1995). Since TGFβ is associated with various
components of the extracellular matrix, we decided to inter-
rogate transcripts with high fold-changes related to structural
support and integrity, some of which are part of the TGFβ

pathway.
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FIGURE 3 | Top network identified from Ingenuity pathway analysis in the choroid plexus of MDD subjects. TGFβ is at the center of the top network
dysregulated in MDDs. All of the transcripts in this network were downregulated in MDDs.

We selected eight transcripts for real-time PCR validation, see
Table 3. Since we can predict the direction of change based on
the microarray results, we performed one-tail t-tests for qRT-
PCR. Three transcripts were confirmed by qRT-PCR and two
transcripts exhibited non-significant trends in the same direction
as the microarray results. We will describe these five transcripts
in the next few paragraphs. Fibulin 2 (FBLN2) was significantly
decreased in subjects with MDD compared to controls. FBLN2 is
a secreted glycoprotein that is produced by epithelial cells and can
bind calcium. In terms of function, FBLN2 interacts with many
other proteins, including the laminins and integrins, to stabilize
the extracellular matrix (Zhang et al., 1996; de Vega et al., 2009).
It is possible that downregulation of this transcript may lead to
destabilization of the extracellular matrix.

A myosin heavy chain transcript and a calcium-activated
potassium channel were also altered in individuals with MDD.
Myosin heavy chain 11 (MYH11) was significantly decreased in
MDD subjects compared to controls. This myosin motor can
bind actin and play a role in ATP hydrolysis (Renard et al., 2011;
Armstrong et al., 2012). Thus, the actin cytoskeleton might be

altered in subjects with MDD. The calcium-activated and voltage-
dependent potassium channel β1 subunit (KCNMβ1) was also
significantly decreased in individuals with MDD. Although not
much is known about the role of this large conductance chan-
nel in the brain, it has been linked to cardiovascular disease and
hypertension in the periphery (Grimm et al., 2009). However, it is
plausible that this channel also may play a role in filtration, as total
gene expression in the kidney is similar to that of the CP suggest-
ing that the two tissues may share similar functions (Sathyanesan
et al., 2012). This particular subunit of the channel is also the reg-
ulatory subunit of the channel and may alter surface expression
of the receptor (Toro et al., 2006).

There were also non-significant trends for mitogen-activated
protein kinase 1 (MAPK1) and the purinergic receptor, P2YR5,
to be altered in MDD subjects. MAPK is part of the TGFβ

network (see Figure 2) and is known to play a role in tyro-
sine kinase receptor signaling. MAPK is also known to bind to
and phosphorylate cytoskeletal proteins (Veeranna et al., 2000).
Moreover, P2YR5 (aka LPAR6) plays a role in endothelial cell
morphology and may be involved in actin reorganization, as
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Table 3 | Results of the microarray and qRT-PCR experiments in MDDs.

Accession no. Symbol Microarray qRT-PCR

Fold-change P-value Fold-change P-value

NM_001004019.1 FBLN2 −2.75 0.014 −3.18 0.026

NM_002477.1 MYL5 1.44 0.014 1.43 0.115

NM_002474.1 MYH11 −3.46 0.038 −3.08 0.025

NM_002473.3 MYH9 −1.43 0.021 1.71 0.131

NM_002470.1 MYH3 −1.33 0.015 −1.16 0.271

NM_005767.3 P2RY5 −1.48 0.049 −1.41 0.057

NM_004137.2 KCNMB1 −1.71 0.031 −3.01 0.027

NM_138957.2 MAPK1 −1.35 0.027 −2.25 0.088

Abbreviations: FBLN2, fibulin 2, transcript variant 1; MYL5, myosin, light chain 5, regulatory; MYH11, myosin, heavy chain 11; MYH9, myosin, heavy chain 9; MYH3,

myosin, heavy chain 3; P2RY5, purinergic receptor P2Y, G-protein coupled, 5; KCNMB1, potassium large conductance calcium-activated channel, subfamily M, beta

member 1; MAPK1, mitogen-activated protein kinase 1, transcript variant 1.

Fold-changes indicated fold change in the MDD group compared to the control group.

Significant (p < 0.05) changes are indicated in bold; those that exhibited a trend toward significance (p < 0.1) are italicized.

it is a receptor for lysophosphatidic acid (Ishii et al., 2009).
It is also possible that this receptor may regulate vascular per-
meability in the CP. In summary, all five of the transcripts
from the qRT-PCR experiments were downregulated in sub-
jects with MDD. Taken together, these results suggest that there
may be an altered extracellular matrix or cytoskeleton in MDD
subjects.

DISCUSSION
This study is the first to assess gene expression in the CP in MDD
subjects, as well as in psychiatrically normal controls. Moreover,
two salient pieces of information have emerged from this study.
First, transcripts that encode ribosomal proteins were highly
expressed in the CP in controls. Secondly, multiple transcripts
that interact with the extracellular matrix and cytoskeleton were
downregulated in individuals with MDD. Thus, there may be a
disrupted CP in subjects with MDD.

In comparing our control data in humans to a previously
published mouse study that used light microscopy dissection of
the CP and microarrays, there was reasonable agreement among
highly expressed transcripts (Marques et al., 2011). For example,
there was a 25% overlap between our top 12 transcripts and their
top 12 transcripts (excluding predicted sequences), including sev-
eral members involved in energy demand (e.g., cox4i1 and atp5b).
Moreover, this finding is in agreement with the high number of
mitochondria known to exist in the CP (Cornford et al., 1997;
Johanson et al., 2011). Interestingly, the P-glycoprotein pump
(ABCB1) was not significantly detected in control tissue. This is
likely because ABCB1 is located in the vascular endothelium near
the epithelial cells of the CP (Mercier et al., 2004; Gazzin et al.,
2008; Roberts et al., 2008; Kratzer et al., 2013).

This study identified transcripts that were differentially
expressed between controls and MDD subjects in the CP. We
did not find alterations in growth factors in the CP of MDD
brains. However, several transcripts involved in calcium sig-
naling were altered in the CP. Calcium signaling may rep-
resent another interesting area of therapeutic investigation in

depression. We identified the TGFβ network to be identified by
Ingenuity Pathway Analysis, and the significance of this pathway
was confirmed by gene ontology analysis. The finding that the
TGFβ network was altered suggests that less anti-inflammatory
molecules may also be present in the CP of individuals with MDD.
Further studies should be designed to follow-up on TGFβ signal-
ing in subjects with MDD. Interestingly, MAPK1, a member of the
TGFβ pathway, was the only one of the five interesting transcripts
by qRT-PCR previously known to be altered in MDD brains.
Single nucleotide polymorphisms in MAPK1 have been associ-
ated with treatment resistance and remission in depression (Calati
et al., 2013). Furthermore, MAPK1 and related kinases have either
reduced expression or phosphorylation in post-mortem brains
of depressed individuals that committed suicide (Dwivedi et al.,
2001, 2009).

It should be mentioned that there were limitations to this
study. First, we only assessed the CP adjacent to the hippocampus.
It is possible that the CP located in other regions of the brain may
exhibit a different pattern of gene expression in MDD subjects.
Moreover, we only assessed CP gene expression near the caudal
hippocampus. This was due to the availability of high-quality sec-
tioned material that also contained the CP. Interestingly, 40% of
the depressed subjects included in this study committed suicide.
It is possible that our results may not generalize to studies that
use subjects with mild or moderate depression. Another limita-
tion of the study was that we may have not been properly powered
to validate some of the gene expression findings by qRT-PCR.
To this end, we recognize that the findings from this study may
not be particularly strong. Although we were limited by the num-
ber of high quality subjects available for this study, more subjects
may be required to validate other transcripts changes, particu-
larly those with lower fold-changes. It is important to note that we
added new patients for the qRT-PCR study. Finally, the qRT-PCR
primers did not always target to the same region as the microar-
ray probe (e.g., MYH9). Thus, the specifics of the methodology
helps explain why fewer transcripts than expected validated in this
study.
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The possibility that the extracellular matrix of the CP may be
altered in depression has profound implications for identifying
biomarkers in the CSF. Although many of the transcripts that
were interrogated by qRT-PCR are not known to exist as pro-
teins in the CSF, many of the collagens shown in Figure 3 are
present as precursors or preproproteins (Bora et al., 2012). Since
fibulin-2 (FBLN2) is a secreted protein that binds calcium and
stabilizes the extracellular matrix, it would be interesting to deter-
mine whether FBLN2 may have mood altering effects and act
as an antidepressant. Finally, since transcripts that interact with
actin (i.e., MYH11, P2RY5) were also downregulated, there may
be an altered cytoskeleton in MDD subjects.

In conclusion, the majority of the abundantly expressed tran-
scripts in the CP are transcripts that code ribosomal proteins
under normal physiological conditions. In subjects with MDD,
several transcripts that interact with the extracellular matrix
and cytoskeleton were decreased in the CP. Given the vari-
ety of functions performed by the CP and the identification
of various transcripts linked to depression for the first time,
the CP is a novel target for the development of therapeutics.
With the majority of the transcripts downregulated, the struc-
ture of the CP is likely disrupted. Ways to boost the extra-
cellular matrix or cytoskeleton should be beneficial in treating
depression.
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