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ABSTRACT

The wealth of publicly available gene expression and
genomic data provides unique opportunities for com-
putational inference to discover groups of genes that
function to control specific cellular processes. Such
genes are likely to have co-evolved and be expressed
in the same tissues and cells. Unfortunately, the
expertise and computational resources required to
compare tens of genomes and gene expression data
sets make this type of analysis difficult for the aver-
age end-user. Here, we describe the implementation
of a web server that predicts genes involved in affect-
ing specific cellular processes together with a gene
of interest. We termed the server ‘EvoCor’, to denote
that it detects functional relationships among genes
through evolutionary analysis and gene expression
correlation. This web server integrates profiles of
sequence divergence derived by a Hidden Markov
Model (HMM) and tissue-wide gene expression pat-
terns to determine putative functional linkages be-
tween pairs of genes. This server is easy to use and
freely available at http://pilot-hmm.vbi.vt.edu/.

INTRODUCTION

The human genome contains over 21,000 protein-coding
genes (1), and yet contemporary scientific inquiry tends
to devote a disproportionate amount of time to studying
the function of a few genes at a time (2). This focus is in
large part due to the time and resources required to identify
additional candidate genes using conventional biochemi-
cal and molecular methods. The recent explosion of ge-
nomic and expression datasets has provided opportunities
to develop computational tools that can quickly generate
lists of candidate genes that could play key roles together
with a query gene in driving a complex, yet specific cellular
process. These recently developed computational methods

take advantage of sequence information and gene expres-
sion patterns and are based on calculating similarity pro-
files using Hamming distance (3); mutual information us-
ing co-occurrence (4); maximum likelihood branch-length
model-based (5); and a combination of phylogenetic and
co-expression analyses (6). Although these approaches have
been successfully used to identify functional relationships
between a gene of interest and other eukaryotic genes (7),
the computational resources and expertise needed to imple-
ment these methods make them unavailable to most biolo-
gists.

In this paper, we describe a web server that incorporates
phylogenetic profiles and gene expression patterns to pre-
dict functional relationships between a gene of interest and
all known eukaryotic genes. We named this server EvoCor
because it employs evolutionary phylogenetics and gene ex-
pression data to predict genes functionally correlated with
an input gene. Using Shadowfax, a 64 node computing clus-
ter with 2× 2.9 GHz 6-core processors, we pre-calculated all
possible pairwise relationships for all protein coding genes
in the human genome, constructed a binary vector to rep-
resent the evolutionary history of each gene using 182 dif-
ferent eukaryotic genomes. We also used datasets of expres-
sion profiles from human and mouse tissues and cell lines
to infer gene expression pattern associations. This server is
user-friendly and the data generated easy to interpret, al-
lowing end-users to freely and quickly obtain lists of can-
didate genes that may play key roles in specific biological
processes.

MATERIALS AND METHODS

Construction of presence/absence trait vector

To represent the evolutionary history of each gene, we con-
structed a binary vector (3) of length 182, which repre-
sents the total number of Eukaryotic species in the NCBI
database (Release 57) as of this writing. Each point in the
vector encodes a one or a zero, which indicates whether a
sequence homolog can be found in that species. In contrast
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Figure 1. Workflow of an EvoCor analysis. The evolutionary history and expression pattern is first compared between the input and all genes (A). EvoCor
then utilizes this information to rank genes based on their similar evolutionary history and expression pattern to the input gene (B) and generates a list of
functionally related genes (C).

to previous methods, we employ a Hidden Markov Model
(HMM) Profile search using HMMER3 (8) to determine
sequence homologs. This method allows for improved de-
tection of remote homologs (9) because it does not general-
ize site-specific transition rates for insertions and deletions.
We used an empirically derived cutoff and defined a gene to
be ‘present’ in a given species if the HHMER3 search yields
any sequences in that organism that contains at least one do-
main with an expected (E) value of <1E−7. We then used
these matrices to calculate the pairwise Hamming distance
between the gene of interest and every other protein-coding
gene in the human genome. We hypothesized that genes
that function in the same cellular process are under similar
evolutionary selection pressures. These genes are therefore
likely to show a correlated pattern of sequence divergence
(Figure 1A-C).

Calculating the pearson correlation coefficient

For each gene pair, we calculate the Pearson correlation
coefficient based on a tissue-wide atlas of gene expression

data from a range of human (NCBI GSE1133) (10,11) as
well as mouse (NCBI GSE10246) (11) using the WGCNA
package in R (12). The NCBI GSE11233 and GSE10246
atlas contain the transcriptome of a variety of normal tis-
sues and cell lines obtained from humans and mice, respec-
tively. For both expression sets, the raw Affymetrix data was
background corrected, log2 transformed and quantile nor-
malized, as per the Robust Multi-array Average (RMA) al-
gorithm (13). EvoCor utilizes this dataset to identify genes
expressed in the same tissues as the input gene and this is
represented as the Pearson coefficient in the output of the
server (Figure 1B).

Ranking candidate genes

EvoCor ranks candidate genes first based on their evo-
lutionary history (Hamming distance) followed by their
expression correlation (Pearson correlation). Increasing
Hamming distance values (0 to 182) indicate evolutionary
divergence between the candidate and query gene. Thus,
candidate genes with lower Hamming distance values ap-
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Figure 2. DAVID was used to evaluate EvoCor ability to predict genes with
similar biological functions. The fraction of DAVID’s key word overlap
was determined for gene sets clustered using EvoCor (green and blue lines)
and clustered randomly (red line). The percentage of DAVID’s overlapping
terms is significantly higher in the gene sets generated using EvoCor with
the human gene expression set (blue line) as well as the mouse expression
set (green line) compared to randomly generated gene sets (red line). For
the human expression dataset versus P-value random the P-value = 2.20e-
16 and D-value = .3286. For the mouse expression dataset versus random
the P-value = 2.22E−16 and D-value = 0.1664.

pear at the top of the list. EvoCor then uses expression data
to refine the list. First, genes with a low expression correla-
tion (<0.2) are not included in the output list. It then ranks
candidate genes with the same Hamming distance based on
their Pearson correlation, with candidates most likely co-
expressed with the query gene occupying the top spots. Our
rational for this ranking scheme is that the evolutionary his-
tory best predicts genes with similar function or involved in
the same cellular process whereas expression analysis helps
refine the list, reduce the number of false positive and assign
a higher rank to candidate genes most likely to be present
in the same cells or tissues as the query gene.

RESULTS

Evaluation of EvoCor

Before deploying EvoCor, we tested its ability to predict
functionally related genes. For this, we used the program-
matic interface for the Database for Annotation, Visualiza-
tion and Integrated Discovery (DAVID) (14) to examine the
ability of EvoCor to recover functionally related groups of
genes based on phylogenetics and expression profiling. Our
hypothesis is that EvoCor will recover more functionally re-
lated groups of genes than would be expected by random
association. To test this hypothesis, we first generated a set
of 2500 randomly selected genes from the human genome
and gathered the top 125 results for each gene generated by
EvoCor. We ordered our results first by Hamming distance,

then by the Pearson correlation. We included only those re-
sults with a non-zero Pearson Correlation coefficient, thus
excluding genes not represented by the microarrays. For the
control group, we randomized the list of 312 500 genes (125
results for 2500 genes), and repeated the same procedure.
We then randomized the order of each 125 gene result set
for each group and divided each result set into two sepa-
rate lists. The two separate lists for each result set were run
against DAVID’s Functional Annotation Clustering with
default settings, which include Gene Ontology (GO) terms
and other functional themes. We quantified the number of
overlapping terms within the result set of each group. We ex-
pected EvoCor to return a higher percentage of overlapping
terms within the top 125 results than would be expected
by chance alone. We compared the distributions of results
for each of these groups using a two-sided Kolmogorov-
Smirnov test and obtained a D-value of .3286 (P-value of
2.12E−16) using the human expression dataset and a D-
value of 0.1664 (P-value of 2.22E−16) using the mouse ex-
pression dataset, suggesting that EvoCor is able to detect
functionally related groups of genes (Figure 2).

To verify the assumption that the addition of expression
data to the evolutionary information improves the perfor-
mance of EvoCor, we performed an initial validation test.
We compared the pairwise GO term overlap between 2500
random query genes and their corresponding top 125 results
using evolutionary data alone as well as expression data in
addition to evolutionary data using the GoSemSim pack-
age in R (15). We find a very significant improvement in the
overlap when both phylogenetic and expression profiles are
used relative to phylogenetic profile alone (Wilcoxon rank-
sum test, from W = 4576217071 to W = 4668457224, P =
1.291E−13). We therefore conclude that the addition of ex-
pression data to phylogenetic profiling improves the ability
to predict functional relationships.

As an illustrative example, EvoCor was used to retrieve
a list of genes predicted to co-evolve and be co-expressed
with a well-characterized gene, myogenic differentiation 1
(Myod1). Myod1 belongs to a family of transcription fac-
tors known to regulate muscle biogenesis that includes myo-
genin (Myog), Myf5 and Myf6 (16). As shown in Figure 1C,
EvoCor predicts that Myog and Myf5 are the most likely
candidate genes to be involved with Myod1 in muscle bio-
genesis using the human expression dataset. All three fam-
ily members, Myog, Myf5 and Myf6, are the top candidate
genes using the mouse expression dataset (not shown). In
fact, the majority (75 using the human and 99 using the
mouse expression dataset) of the top 125 predicted genes
have been demonstrated to play essential roles in muscle tis-
sue, with the other genes having features that could make
them attractive candidates for regulating different aspects
of muscle physiology. Furthermore, a large number of the
top candidate genes or close family members appear in both
lists of candidate genes generated for Myod1 using the hu-
man and mouse expression datasets. Although there are
clear differences between the human and mouse dataset,
these are likely due to differences in the microarrays and the
types of tissues and cells examined. For example, the mouse
array contains the transcriptome of skeletal muscles and of
cultured muscles derived from C2C12 cells, a myogenic cell
line that can be transformed into skeletal muscles. However,
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the mouse expression dataset lacks the transcriptomes of
cardiac and smooth muscle cells, which are well represented
in the human expression dataset. Because of sequence diver-
gence and other physiologic differences between mouse and
human, the probes used in the two different microarrays are
likely to generate different signals (17). Thus, many genes
that function alongside Myod1 in the proliferation and dif-
ferentiation of cardiac and smooth muscles would naturally
be missing from the mouse array. Irrespective, this example
demonstrates the power of using EvoCor to identify candi-
date genes and develop hypothesis for further experimenta-
tion.

Comparison to existing methods

We improve upon and differentiate from the major existing
methods that search for functional linkages (3,18–20) in the
following ways: first, we use Hidden Markov Model Profiles
to search for sequence homologs, rather than BlastP similar-
ity searches; secondly, we use all fully sequenced Eukaryotic
genomes that are currently available; third, we implement
a simple interface that will facilitate its use amongst biolo-
gists; and finally, we supplement phylogenetic inference with
expression data to decrease the high rate of false positives.
These features allow EvoCor to make unbiased predictions
on genes that may function along a complex cellular pro-
cess to elicit a very specific biological outcome. Together
with other tools, including HumanNet, STRING and Pre-
dictome, which rely on prior knowledge of the function and
interaction of proteins, EvoCor will help end-users identify
novel candidate genes quickly and free.
Conflict of interest statement. None declared.
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