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Protein structure prediction (PSP) is computationally a very challenging problem. The challenge largely comes from the fact that
the energy function that needs to be minimised in order to obtain the native structure of a given protein is not clearly known. A
high resolution 20×20 energy model could better capture the behaviour of the actual energy function than a low resolution energy
model such as hydrophobic polar. However, the fine grained details of the high resolution interaction energy matrix are often
not very informative for guiding the search. In contrast, a low resolution energy model could effectively bias the search towards
certain promising directions. In this paper, we develop a genetic algorithm that mainly uses a high resolution energy model for
protein structure evaluation but uses a low resolution HP energy model in focussing the search towards exploring structures that
have hydrophobic cores. We experimentally show that this mixing of energy models leads to significant lower energy structures
compared to the state-of-the-art results.

1. Introduction

Proteins are essentially sequences of amino acids.They adopt
specific folded three-dimensional structures to perform spe-
cific tasks. However, misfolded proteins cause many critical
diseases such as Alzheimer’s disease, Parkinson’s disease, and
cancer [1, 2]. Protein structures are important in drug design
and biotechnology.

Protein structure prediction (PSP) is computationally a
very hard problem [3]. Given a protein’s amino acid sequence,
the problem is to find a three-dimensional structure of
the protein such that the total interaction energy amongst
the amino acids in the sequence is minimised. The protein
folding process that leads to such structures involves very
complex molecular dynamics [4] and unknown energy fac-
tors. To deal with the complexity of PSP in a hierarchical way,
researchers have used discretised lattice-based structures and
simplified energy models [5–7].

There are a large number of existing search algorithms
that attempt to solve the PSP problem by exploring feasi-
ble structures called conformations. For the low resolution

hydrophobic-polar (HP) energy model, a memory based
local search algorithm [8, 9], a population-based genetic
algorithm [10], and a hydrophobic core directed local search
method [11] reportedly produced the state-of-the-art results
on the face-centred-cubic (FCC) lattice. For the high resolu-
tion Berrera 20 × 20 energy matrix (henceforth referred to
as BM energy model) [12–14] produces the state-of-the-art
results. Nevertheless, the challenges in PSP largely remain in
the fact that the energy function that needs to be minimised
in order to obtain the native structure of a given protein is
not clearly known. A high resolution 20 × 20 energy model
(such as BM) could better capture the behaviour of the actual
energy function than a low resolution energy model (such as
HP). However, the fine grained details of the high resolution
interaction energy matrix are often not very informative for
guiding the search. Pairwise contributions that have large
magnitudes could be overshadowed by the accumulation of
pair-wise contributions having small magnitudes or opposite
signs. In contrast, a low resolution energy model could effec-
tively bias the search towards certain promising directions

http://dx.doi.org/10.1155/2013/924137


2 BioMed Research International

particularly emphasising the pair-wise contributions with
large magnitudes.

In this paper, we present a genetic algorithm that mainly
uses a high resolution energy model for protein structure
evaluation but uses a low resolution HP energy model
in focussing the search towards exploring structures that
have hydrophobic cores. Protein structures have hydrophobic
cores that hide the hydrophobic amino acids from water and
expose the polar amino acids to the surface to be in contact
with the surrounding water molecules [15]. We apply a
macromutation operator that considers the HP energymodel
and attempts to build hydrophobic cores. We experimentally
show that our way ofmixing these two energy functions leads
to significant lower energy structures compared to the state-
of-the-art results.

The rest of the paper is organised as follows: Section 2
reviews background knowledge; Section 3 discusses related
work on PSP; Section 4 describes our methods in detail;
Section 5 presents the experimental results and analyses; and
finally, Section 6 draws the conclusions and outlines the
future research.

2. Background

There are three computational approaches for protein struc-
ture prediction. They are homology modeling, protein thread-
ing, and ab initio approach. The prediction quality of homol-
ogy modeling depends on the sequential similarity with
proteins that have previously known structures. On the other
hand, protein threading, also known as fold recognition, is
based on the structural similarity with the previously known
fold families. Our work is based on the ab initio approach
that depends only on the amino acid sequence of the target
protein. Levinthal’s paradox [16] and Anfinsen’s hypothesis
[17] are the basis of ab initio method for protein structure
prediction. The idea was originated in 1970 when it was
demonstrated that all information needed to fold a protein,
resides in its amino acid sequence; that is, given the solvent
properties, amino acids in the sequence determine the unique
fold of a protein.

To explore an astronomically large search space and
to evaluate the conformations using a real energy model
are a big challenge for existing search algorithms in PSP.
Therefore, simplified models have significant importance in
understanding the protein folding process.

2.1. Simplified Model. In our simplified model, we use 3D
FCC lattice points to map the amino acids of a protein
sequence. In the mapping, each amino acid of the sequence
occupies a point on the lattice to form a continuous chain of
self-avoiding walk. We use the BM and HP models together
within a population-based genetic algorithm (GA) for protein
structure prediction.The FCC lattice, the HP and BM energy
models, and the GA are described below.

2.1.1. 3D FCC Lattice. The FCC lattice has the highest
packing density compared to the other existing lattices [18].
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Figure 1: A unit of 3D FCC lattice with 12 basis vectors on the
Cartesian space.

In FCC, each lattice point (e.g., the origin in Figure 1) has 12
neighbours with 12 basis vectors as follows:

V
1
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11
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12
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(1)

In simplified PSP, conformations are mapped on the
lattice by a sequence of basis vectors or by the relative vectors
that are relative to the previous basis vectors in the sequence.

2.1.2. HP EnergyModel. Twenty different amino acids are the
primary constituents of proteins. Based on the hydrophobic
property, these 20 amino acids are broadly divided into two
categories: (a) hydrophobic amino acids (Gly, Ala, Pro, Val,
Leu, Ile, Met, Phe, Tyr, and Trp) denoted by H and (b)
hydrophilic or polar amino acids (Ser,Thr, Cys, Asn,Gln, Lys,
His, Arg, Asp, and Glu) denoted by P. In the HP model [19],
when two nonconsecutive hydrophobic amino acids become
topologically neighbours, they contribute a certain amount of
negative energy, which for simplicity is considered as −1.

The total energy 𝐸HP (as shown in (2)) of a conformation
based on theHPmodel becomes the sum of the contributions
over all pairs of non-consecutive hydrophobic amino acids:

𝐸HP = ∑

𝑖<𝑗−1

𝑐
𝑖𝑗
⋅ 𝑒
𝑖𝑗
, (2)

where 𝑐
𝑖𝑗

= 1 if amino acids at positions 𝑖 and 𝑗 in
the sequence are non-consecutive neighbours on the lattice,
otherwise 0, and 𝑒

𝑖𝑗
= −1 if 𝑖th and 𝑗th amino acids are both

hydrophobic, otherwise 0.
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2.1.3. BM Energy Model. By analysing crystallised protein
structures, Miyazawa and Jernigan [21] in 1985 statistically
deduced a 20 × 20 energy matrix that considers residue
contact propensities between the amino acids. By calculating
empirical contact energies on the basis of the information
available from a huge number of selected protein structures
and following the quasi-chemical approximation, Berrera
et al. [20] in 2003 deduced another 20 × 20 energy matrix. In
this work, we use the latter model and denote it by BM energy
model. Table 1 shows the BM energy model with amino acid
names at the leftmost column and the bottommost row and
the interaction energy values in the cells. The amino acid
names that have boldface are hydrophobic. We draw lines
in Table 1 to show groupings based on H-H, H-P, and P-P
interactions. In the context of this work, it is worth noting
that most energy contributions that have large magnitudes
are from H-H interactions followed by those from H-P
interactions.

The total energy 𝐸BM (shown in (3)) of a conformation
based on the BMenergymodel is the sumof the contributions
over all pairs of non-consecutive amino acids that are one unit
lattice distance apart:

𝐸BM = ∑

𝑖<𝑗−1

𝑐
𝑖𝑗
⋅ 𝑒
𝑖𝑗
, (3)

where 𝑐
𝑖𝑗

= 1 if amino acids at positions 𝑖 and 𝑗 in
the sequence are non-consecutive neighbours on the lattice,
otherwise 0, and 𝑒

𝑖𝑗
is the empirical energy value between the

𝑖th and 𝑗th amino acid pair specified in thematrix for the BM
model.

2.2. Genetic Algorithms. GAs are a family of population-
based search algorithms for optimisation problems. GAs
maintain a set of solutions known as population. In each
generation, it generates a new population from the current
population using a given set of genetic operators known as
crossover andmutation. It then replaces the inferior solutions
by superior newly generated solutions to get a better current
population. The generic pseudocode of GA is presented in
Algorithm 1. A typical crossover operator randomly splits
two solutions at a randomly selected crossover point and
exchanges parts between them (Figure 2(a)) and a typical
mutation operator alters a solution at a random point
(Figure 2(b)). In the case of PSP, conformations are regarded
as solutions of a GA population.

2.2.1. Crossover Operators. The crossover operators are
applied on two selected parent conformations to exchange
their parts to generate child conformations. In a single-point
crossover, both parents are split at a single point (Figure 2(a))
while in a multipoint crossover they are split at more than
one point. Nevertheless, the crossover operations succeed
if they produce conformations that satisfy the self-avoiding
walk constraint. In lattice-based protein representation, a
self-avoiding walk constraint ensures no revisitation of any
lattice point during the sequence mapping.

2.2.2. Mutation Operators. The mutation operators
(Figure 2(b)) are applied on a single conformation. The
operators can perform single-point change or multi-point
changes. The mutation operations succeed if the resultant
conformation remains a self-avoiding walk on the lattice.

3. Related Work

We explored the literature on protein structure prediction
based on both HP and 20 × 20 energy models.

3.1. HP Energy Based Approaches. Different types of meta-
heuristic have been used in solving the simplified PSP prob-
lem. These include Monte Carlo simulation [22], simulated
annealing [23], genetic algorithms (GA) [24, 25], tabu search
with GA [26], tabu search with hill climbing [27], ant colony
optimisation [28], particle swarm optimisation [29, 30],
immune algorithms [31], tabu-based stochastic local search
[8, 32], and constraint programming [33, 34].

Cebrián et al. [32] used tabu-based local search, and
Shatabda et al. [8] usedmemory-based local search with tabu
heuristic and achieved the state-of-the-art results. However,
Dotu et al. [34] used constraint programming and found
promising results. A constraint programming based exact
and complete algorithm for structure prediction is imple-
mented in the CPSP tools by Mann et al. [33]. These algo-
rithms can find the optimal solution if the target protein has
a matching hydrophobic-core stored in the CPSP database.

Besides local search, Unger and Moult [24] applied
genetic algorithms to PSP and found theirmethod to bemore
promising than theMonte Carlo basedmethods [22].TheGA
has been used by Hoque et al. [35] for cubic and 3D HCP
lattices. They also introduced a twin-removal operator [36]
to remove duplicates from the GA population.

However, using 3D FCC lattice points, the recent state-
of-the-art results for HP energy models have been achieved
by genetic algorithms [10, 37], local search approaches [8, 11],
a local search embedded GA [38], and a multipoint parallel
local search approach [39].

3.2. Empirical 20 × 20 Matrix Energy Based Approaches.
A constraint programming technique was used in [40]
by Dal Palù et al. to predict tertiary structures of real
proteins using secondary structure information. They also
used constraint programming with different heuristics in [41]
and a constraint solver named COLA [42] that is highly
optimised for protein structure prediction. In another work
[43], a fragment assemblymethodwas utilised with empirical
energy potentials to optimise protein structures. Among
other successful approaches, a population based local search
[44] and a population based genetic algorithm [14] were used
with empirical energy functions.

In a hybrid approach, Ullah and Steinhöfel [12] applied a
constraint programming based large neighbourhood search
technique on top of the of COLA solver.The hybrid approach
produced the state-of-the-art results for several small sized
(less than 75 amino acids) benchmark proteins. In another
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(1) initialise population;
(2) evaluate population;
(3) while (!stopCondition) do
(4) select the best-fit individuals for reproduction;
(5) breed new individuals through crossover and mutation operations;
(6) evaluate the individual fitness of new individuals;
(7) replace least-fit population with new individuals;

Algorithm 1: Generic pseudocode of a genetic algorithm.

Parent 1 Parent 2

Child 1 Child 2

Crossover

1 1 1 1 1 1 1 1 1 1

1111111111

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

(a) Crossover

Old solution

New solution

10 0 0 0 0 0 0 0 0

0000000000

(b) Mutation

Figure 2: Typical (a) crossover and (b) mutation operators.

work, Ullah et al. [45] proposed a two-stage optimisa-
tion approach combining constraint programming and local
search. The first stage of the approach produced compact
optimal structures by using the CPSP tools based on the HP
model. In the second stage, those compact structures were
used as the input of a simulated annealing based local search
that is guided by the BM energy model.

In a recent work [13], Shatabda et al. presented a mixed
heuristic local search algorithm for PSP and produced the
state-of-the-art results using BM energy model on 3D FCC
lattice. The mixed heuristic local search in each iteration
randomly selects a heuristic from a given number of heuris-
tics designed by the authors. The selected heuristics are then
used in evaluating the generated neighbouring solutions of
the current solution. Although the heuristics themselves are
weaker than the BMenergy, their collective use in the random
mixing fashion produces results better than that produced by
using the BM energy itself.

In this paper, we use the hydrophobic-polar categorisa-
tion of the HP model within a hydrophobic-core directed
macromutation operator; however, most of the time the
search is guided by the BM energy model. The macro-
mutation is applied just like another mutation operator and
utilises the distance of the hydrophobic amino acids from
the hydrophobic core centre. The hydrophobic core centre is
the centroid of only the hydrophobic amino acids. In effect
the macro-mutation operator helps explore the structures
that would have more interactions between H-H amino
acid pairs; these pairs have energy contributions with large
magnitudes. In the Results and Analyses section, we compare
our experimental results with the results produced by [12, 13].

4. Methods and Implementations

In our genetic algorithm based ab initio protein structure
prediction method, we use the BM energy model along

with the HP energy model. We use face-centred-cubic lattice
points for protein structure representation. In this section, we
describe the implementation details of our GA framework.

4.1. Genetic Algorithm Framework. The pseudocode of our
genetic algorithm framework is presented in Algorithm 2.
It uses an exhaustive generation approach to diversify the
search, a hydrophobic core directed macro-mutation oper-
ator to intensify the search, and a random-walk algorithm
to recover from stagnation. The algorithm initialises (Line
6) the current population. At each generation, it selects a
genetic operator based on a given probability distribution
to use through the generation (Line 8). In fact, we select
the operators randomly giving equal opportunities to all
operators. The selected operator is used in an exhaustive way
(Lines 10-11 or Lines 13–15) to obtain all conformations in the
new population. We ensure that no duplicate conformation
is added to the new population. The add( ) method either at
Line 11 or at Line 15 also takes care of avoiding the duplicates
while adding solutions to the new population list. For a given
number of generations, if the best conformation in the new
population is not better than the best in the current popula-
tion, our algorithm then resorts to a random-walk procedure
(Line 17) to diversify the new population. Nevertheless, after
each generation, the new population becomes the current
population (Line 18), and the search continues. Finally, the
best conformation found so far is returned (Line 19).

Along with the BM energy mode, we use HP energy
model to guide a macro-mutation. The macro-mutation
operator is used as other mutation operators (Figures 4(b)–
4(e)) in our GA. The exhaustive generation and macro-
mutation are described below.

4.1.1. Exhaustive Generation. Unlike a traditional genetic
algorithm, in our GA, the randomness is reduced signifi-
cantly by an exhaustive generation approach. For mutation
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(1) op: Operators, 𝑐, 𝑐: Conformations

(2) opR: Operator selection probabilities

(3) curP, newP: Current and new populations

(4) rwT: Number of non-improving generations before random walk

(5) //======================
(6) initPopulation(𝑐𝑢𝑟𝑃)
(7) foreach 𝑔𝑒𝑟𝑒𝑟𝑎𝑡𝑖𝑜𝑛 until 𝑡𝑖𝑚𝑒𝑜𝑢𝑡 do
(8) selectOperator(𝑜𝑝, 𝑜𝑝𝑅)
(9) if mutation(𝑜𝑝) then
(10) foreach 𝑐 ∈ 𝑐𝑢𝑟𝑃 do
(11) newP.add(mutConf(𝑐))
(12) else
(13) while ¬ full(𝑛𝑒𝑤𝑃) do
(14) 𝑐, 𝑐


← randomConfs(𝑐𝑢𝑟𝑃)

(15) newP.add(crossConf(𝑐, 𝑐))
(16) if ¬ improved(𝑛𝑒𝑤𝑃,𝑟𝑤𝑇) then
(17) randomWalk(𝑛𝑒𝑤𝑃)
(18) 𝑐𝑢𝑟𝑃 ← 𝑛𝑒𝑤𝑃

(19) return bestConformation(𝑐𝑢𝑟𝑃)

Algorithm 2: The pseudocode of GA framework: geneticAlgorithm( ).

(1) mutantsadd(conf)
(2) foreach 1 ≤ pos ≤ 𝑠𝑒𝑞𝐿𝑒𝑛𝑔𝑡ℎ do
(3) 𝑐 ←applyOperator(conf pos)
(4) mutantsadd(𝑐)
(5) return bestConformation(mutants)

Algorithm 3: The pseudocode of exhaustive mutation: mutConf(conf).

operators, our GA adds one resultant conformation for
each conformation in the current population to the new
population. Operators are applied to all possible points
(Algorithm 3) exhaustively until finding a better solution
than the parent. If no better solution is found, the parent
survives through the next generation. On the other hand, for
crossover operators, two resultant conformations are added
to the new population from two randomly selected parent
conformations. Crossover operators generate child confor-
mations by applying the crossover operator in all possible
points (Algorithm 4) on two randomly selected parents. The
best two conformations from the parents and the children
are then become the resultant conformations for the next
generation.

4.1.2. Macromutation Operator. Protein structures have hy-
drophobic cores that hide the hydrophobic amino acids from
water and expose the polar amino acids to the surface to be
in contact with the surrounding water molecules [15]. H-core
formation is an important objective of HP based PSP. Macro-
mutation operator is a composite operator (Figure 3) that
uses a series of diagonal moves (Figure 4(c)) on a given con-
formation to build the H-core around the hydrophobic core
center (HCC). The HCC is calculated by finding arithmetic
means of 𝑥, 𝑦, and 𝑧 coordinates of all hydrophobic amino
acids. The diagonal moves are applied repeatedly either at
each P- or at each H-type amino acid position. Whether to

apply the diagonal move on P- or H-type amino acids is
determined by using a Bernoulli distribution (Algorithm 5
Line 2) with probability 𝑝 (intuitively we use 𝑝 = 20%
for P-type amino acids). For a P-type amino acid, the first
successful diagonal move is considered. However, for a H-
type amino acid, the first successful diagonal move that does
not increase the Cartesian distance of the amino acid from
the HCC is taken. All the amino acids are traversed and the
successful moves are applied as one composite move. Never-
theless, the macro-mutation squeezes the conformation and
quickly forms the H-core by repeating the procedure. In our
GA, macro-mutation is used like other mutation operators.
Algorithm 5 presents the pseudocode of the macro-mutation
operator.

4.2. Stagnation Recovery. In genetic algorithms, the similarity
among individuals within the population increase as genera-
tions after generations pass on.This characteristic pushes the
search towards stagnation. Any premature convergence also
leads the search towards stagnation. To deal with a stagnation
situation, we remove identical individuals and apply random-
walk as described below.

4.2.1. Removing Duplicates. In our approach, unlike [36],
we remove duplicates from each generation to maintain the
diversity of the population. During exhaustive generation,
we check the existence of the newly generated child in
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(1) crossbredadd(confconf)
(2) foreach 1 ≤ pos ≤ 𝑠𝑒𝑞𝐿𝑒𝑛𝑔𝑡ℎ do
(3) 𝑐, 𝑐


← applyOperator(conf conf pos)

(4) crossbredadd(𝑐, 𝑐)
(5) return best2Conformations(crossbred)

Algorithm 4: The pseudocode of exhaustive crossover: crossConfs(conf, conf).

HCCHCC

HCC

d1
d2

d1

d2

Figure 3: A macro-mutation operator comprising a series of
diagonal moves. For simplification and easy understanding, the
figures are presented in 2D space.

the new population. If it does not exist then the new solution
is added to the new population list. By doing this, our
approach reduces the frequency of stagnations.

4.2.2. Applying Random Walk. Premature H-cores are ob-
served at search stagnation. To handle stagnation situation, in
ourGA (Algorithm 2 Line 18), a random-walk [46] algorithm
is applied. The pseudocode of the algorithm is shown in
Algorithm 6. This algorithm uses pull moves [47] (as shown
in Figure 4(d)) to break the H-core. We use pull moves
because they are complete, local, and reversible. Successful
pull moves never generate infeasible conformations. Dur-
ing pulling, energy level and structural diversification are
observed with a view to maintaining a balance between these
two. We allow the energy level to change within 5% to 10%
with changes in the structure from 10% to 75% of the original.
We try to accept the conformation that is close to the current
conformation, in terms of the energy level but as far as
possible in structural diversity, and which is determined by
the function checkDiversity (Algorithm 6 Line 5). In our
genetic algorithm, random-walk is very effective [46] in
recovering from stagnation.

4.3. Further Implementation Details. Our GA requires a
representation of the conformations, initialisation of the
population, evaluation of the solution in each iteration, and a
set of genetic operators on the conformations.

4.3.1. Representation. We represent each conformation by
using the relative encoding and the Cartesian coordinates

of each amino acid. In the crossover operator, the relative
encoding helps generate the offspring easily while the coor-
dinates help in other operators particularly in finding free
lattice points. The relative encoding is also used in removing
duplicates within a given generation.

4.3.2. Initialisation. Our GA starts with an initial population,
which is a set of feasible conformations. We generate initial
conformations following a self-avoiding walk on FCC lattice
points. The pseudocode of the initialisation algorithm is
presented in Algorithm 7. It places the first amino acid at
(0, 0, 0). It then randomly selects a basis vector to place the
successive amino acid at a neighbouring free lattice point.The
mapping proceeds until a self-avoiding walk is found for the
whole protein sequence within a given number of iterations.
If no valid conformation is found within the given number of
iterations, a deterministic structure is returned. However, we
have not encountered this situation in our experiments.

4.3.3. Evaluation. After each iteration, the conformation is
evaluated by calculating the contact (topological neighbour)
potentials where the two amino acids are non-consecutive.
The pseudocode in Algorithm 8 presents the procedure of
calculating the interaction energy of a given conformation.
The contact potentials are found in BM energy model.

4.3.4. Implementing Primitive Operators. Along with exhaus-
tiveness, macro-mutation and random-walk, the primi-
tive operators (as shown in Figure 4) are implemented
in GA. The operators we implemented are single-point
crossover (Figure 4(a)), rotation mutation (Figure 4(b)),
diagonal moves (Figure 4(c)), pull moves (Figure 4(d)), and
tilt moves (Figure 4(e)). Rotation, diagonal moves, pull
moves, and tilt moves are implemented as mutation opera-
tors.

(1) Crossover: at a given crossover point (dotted circle
in Figure 4(a)), two parent conformations exchange
their parts and generate two children.The success rate
of the crossover operator decreases with the increase
in the compactness of the structure.

(2) Rotation: one part of a given conformation is rotated
around a selected point (Figure 4(b)). This move is
mostly effective at the beginning of the search.

(3) Diagonal move: given three consecutive amino acids
at lattice points A,B, and C, a diagonal move at posi-
tion B takes the corresponding amino acid diagonally
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(1) return 𝑐𝑜𝑛𝑓

(2) for 𝑖 = 1 to repeat do
(3) 𝑇 ←P if bernoulli(𝑝), elseH
(4) 𝐴𝐴[𝑗] : 𝑗th amino acid in conformation

(5) 𝑝𝑜𝑖𝑛𝑡: unoccupied new position for 𝐴𝐴[𝑗]

(6) hcc← findHCC ()
(7) foreach 𝑗: type(𝐴𝐴[𝑗]) = 𝑇 do
(8) 𝑑

𝑜𝑙𝑑
← getDistance (𝐴𝐴[𝑗], hcc)

(9) if 𝑇 = 𝑃 then
(10) 𝑝𝑜𝑖𝑛𝑡 ← findFreePoint (𝐴𝐴[𝑗])
(11) applyDiagonalMove (𝐴𝐴[𝑗], 𝑝𝑜𝑖𝑛𝑡)
(12) else
(13) 𝑝𝑜𝑖𝑛𝑡 ← findFreePoint (𝐴𝐴[𝑗])
(14) 𝑑

𝑛𝑒𝑤
← getDistance (𝑝𝑜𝑖𝑛𝑡, hcc)

(15) if 𝑑
𝑛𝑒𝑤

≤ 𝑑
𝑜𝑙𝑑

then
(16) applyDiagonalMove (𝐴𝐴[𝑗], 𝑝𝑜𝑖𝑛𝑡)
(17) break

Algorithm 5: The pseudocode of macro-mutation operator:macroMutation(AA, repeat).

(1) 𝑖𝑠𝐹𝑜𝑢𝑛𝑑 ← false

(2) while (!𝑖𝑠𝐹𝑜𝑢𝑛𝑑) do
(3) for (𝑝𝑜𝑠 = 1 to 𝑠𝑒𝑞𝐿𝑒𝑛𝑔𝑡ℎ) do
(4) applyPullMove(𝑝𝑜𝑠)
(5) 𝑖𝑠𝐹𝑜𝑢𝑛𝑑 ← checkDiversity()

Algorithm 6: The pseudocode of random-walk technique: randomWalk( ).

(1) 𝐴𝐴[0] ←AminoAcid(0,0,0)
(2) for a number of times do
(3) for (𝑖 = 1 to 𝑠𝑒𝑞𝐿𝑒𝑛𝑔𝑡ℎ − 1) do
(4) 𝑘 ← getRandom(12)
(5) 𝑛𝑜𝑑𝑒 ← 𝐴𝐴[𝑖 − 1] + 𝑏𝑎𝑠𝑖𝑠𝑉𝑒𝑐[𝑘]

(6) if node is not free then break

(7) 𝐴𝐴[𝑖] ←AminoAcid(𝑛𝑜𝑑𝑒)
(8) if full structure found then return 𝐴𝐴[]

(9) return𝐴𝐴[] having a deterministic structure;

Algorithm 7: The pseudocode of random initialisation: initialise( ).

(1) 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ← 0

(2) for (𝑖 = 0 to 𝑠𝑒𝑞𝐿𝑒𝑛𝑔𝑡ℎ − 1) do
(3) for (𝑗 = 𝑖 + 2 to 𝑠𝑒𝑞𝐿𝑒𝑛𝑔𝑡ℎ − 1) do
(4) 𝑛𝑜𝑑𝑒𝐼 ←AA[𝑖]
(5) 𝑛𝑜𝑑𝑒𝐽 ←AA[𝑗]
(6) 𝑠𝑞𝑟𝐷 ← getSqrDist(𝑛𝑜𝑑𝑒𝐼, 𝑛𝑜𝑑𝑒𝐽)
(7) if 𝑠𝑞𝑟𝐷 = 2 then
(8) 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ← 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 + 𝐸bm[𝑖][𝑗]
(9) return 𝑓𝑖𝑡𝑛𝑒𝑠𝑠

Algorithm 8: The pseudocode of evaluation procedure: evaluate(𝐴𝐴).
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Figure 4:The operators that are used in our GA on 3D FCC lattice space. For simplification and easy understanding, the figures are presented
in 2D space. The black solid circles represent the hydrophobic amino acids and others are hydrophilic.

to a free position (Figure 4(c)). Diagonal moves are
very effective on FCC lattice [32, 34] points.

(4) Pull moves: the amino acids at points A and B
are pulled to the free points (Figure 4(d)) and the
connected amino acids are pulled as well to get a valid
conformation. Pull moves [47] are local, complete
and reversible. Pull moves are very effective especially
when the conformation is compact.

(5) Tilt moves: Two or more consecutive amino acids
connected in a straight line aremoved by a tiltmove to
immediately parallel lattice positions [25]. Tilt moves
pull the conformation from both sides until a valid
conformation is found. In Figure 4(e), the amino
acids at points C and D are moved and subsequently
other amino acids from both sides are moved as well.

5. Results and Analyses

We implemented our GA framework in Java (J2EE). We
ran our experiments on the NICTA (NICTA website:
http://www.nicta.com.au/) cluster. The cluster consists of a
number of identical Dell PowerEdge R415 computers, each
equipped with 2× AMD 6-Core Opteron 4184 processors,
2.8 GHz clock speed, 3M L2/6M L3 cache, and 64GB
memory and running Rocks OS (a Linux variant for cluster).

5.1. Benchmark. The protein instances used in our experi-
ments are taken from the literature (as shown in Table 2).The
first seven proteins 4RXN, 1ENH, 4PTI, 2IGD, 1YPA, 1R69,
and 1CTF are taken from [12] and the next five proteins 3MX7,
3NBM, CMQO, 3MRO, and 3PNX from [13].

5.2. Comparison with the State-of-the-Art Results. Table 3
compares our experimental results with the state-of-the-art
results obtained by [12, 13] on FCC lattice and BM energy
model.We compare our results using two criteria: free energy
level obtained by our algorithm and that obtained by other
algorithms, and the root mean square deviation (RMSD) of

the structures obtained by our algorithm and that obtained
by other algorithms.

5.2.1. Interaction Energy Level. Wepresent interaction energy
values in two different formats: the global lowest interaction
energy (column Best) and the average (column Avg) of the
lowest interaction energies obtained from 50 different runs.
In case of the global best energy, our approach outperforms
the state-of-the-art approaches in [12, 13] in 9 out of 12
benchmark proteins. However, in case of average energy,
our approach outperforms both of the approaches in all 12
benchmark proteins.

5.2.2. Root Mean Square Deviation. The root mean square
deviation (RMSD) is frequently used in measuring the dif-
ference between values predicted by a model and the values
actually observed. For any given structure, the RMSD is
calculated using

RMSD =
√
∑
𝑛−1

𝑖=1
∑
𝑛

𝑗=𝑖+1
(𝑑
𝑝

𝑖𝑗
− 𝑑
𝑛

𝑖𝑗
)
2

𝑛 ∗ (𝑛 − 1) /2
,

(4)

where 𝑑𝑝
𝑖𝑗
and 𝑑

𝑛

𝑖𝑗
denote the distances between 𝑖th and 𝑗th

amino acids, respectively, in the predicted structure and the
native structure of the protein. To calculate the RMSD, the
distance between two neighbour lattice points (√2 for FCC
lattice) is considered as 3.8 Å, the average distance between
two 𝛼-Carbons. From the experimental results, it is clear
that our approach significantly improves the RMSD values in
comparison to the state-of-the-art approaches [12, 13].

5.2.3. Statistical Significance Test. For both average interac-
tion energy and average RMSD values, we performed the
Mann-Whitney 𝑈 test with 95% confidence level to verify
the significance of difference between our results and the
state-of-the-art results. The test outcomes supported our
improvements in all 12 proteins.

http://www.nicta.com.au/
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Table 2: The benchmark proteins used in our experiments.

ID Length Sequence
4RXN 54 MKKYTCTVCGYIYNPEDGDPDNGVNPGTDFKDIPDDWVCPLCGVGKDQFEEVEE
1ENH 54 RPRTAFSSEQLARLKREFNENRYLTERRRQQLSSELGLNEAQIKIWFQNKRAKI
4PTI 58 RPDFCLEPPYTGPCKARIIRYFYNAKAGLCQTFVYGGCRAKRNNFKSAEDCMRTCGGA
2IGD 61 MTPAVTTYKLVINGKTLKGETTTKAVDAETAEKAFKQYANDNGVDGVWTYDDATKTFTVTE
1YPA 64 MKTEWPELVGKAVAAAKKVILQDKPEAQIIVLPVGTIVTMEYRIDRVRLFVDKLDNIAQVPRVG
1R69 69 SISSRVKSKRIQLGLNQAELAQKVGTTQQSIEQLENGKTKRPRFLPELASALGVSVDWLLNGTSDSNVR
1CTF 74 AAEEKTEFDVILKAAGANKVAVIKAVRGATGLGLKEAKDLVESAPAALKEGVSKDDAEALKKALEEAGAEVEVK

3MX7 90 MTDLVAVWDVALSDGVHKIEFEHGTTSGKRVVYVDGKEEIRKEWMFKLVGKETFYVGAAKTKATINIDAISGFA
YEYTLEINGKSLKKYM

3NBM 108 SNASKELKVLVLCAGSGTSAQLANAINEGANLTEVRVIANSGAYGAHYDIMGVYDLIILAPQVRSYYREMKVDAE
RLGIQIVATRGMEYIHLTKSPSKALQFVLEHYQ

3MQO 120 PAIDYKTAFHLAPIGLVLSRDRVIEDCNDELAAIFRCARADLIGRSFEVLYPSSDEFERIGERISPVMIAHGSYADDR
IMKRAGGELFWCHVTGRALDRTAPLAAGVWTFEDLSATRRVA

3MRO 142 SNALSASEERFQLAVSGASAGLWDWNPKTGAMYLSPHFKKIMGYEDHELPDEITGHRESIHPDDRARVLAALK
AHLEHRDTYDVEYRVRTRSGDFRWIQSRGQALWNSAGEPYRMVGWIMDVTDRKRDEDALRVSREELRRL

3PNX 160
GMENKKMNLLLFSGDYDKALASLIIANAAREMEIEVTIFCAFWGLLLLRDPEKASQEDKSLYEQAFSSLTPREAE
ELPLSKMNLGGIGKKMLLEMMKEEKAPKLSDLLSGARKKEVKFYACQLSVEIMGFKKEELFPEVQIMDVKEYLK
NALESDLQLFI

Table 3: The energy and RMSD values achieved by different algorithms using BM energy model. The bold-faced values indicate the winner.
For both energy and RMSD values, the higher the better.

Protein size Hybrid [12] Heuristics [13] (𝑟) Our GA (𝑡) Our Rel. Imp.
and H-Count BM En RMSD BM En RMSD BM En RMSD RI w.r.t [13]

Seq Size H Best Avg Avg Best Avg Avg Best Avg Best Avg Energy RMSD
4RXN 54 27 −157.70 −140.13 9.99 −165.21 −156.32 6.29 −166.88 −162.72 4.70 5.41 4.09% 13.99%
1ENH 54 19 −154.24 −141.99 10.04 −168.75 −146.69 6.61 −153.79 −151.65 4.57 5.22 3.01% 21.03%
4PTI 58 32 −213.70 −196.23 11.92 −219.52 −198.42 7.07 −210.29 −204.56 5.97 6.46 3.09% 36.92%
2IGD 61 25 −184.29 −157.20 13.30 −187.20 −174.19 9.33 −183.18 −176.83 6.85 7.81 1.12% 16.26%
1YPA 64 38 −221.11 −208.10 13.42 −249.90 −239.98 7.53 −256.95 −253.09 5.42 6.29 5.46% 16.47%
1R69 69 30 −180.62 −165.11 14.78 −213.04 −204.17 6.47 −216.37 −208.79 4.68 5.17 2.26% 20.09%
1CTF 74 42 −204.88 −195.23 12.65 −224.29 −213.81 7.23 −233.51 −225.43 4.69 5.28 5.43% 26.97%
3MX7 90 44 — — — −328.12 −311.56 8.18 −340.05 −325.45 7.31 7.94 4.46% 2.93%
3NBM 108 56 — — — −418.60 −401.99 8.58 −436.76 −419.25 5.58 6.46 4.29% 24.71%
3MQO 120 68 — — — −465.74 −455.27 8.86 −486.05 −472.78 6.17 6.84 3.85% 22.80%
3MRO 142 63 — — — −445.33 −430.29 10.02 −479.36 −447.77 7.65 8.72 4.06% 12.97%
3PNX 160 84 — — — −601.23 −571.13 9.38 −615.82 −592.25 7.50 8.51 3.70% 9.28%

5.3. Relative Improvement (RI). The difficulty to improve
energy level is increased as the predicted energy level ap-
proaches to a known lower bound of a given protein. For
example, if the lower bound of free energy of a protein is
−100, the efforts to improve energy level from −80 to −85 is
much less than that to improve energy level from −95 to −100
though the change in energy is the same (−5). The rightmost
RI columns in Table 3 show the relative improvements that
our algorithm (target) achieved with respect to the state-of-
the-art approaches (reference). For each protein, the relative
improvement of the target (𝑡) with respect to the reference
(𝑟) is calculated using (5), where 𝐸

𝑡
and 𝐸

𝑟
denote the

average energy values achieved by target and reference,
respectively.Weuse a similar equation to calculate the relative
improvement for RMSD:

RI =
𝐸
𝑡
− 𝐸
𝑟

𝐸
𝑟

∗ 100%. (5)

From these results, we see that our GA in all 12 proteins
improves the search quality from 1.12% to 5.46% in the
average interaction energy and from 2.93% to 36.92% in the
RMSD values.

5.4.DetailedAnalyses. TheBMenergymodel actually implic-
itly bears the characteristic of hydrophobicity. The matrix
values present some variations within amino acids of the
same class (H or P). A partition algorithm such as 2-means
clustering algorithm easily reveals the H-P partitioning
within the BM model. Given this knowledge, we study the
effect of explicitly using hydrophobic property within our
GA.

5.5. Effect of Macromutation Operator. Our macro-mutation
operator biases the search towards a hydrophobic core by
applying a series of diagonal moves and thus achieves
improvements in terms of BM energy values of the output
conformations. One question to be investigated is whether
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the improvement comes only from the repeated application
of diagonal moves but not from the exploitation of the
hydrophobicity knowledge. If hydrophobicity is the reason
for improvement, a related question is whether using solely
the HP model instead of using BM model anywhere in the
search will be useful; the output energy level of course will
be in the BM model. In order to answer these questions, we
implemented four different versions of our genetic algorithm.

(1) BH: this version is our final algorithm that we
described in detail, and used in presenting our main
results in Table 3 and in comparing with the state-
of-the-art results. To reiterate, this version uses the
BM energy model for search and energy report-
ing and hydrophobicity knowledge in the macro-
mutation operator that repeatedly applies diagonal
moves towards forming a hydrophobic core.

(2) BD: this version of our GA uses the BM energymodel
for search and energy reporting. It also uses the BM
energy model within the macro-mutation operator
that applies diagonal moves repeatedly. This version
will show the effect of the macro-mutation without
using the hydrophobic property.

(3) BM: this version of our GA uses the BM energy
model for search and energy reporting. However, this
version does not have any macro-mutation operator
and thus could be seen as the baseline algorithm for
the questions to be investigated.

(4) HP: this version of our GA uses the HP energy model
for search. However, we report the energy values
of the final conformations returned by the GA in
BM energy model. Note that this version has the
hydrophobic core directed macro-mutation operator.
This version will showwhether HPmodel is sufficient
evenwhen the energy of a conformation is to be in the
BMmodel.

Table 4 presents the experimental results to show the
effects of using hydrophobicity knowledge within the macro-
mutation operator.The energy values are obtained by running
each algorithm with a 60-minute time cutoff. The average
values are calculated over 50 different runs. We also perform
the Mann-Whitney 𝑈 test with 95% confidence level to test
the significance of differences. From these results, we see
that the HP version performs the worst followed by the BD
version. The BD version itself performs worse than the BM
version which is worse than the BH version. From all these,
we conclude that using solely HP model is not sufficient and
the application of repeated diagonal moves without using the
hydrophobicity is not helpful.

For further analysis of the macro-mutation, in Table 5 we
present the total numbers of contact and the numbers of H-
H,H-P, and P-P contacts present in the output conformations
of the above-mentioned four variants of our GA.The number
of contacts are the average over the 50 runs for each protein.

Analysing the number of contacts, we see that the HP
version has more H-H contacts, but fewer H-P, P-P, and
total contacts than the other three versions. In the BM
energy model the H-H contacts contribute the large energy

values; however, unlike the H-Pmodel, other types of contact
in BM model also contribute energy values. In the BD
and BM versions the improvement compared to the HP
version comes from the increase in the number of H-P, P-
P, and total contacts, although there is a decrease in the
H-H contacts. The BD version performs worse than the
BM version implying the repeated diagonal moves without
using hydrophobicity are rather harmful. The BH version
improves over BD and BM by increasing the H-H contacts
and decreasing the H-P contacts; the total contacts and the P-
P contacts remain almost similar. All these lead us to conclude
that the explicit use of the implicit hydrophobicity knowledge
within the macro-mutation is effective. The search algorithm
could not utilise the HP knowledge implicitly buried within
the BMmodel.

To demonstrate the search progress, we periodically find
the best energy values obtained so far in each run. For a
given period, we then calculate the average energy values
obtained for that period over 50 runs. We used a 2-minute
time interval. Figure 5 presents the average energy values
obtained at each time interval for two different proteins:
4RXN (Figure 5(a)) and 3PNX (Figure 5(b)) are the smallest
and the largest amongst the 12 benchmark proteins. From
both of the charts, we see that the final version of our
algorithm BH clearly outperforms the other three versions.

5.6. Effect of Initialisation. Initialising the population is an
important part of population based search algorithms. We
initialise the GA population with randomly generated valid
structures using the procedure shown in Algorithm 7. As
noted before, our GA uses a macro-mutation operator that
tries to take the search towards forming a hydrophobic core.
This leads us to test whether initialisationwith conformations
that already have optimal HP core at the center would
expedite the search. For this, we use the CPSP tools that
produce structures with very compact hydrophobic cores.
Table 6 shows the results of these experiments; the reported
values are average over 50 runs for each protein. We see that
compared to our random initialisation method, initialisation
with the structures produced by the CPSP-tools, although it
gives a very good energy value at the beginning, it leads to
worse performance at the end. This observation remains the
same when the hydrophobic core-directed macro-mutation
operator is used and when it is not used.

5.7. Simplified Structure. Figure 6 shows FCC structures of
six different proteins at their lowest free energy levels as
obtained by our final GA variant. We use Jmol (Jmol:
an open-source Java viewer for chemical structures in 3D.
http://www.jmol.org/) to draw the structures.

6. Conclusion

In this paper, we presented a genetic algorithm for pro-
tein structure prediction on 3D face-centred-cubic lattice.
Our algorithm mainly uses a 20 × 20 energy matrix as
its energy model but also incorporates the hydrophobic-
polar model to bias the search towards exploring the struc-
tures that have hydrophobic cores. The bias is obtained

http://www.jmol.org/
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Figure 5: The search progress over time for two proteins of different size.

(a) 4RXN (𝐸 = −166.88) (b) 1ENH (𝐸 = −153.796) (c) 4PTI (𝐸 = −210.29)

(d) 2IGD (𝐸 = −183.18) (e) 1YPA (𝐸 = −256.95) (f) 1R69 (𝐸 = −216.37)

Figure 6: Simplified structure of six different proteins.
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Table 4: The effect of using HP energy model within a macro-mutation operator. The bold-faced values indicate the winner. The lower the
energy value, the better the performance.

Protein details Best of 50 runs Average of 50 runs Rel. Imp. RI
Seq Size H HP BM BD BH HP(𝑟) BM(𝑟) BD BH(𝑡) HP BM
4RXN 54 27 −135.43 −167.90 −162.81 −166.88 −124.32 −159.92 −155.64 −162.72 30.89% 1.75%
1ENH 54 19 −134.97 −155.49 −150.07 −153.79 −125.52 −147.42 −144.47 −151.65 20.82% 2.87%
4PTI 58 32 −171.28 −213.05 −202.33 −210.29 −156.43 −201.12 −196.86 −204.56 30.77% 1.71%
2IGD 61 25 −153.00 −181.93 −177.19 −183.18 −140.59 −173.62 −170.79 −176.83 25.78% 1.85%
1YPA 64 38 −232.94 −255.40 −251.78 −256.95 −220.35 −247.17 −242.89 −253.09 14.86% 2.4%
1R69 69 30 −181.44 −212.35 −213.34 −216.37 −171.79 −203.26 −199.65 −208.79 21.54% 2.72%
1CTF 74 42 −202.06 −225.59 −225.37 −233.51 −190.31 −217.02 −212.05 −225.42 18.45% 3.87%
3MX7 90 44 −295.16 −333.74 −323.67 −340.05 −281.99 −317.11 −311.92 −325.45 15.41% 2.63%
3NBM 108 56 −380.20 −426.35 −424.10 −436.76 −364.99 −406.11 −400.17 −419.25 14.87% 3.24%
3MQO 120 68 −443.84 −472.15 −464.09 −486.05 −420.38 −452.32 −443.08 −472.78 12.46% 4.52%
3MRO 142 63 −420.65 −445.19 −444.99 −479.36 −401.32 −420.86 −421.61 −447.77 11.57% 6.39%
3PNX 160 84 −576.77 −584.17 −576.09 −615.82 −549.03 −542.68 −535.40 −592.25 7.87% 9.13%

Table 5: The number of H-H, H-P, and P-P contacts present in the output conformations.

Protein details H-H contacts H-P contacts P-P contacts Total contacts
Seq Size H HP BM BD BH HP BM BD BH HP BM BD BH HP BM BD BH
4RXN 54 27 76 62 58 67 36 57 56 54 17 22 24 22 131 142 139 143
1ENH 54 19 51 44 40 47 37 59 57 56 35 42 44 40 124 145 142 145
4PTI 58 32 92 74 69 77 40 64 65 63 15 21 22 20 148 160 157 161
2IGD 61 25 71 54 49 62 46 72 71 66 33 40 41 40 151 167 162 168
1YPA 64 38 117 104 101 109 38 55 55 52 15 17 18 17 171 178 175 179
1R69 69 30 90 73 69 80 49 77 74 72 38 43 45 44 177 194 190 197
1CTF 74 42 131 115 110 122 46 64 64 60 20 22 24 22 198 203 199 205
3MX7 90 44 140 109 103 121 68 106 106 98 44 45 48 46 254 262 258 266
3NBM 108 56 183 137 132 153 79 140 137 131 49 53 56 53 312 331 327 338
3MQO 120 68 227 180 169 201 88 139 144 128 45 52 55 53 361 372 369 383
3MRO 142 63 206 143 134 172 113 185 181 172 98 106 115 110 418 435 431 455
3PNX 160 84 280 219 202 253 137 183 176 176 80 70 73 77 499 472 452 507

Table 6: Effect of initialisation.

Protein details Initialised by CPSP tools Initialised by Algorithm 7
BM BH BM BH

Seq Size H Start End Start End Start End Start End
4RXN 54 27 −127.80 −152.87 −127.80 −156.50 −77.13 −159.92 −60.84 −162.72
1ENH 54 19 −130.13 −142.18 −130.13 −149.93 −67.37 −147.42 −54.34 −151.65
4PTI 58 32 −156.19 −193.42 −156.19 −198.80 −95.99 −201.12 −79.42 −204.56
2IGD 61 25 −139.00 −170.17 −139.00 −171.35 −80.38 −173.62 −65.81 −176.83
1YPA 64 38 −226.67 −241.17 −226.67 −247.62 −117.15 −247.17 −97.94 −253.09
1CTF 74 42 −189.68 −213.44 −189.68 −222.96 −89.86 −217.02 −72.20 −225.42

by applying a hydrophobic-core directed macro-mutation
operator. By using the two energy models in a mixed fashion,
our algorithm significantly outperforms the state-of-the-
art approaches for the similar models in terms of lower
interaction energies and lower RMSDvalues. A concern often
raised in PSP is about the usefulness of a low resolution
energy model when the target is to obtain realistic structures
in the high resolution model. Our results show that a low

resolution energy model could be useful even when a high
resolution energy model is used in the problem. In future,
we intend to apply our approach in real model based protein
structure prediction.
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