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Stereo-electroencephalography (SEEG) utilizes localized and penetrating depth
electrodes to directly measure electrophysiological brain activity. The implanted
electrodes generally provide a sparse sampling of multiple brain regions, including both
cortical and subcortical structures, making the SEEG neural recordings a potential
source for the brain–computer interface (BCI) purpose in recent years. For SEEG signals,
data cleaning is an essential preprocessing step in removing excessive noises for
further analysis. However, little is known about what kinds of effect that different data
cleaning methods may exert on BCI decoding performance and, moreover, what are
the reasons causing the differentiated effects. To address these questions, we adopted
five different data cleaning methods, including common average reference, gray–white
matter reference, electrode shaft reference, bipolar reference, and Laplacian reference,
to process the SEEG data and evaluated the effect of these methods on improving BCI
decoding performance. Additionally, we also comparatively investigated the changes of
SEEG signals induced by these different methods from multiple-domain (e.g., spatial,
spectral, and temporal domain). The results showed that data cleaning methods
could improve the accuracy of gesture decoding, where the Laplacian reference
produced the best performance. Further analysis revealed that the superiority of the
data cleaning method with excellent performance might be attributed to the increased
distinguishability in the low-frequency band. The findings of this work highlighted the
importance of applying proper data clean methods for SEEG signals and proposed the
application of Laplacian reference for SEEG-based BCI.

Keywords: brain–computer interface, stereo-electroencephalography, data cleaning, re-referencing method,
gesture decoding

INTRODUCTION

Brain–computer interface (BCI) has been a promising solution toward bridging the gap
between disabled people and the external environment (Collinger et al., 2013). Compared with
commonly used electroencephalography (EEG), intracranial electroencephalography (iEEG), such
as electrocorticography (ECoG), implants grid or strip electrodes directly on the cortical surface and
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has the characteristics of higher spatial resolution, higher
temporal resolution, and higher signal amplitude in the recorded
neural signals (Freeman et al., 2000; Ball et al., 2009; Slutzky
et al., 2010; Sheehan et al., 2018). In the past 15 years, ECoG-
based BCIs have been paid extensive attention (Lebedev and
Nicolelis, 2006; Schalk and Leuthardt, 2012; Volkova et al., 2019).
Significant achievements have been made for ECoG-based motor
BCIs in fine hand movement decoding, such as individual finger
classification or hand kinematics regression (Acharya et al., 2010;
Flint et al., 2014; Nakanishi et al., 2014; Hotson et al., 2016).
Other ECoG studies decoded commonly used functional gestures
directly and attained good decoding performance (Pistohl et al.,
2012; Chestek et al., 2013; Spueler et al., 2014; Bleichner et al.,
2016; Branco et al., 2017). Note that ECoG provides wide
coverage over a large area of cortical regions, whereas another
increasingly used iEEG recording technique in recent years,
stereo-electroencephalography (SEEG), implant multiple depth
electrodes into the brain and thus capture neural activities
from both cortical and subcortical regions (Parvizi and Kastner,
2018; Herff et al., 2020). Therefore, SEEG provides the unique
opportunity to make use of the neural information that cannot
be accessed by other invasive techniques. A growing number of
studies aiming at testing the possibilities and performance of
building a motor BCI using SEEG signals have been reported
(Vadera et al., 2013; Murphy et al., 2016; Fischer et al., 2017; Li
et al., 2017; Wang et al., 2020).

For SEEG-based BCI, better decoding performance demands
a higher quality of acquired SEEG signals, where data cleaning
is essential to clean human electrophysiological recordings with
nuisance noises. In literature, besides fundamental methods
that exclude certain well-defined noise sources (e.g., 50/60 Hz
line noise), there is no widely adopted standard for cleaning
noise from iEEG data. Both manual and automated approaches
are investigated to clean residual noises from the intracranial
neural recordings. Specifically, manual methods (e.g., channels or
epochs elimination) are used to remove noisy channels or epochs
through manual identification (Nolan et al., 2010; Rangarajan
et al., 2014; Fonken et al., 2016; Vass et al., 2016; Indira
et al., 2017), whereas automated methods, such as common
average referencing (CAR) (Schalk et al., 2007), closest white
matter reference (CWM) (Arnulfo et al., 2015), bipolar reference
(Kobayashi et al., 2009; Vidal et al., 2012; Burke et al., 2014;
Greenberg et al., 2015; Sheehan et al., 2018), and Laplacian
reference (Mercier et al., 2016; Li et al., 2018), are routinely used
to improving signal quality in a global level. It is worth noting that
investigators concentrate more attention on the signal itself, but
few people assess the performance in BCI applications for these
methods. A recent ECoG study has demonstrated that automated
methods can produce substantial influence in improving brain
state classification compared with manual methods (Meisler et al.,
2019). However, for SEEG-based BCI, whether the automated
methods have a contribution consistent with the expectation of
investigators remains an open question. Accordingly, this paper
aims to explore the effects of different automated data cleaning
methods for SEEG recordings through practical assessment
of gesture decoding performance and, subsequently, propose
the optimal one.

Besides, we also comparatively investigated the differences
between cleaned SEEG signals using the optimal method
and other automated methods by conducting a multiple
domains analysis. Finally, the reasons causing the differentiated
effects were explored.

MATERIALS AND METHODS

Subjects
Eight subjects with intractable epilepsy participated in this
study. They had SEEG electrodes implanted for pre-surgical
assessment of their seizure focus. The recording information of
each subject is shown in Table 1. The subjects performed the
task using hand contralateral to the hemisphere with the majority
of electrodes implantation. The Ethics Committee of Huashan
Hospital approved the study (Shanghai, China, approval ID:
KY2019518), and informed consent for the study was obtained
from all subjects.

Data Recording
SEEG signals were recorded using a clinical recording system
(EEG-1200C, Nihon Kohden, Irvine, CA) system with 1,000- or
2,000-Hz sampling rates (Table 1). The original SEEG signals
collected by the system were referenced to the average of
two adjacent white matter contacts locating remotely from
the suspected seizure focus and gray matter. To monitor
the actual movement onset time during the experiment, two
surface electromyographic (EMG) electrodes were used to record
EMG signals from extensor carpi radialis muscle with the
same sampling rate and same recording device as the SEEG
signals simultaneously.

Experimental Protocol
The subjects participated in a visually cued hand movement task
during the experiment (Figure 1). In detail, at the beginning
of each trial, the subject faced an LED screen and took a rest
for 4 s first without any hand movement before a cue (white
cross, 1 s) appeared to inform them of the upcoming movement.
After this, a picture illustrating one of three gestures (scissor, fist,
and thumb) appeared on the screen randomly. Then, the subject
executed the corresponding movement repeatedly for 5 s as soon

TABLE 1 | Experimental information of subjects that participated in study.

ID RS SR (Hz) NES NC

1 Left 1,000 10 121

2 Left 1,000 15 180

3 Right 1,000 7 60

4 Left 2,000 16 208

5 Left 2,000 7 102

6 Left 2,000 10 144

7 Left 2,000 8 110

8 Right 2,000 15 190

RS, recording hemisphere; SR, sampling rate; NES, number of electrode shafts;
NC: number of contacts.

Frontiers in Neuroscience | www.frontiersin.org 2 October 2021 | Volume 15 | Article 725384

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-725384 September 30, 2021 Time: 15:30 # 3

Liu et al. SEEG-Based BCI Data Cleaning Methods

FIGURE 1 | Experimental paradigm. Each trial lasted 10 s (4-s rest, 1-s cue,
and 5-s task). Also, one of three hand gestures (scissor, fist, and thumb)
randomly appeared to inform participants to execute the corresponding
movement during the task stage.

as the appearance of a picture. Twenty trials were performed
for each gesture, making the data from a total of 60 trials were
collected for each subject.

Electrode Localization
The subjects had a total of 88 electrode shafts (rounded
mean ± std: 11 ± 4 per subject) and 1,115 contacts (rounded
mean ± std: 139 ± 50 per subject) implanted (Figure 2). Each
electrode contains 8–16 contacts, and each contact was 2.0 mm
long with a 0.8-mm diameter and a 3.5-mm center-to-center
spacing distance. We identified the location of all contacts in each
individual brain model using pre-surgical magnetic resonance
imaging, post-surgical computed tomographic images, Freesurfer
software1, and the iEEGview toolbox (Li et al., 2020).

Automated Data Cleaning Methods
The main goal of this study was to evaluate the potential influence
of different data cleaning methods on decoding performance for
SEEG-based BCI. To do this, five previously used automated
methods (Li et al., 2018), including common average reference
(CAR), gray–white matter reference (GWR), electrode shaft
reference (ESR), bipolar reference, and Laplacian reference, were
adopted for the evaluation.

For the CAR method, re-referencing was achieved by first
creating an average of all channels and then subtracting the
average signal from each channel (Kubanek et al., 2009; Miller
et al., 2012). Slightly differently, for GWR, we re-referenced each
channel located in the gray or white matter to the corresponding
average of all gray and white matter channels separately. To
do the ESR, we re-referenced each channel to the average

1http://surfer.nmr.mgh.harvard.edu

FIGURE 2 | Electrode locations projected on the three-dimensional standard
Montreal Neurological Institute brain model. (A–C) Brain model and implanted
contacts (small red dots) in the sagittal, coronal, and transverse view,
respectively.

signal of all channels located on the same shaft. For bipolar
reference (Kobayashi et al., 2009; Vidal et al., 2012; Shirhatti et al.,
2016), each channel was re-referenced to its adjacent channel
on the same electrode shaft. Finally, to implement the Laplacian
reference (He et al., 2008), each contact was re-referenced by the
mean value of two adjacent contacts along the electrode shaft.

Besides, to answer the question of whether automated data
cleaning can benefit decoding performance, we treated the signal
without any re-referencing process (termed as a raw signal in this
work) as a benchmark and conducted the same following analysis
for these signals as well.

Data Preprocessing
For the collected original SEEG signals, we implemented the
following preprocessing procedure. First, we resampled the
SEEG signals to 1,000 Hz using the function (resample) in
Matlab (MathWorks, Natick, MA, United States) to reduce
computational cost and facilitate further computation across
subjects. Then, we calculated a measure of line noise to remove
channels with excessive line noise. Specifically, a second-order
IIR peak filter (iirpeak) at 50 Hz was first applied to retain the
50-Hz frequency component. Then, we concatenated the filtered
signals from all channels of each subject to calculate a cutoff
threshold for noisy channels. Also, the threshold was defined as
the summation of the median of the concatenation output and
10 times of its mean absolute deviation. The channels whose
line noise was higher than the cutoff threshold were identified
as bad channels and eliminated from further analysis. Then, a
50-Hz comb notch filter was applied to remove the possible line
noise and its harmonics. After that, a 0.5–400 Hz band-pass filter
(fourth-order Butterworth) was used to filter the resampled signal
(Figure 3A). At the last step, the respective data cleaning methods
described earlier (Automated data cleaning methods) were applied
to clean the filtered signals (Figure 3C).

Additionally, the obtained EMG signals were processed as
well. In detail, we band-pass filtered (55–145 Hz, sixth-order
Butterworth filter) the two EMG channels and subtracted the
results from each other. Notably, such an adopted filtering setting
can ensure the accurate detection of movement onsets’ use of
high-frequency information of EMG signals. Then, for each
trial, we detected the point where the absolute amplitude of
EMG signals exceeded first time an adaptive threshold using the
envelope of the processed EMG activity (Sedghamiz, 2018). Also,
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FIGURE 3 | Framework of this work. (A) Single-trial filtered signals of selected channels. Redline represented task onset (appearance of movement cue, Figure 1).
(B) Distribution of movement onsets across trials. Redline represented task onset, and purple asterisks represented detected movement onsets, and blackline
represented mean value of movement onsets across trials. (C) A typical example of signals re-referenced by Laplacian reference, CAR, and Raw. Signals from one
trial of a typical channel were shown. Blackline represented mean value of movement onsets across trials. (D) Feature extraction. Colored squares represented
different frequency band powers. (E) Distribution of implanted channel (small blue dots) and selected channel (big red dots) from all subjects. All electrodes were
projected on a standard Montreal Neurological Institute brain model in a transverse view. (F) Illustration of a calculation process for time–frequency difference (TFD).
(G) Illustration of single-frequency band-based decoding accuracy (SDA). Single sub-band power of selected channels was taken separately to build the feature
vector. (H) Relation to spatial locations. Take mean value of TFD within each frequency band during task period to calculate significance level of spectral difference.

we detected the point where absolute EMG activity first time
exceeded 1.5 times the average absolute value of EMG activity in
the task stage. Finally, the earlier of the two points was treated as
movement onset to ensure a robust EMG activity onset detection
(Wang et al., 2020).

Finally, the SEEG signals were aligned to the movement onset
(mean ± std: 0.72 ± 0.38 s after the onset of gesture picture)
for each trial and each subject (Figure 3B). To be concise, the
movement onset was defined as time 0. The baseline period and
task period were defined as the [−4, −2] s and [0, 4] s around
the movement onset, respectively. In each trial, the signals within
[−4, 4] s around the movement onset were used in the following
decoding analysis.

Performance Index–Decoding Accuracy
To quantify the decoding performance under different data
cleaning methods, gesture decoding accuracy (DA) was
computed. To do this, we conducted a gesture decoding
procedure for each method and each subject separately. In
detail, for each channel, we first segmented the cleaned signals
from the task period using a time window at a length of 500 ms

(overlapping by 250 ms) and then transformed the signals of each
time bin into frequency domain with an autoregressive model of
order 40 (Li et al., 2017). The spectral power in the sub-bands
(e.g., 1–4, 4–8, 8–13, 13–30, 60–75, 75–95, 105–125, 125–145,
and 155–195 Hz) were extracted by averaging transformed data
within each interval (Figure 3D). After that, we normalized (i.e.,
Z-score) the obtained spectral power to the average power of the
baseline period of all trials. In the last step of feature extraction,
the normalized power from all frequency bands was concatenated
together to build the feature vector for each channel.

Considering that SEEG electrodes were widely distributed
inside the brain, channel selection was extremely necessary for
the decoding purpose (Figure 3E). In this step, we used the
forward search optimization algorithm to select the optimal
channel set for each subject (see also Supplementary Figure 1;
Kohavi and John, 1997; Lotte et al., 2018). More specifically,
starting from the empty optimal channel set, we successionally
selected one from all remaining channels, which produced the
highest accuracy with the selected channels and incorporated it
into the optimal channel set. To avoid the possible local extreme
point during searching, the iteration was stopped when the
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accuracies reached a peak and did not increase after three more
channels were added. Then, for each sample (i.e., time window),
the feature vectors from all channels in the optimal channel set
were concatenated together to construct the final feature vector
for the classifier. Moreover, to achieve a robust classification, each
element of the obtained final feature vector was renormalized
across trials to maximally eliminate the difference of absolute
amplitude among channels (Wang et al., 2020).

Finally, a Support Vector Machine classifier with a linear
kernel was used for the classification of multiple hand gestures.
Moreover, considering the data overlapping during the feature
extraction, to avoid data leakage and make a fair evaluation for
this process, we adopted trial-based 10-fold cross-validation. In
brief, in each cross-validation, we first randomly selected ninefold
(n = 54) of all trials (n = 60) as training set and the remaining
onefold as testing set. For each subject and each method, the
decoding accuracy was computed as the mean decoding value of
all 10-fold cross-validation.

Comparison Indices
To further interpret the reasons causing the differentiated
performances between the best-performing method and other
data cleaning methods, three comparison indices were proposed
and computed: (1) TFD, (2) SDA, and (3) relation to
spatial locations.

Time–Frequency Difference
TFD was proposed in this work to quantify the spectral and
temporal difference between different data cleaning methods.
To compute the TFD, for each selected channel of each subject
under each automated data cleaning method, we used the fast
Fourier transform together with a Hanning window (timefreq
function from EEGlab toolbox; Delorme and Makeig, 2004) for
the purpose of time–frequency decomposition of trials (Band
limits: 0–195 Hz) and stacked the decomposition of all trials
to generate an array with three dimensions along time (t),
frequency (f ), and trials (i) [termed as TFT(t,f,i) here]. Then, we
calculated trial-wise paired t-test of the TFT(t,f,i) between paired
data cleaning methods (e.g., the optimal method and the other
ones) and took the negative logarithm of the p-value for each
element [e.g., −log(p(t, f ))] to obtain the TFD of a single channel.
Notably, given the multitude of selected channels for each subject
and the fact of electrical field spread (leading to source leakage
and volume conduction), Bonferroni correction was adopted
for the p-values to correct the family-wise error. Finally, the
distinguish index TFD (t, f ) was calculated as the average across
all selected channels of all subjects, where -log(0.05) was taken as
the significance level (Figure 3F). Considering that the optimal
channel set of different methods might be different, the selected
channel set here was the union of the optimal channel sets of the
two paired methods.

Single-Frequency Band-Based Decoding Accuracy
After evaluating the changes of data cleaning methods exerted
to the signal itself, we further investigated how the induced
changes affected the decoding performance. For this purpose, we
calculated the SDA for different data cleaning methods. In detail,

similar to the calculation of DA (Performance index–decoding
accuracy), we separately took the single sub-band power (e.g., 1–
4, 4–8, 8–13, 13–30, and 60–195 Hz) of the selected channels used
in DA calculation to build the final feature vector (Figure 3G).
Among these sub-bands, considering that high gamma band (60–
195 Hz) had a comparatively larger frequency span, this band
was segmented into multiple bins (e.g., 60–75, 75–95, 105–125,
125–145, and 155–195 Hz) to fully extract the effective neural
information during the feature extraction. After this, a Support
Vector Machine classifier (same as Performance index–decoding
accuracy) was adopted to calculate the SDA for each subject and
each data cleaning method.

Relation to Spatial Locations
To further answer the question of whether the differences
induced between data cleaning methods have a relationship
with spatial locations, we calculated two indices and measured
the correlation between these two values. The first one is the
significance level of spectral difference between the optimal data
cleaning method and the other ones, where this value quantifies
how much difference the two data cleaning methods exerting on
the SEEG signal itself. The second index is the task relevance, and
this value quantifies how much the SEEG channels correlate with
the task. These two indices were computed for each channel and
each subject. Moreover, to more precisely evaluate the potential
relationship, the analysis was conducted using multiple frequency
bands (e.g., 1–4, 4–8, 8–13, 13–30, and 60–195 Hz) separately.

To be more specific, for the calculation of the significance
level of spectral difference, we took the mean value of the TFD
(t, f ) within each frequency band during the task period (Time–
frequency difference) between the optimal method and the other
methods (Figure 3H, see also Supplementary Figure 2). To
calculate task relevance, we took the correlation between the
single-frequency band power of each channel and the task. In
detail, separately for each frequency band, we first applied a
band-pass filter to signals processed by the optimal data cleaning
method at this frequency band using a sixth-order Butterworth
filter. Then, we extracted frequency band power by computing
the squared absolute value of the Hilbert transform and obtained
the mean frequency band power of the baseline period and
task period for each trial separately. Second, we correlated
(Spearman’s correlation coefficient) these power values of all trials
with the corresponding task/baseline labels (e.g., 0/1) to get an
observation of the r value. Third, we performed a permutation
test in which we randomly shuffled the task/baseline labels and
calculated the corresponding random r value (Schalk et al., 2007).
The permutation test was repeated 1,000 times and generated a
Gaussian distribution of 1,000 surrogate r values. The channel
was considered statistically task-related if the computed channel
r belonged to the 95th percentile of the Gaussian distribution
(p < 0.05 after Bonferroni correction). Finally, task relevance was
taken as the negative logarithm of the p-value [i.e., -log(p)].

After this, to determine whether there was a relationship
between the significance level of spectral difference and the task
relevance of each channel, we performed a first-order linear
fitting using the function (polyfit) in Matlab. Moreover, F-test was
used for regression analysis to assess the significance of the fitting

Frontiers in Neuroscience | www.frontiersin.org 5 October 2021 | Volume 15 | Article 725384

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-725384 September 30, 2021 Time: 15:30 # 6

Liu et al. SEEG-Based BCI Data Cleaning Methods

equation (Shen and Faraway, 2004; Demidenko et al., 2012),
where the function (stats.f.sf ) from SciPy toolbox (Jones et al.,
2001) was adopted to calculate the p-value of the F-test. Finally,
the coefficient of determination (i.e., R-square) was calculated to
evaluate the fitness of the line fitting.

RESULTS

Decoding Accuracy of Different Data
Cleaning Methods
The DA calculated under different data cleaning methods is
shown in Figure 4. Compared with the signals without re-
referencing (Raw in Figure 4), all data cleaning methods
produced significantly higher DA values (p < 0.05, paired
t-test), demonstrating that the adoption of proper data cleaning
methods for SEEG signals could effectively enhance the
decoding performance.

Among all the applied data cleaning methods, Laplacian
reference produced the highest DA in average, reaching
85.2 ± 3.8% (mean ± s.e.). Bipolar and ESR ranked the second
and third places; their DAs were lower than the Laplacian method
by 0.2 and 3.7%, respectively. For CAR and GWR, the enhancing
effects were weakest, and their DAs were significantly lower than
Laplacian (p < 0.05, paired t-test, Figure 4).

Time–Frequency Difference Between
Paired Data Cleaning Methods
We have shown that the Laplacian method produced the best
decoding performance in the previous section (Decoding accuracy

FIGURE 4 | Decoding accuracy (DA) of different automated data cleaning
methods (Laplacian reference, bipolar reference, ESR, CAR, GWR, and Raw).
Asterisks denoted statistical significance level of accuracy value between
groups (*p < 0.05, paired t-tests). Bars and error bars represented mean
(across all subjects) accuracy and standard error, respectively. Bars arranged
in descending order according to average accuracy value.

of different data cleaning methods). To further investigate which
factors may contribute to this phenomenon, we calculated the
TFD between the Laplacian reference and other automated
data cleaning methods (Figure 5). As could be seen from the
figure, the significant difference between the Laplacian reference
and ESR, CAR, GWR, and Raw was mainly reflected in the
low-frequency band (LFB, e.g., delta, theta, and alpha bands),
where the TFD (t, f ) was higher than the significance level
[−log(0.05)], especially in the delta band (1–4 Hz) that was
showing a more significant difference [TFD (t, f ) > −log(0.01)].
In the temporal domain, the significant difference was mainly
distributed in the [−1, 4] s around the movement onset.
Comparing Laplacian reference with bipolar reference, the
significant difference occurred in delta band during the [−0.5, 0]
s around the movement onset (after the gesture picture appeared
and before moving), and there was no significant difference
during the task period. For all paired methods, no significant
difference was seen during the baseline period.

Single-Frequency Band Based Decoding
Accuracy for Different Data Cleaning
Methods
To further explore whether it is the spectral difference
that caused the differentiated decoding performance between
paired methods, we calculated the SDAs of different methods
(Single-frequency band-based decoding accuracy). The results are
presented in Figure 6. Overall, the Laplacian method achieved the
highest SDAs. More specifically, compared with CAR, GWR, and
Raw, the SDAs of Laplacian reference were significantly higher in
delta (p < 0.05, Bonferroni corrected, paired t-test, Figures 6C–
E) and theta (p < 0.01, Bonferroni corrected, Figures 6C–E).
Compared with ESR, the Laplacian method produced higher
SDAs on average but without significance. For the comparison
between bipolar and Laplacian references, these two methods
produced very similar results. No significant difference between
the SDAs of Laplacian reference and other methods in a high
gamma band was seen. Notably, the statistical properties of
SDAs in LFB (e.g., delta and theta bands) and high gamma
band (60–195 Hz) were highly consistent with those observed
in TFD (Figure 5, Time–frequency difference between paired data
cleaning methods).

On average, a high gamma band produced higher classification
accuracy (69.2%, Figure 6F). On the contrary, the average SDAs
across all methods in LFB were 5.7% (delta), 14.8% (theta),
23.3% (alpha), and 23.7% (beta) lower than that of high gamma
band. Interestingly, among all automated methods, Laplacian
reference and bipolar reference presented higher accuracy in
delta band than the high gamma band, where the SDA of these
two methods were 1.5 and 2.0% higher than that of high gamma
band, respectively (Figure 6F).

Relationship Between Spatial Locations
and Significance Level of Spectral
Difference for Paired Methods
In the analysis mentioned earlier, we took the channels as a
whole and calculated them in the mean sense and, thus, largely
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FIGURE 5 | Time–frequency difference (TFD) between paired data cleaning methods. (A) Laplacian reference versus bipolar reference; (B) Laplacian reference
versus ESR; (C) Laplacian reference versus CAR; (D) Laplacian reference versus GWR; (E) Laplacian reference versus Raw. Difference in low-frequency region was
partially enlarged for visualization purpose (Time, [−1, 4] s; Frequency, [0, 50] Hz). Colors represented TFD value between paired methods. Black dotted line
represented movement onset, and [−4, 4] s around movement onset were presented.

ignored the spatial (i.e., channel) information. In this section,
we investigated the question of whether the difference between
paired data cleaning methods would be more significantly
presented on the channels that are more related to the task
(Relation to spatial locations). Figure 7 shows the relationship
between task relevance of all channels and the corresponding
significance level of differences for all paired data cleaning
methods (Laplacian versus others) in multiple frequency bands
from a typical subject (Subject 5). As could be seen from
Figure 7, there existed a significant linear relationship (p < 0.05,
F-test) between the two indices for almost all subjects and all
frequency bands (see also Supplementary Figure 3). In addition,
for Laplacian reference, 85% (i.e., 74/87) of the selected channels
across all subjects were task-related in a certain frequency band.
Altogether, the results indicated that the Laplacian method could
produce more prominent improvements to the signals of the
most informative channels compared to other methods.

DISCUSSION

In this study, we provided the first systematical evaluation of
several automated data cleaning methods routinely used in SEEG
studies, with the goal of verifying the effects of these methods and
proposing the optimal method for SEEG-based BCI.

The results in this study showed that applying automated
methods to a clean SEEG signal was able to improve the decoding

accuracy. Among the listed methods, the Laplacian reference had
the best performance. The current finding was in accordance
with the previous SEEG study (Li et al., 2018), where Laplacian
reference had also been demonstrated to be optimal in improving
global signal quality metrics (e.g., the correlation of signals across
channels). One step further, this work answered the subsequent
question that the optimal SEEG data cleaning method is targeted
for BCI purposes (Figures 5–7). The agreement reached in these
two evaluation studies altogether suggested the application of
Laplacian reference for further SEEG research.

To interpret the reasons causing the differentiated
performances across data cleaning methods, we comparatively
investigated the multiple-domain (e.g., spatial, spectral, and
temporal domain) changes of SEEG signals. The results in
Figure 5 shows that the Laplacian reference had a significant
spectral difference in the LFB (e.g., delta, theta, and alpha bands)
compared with the other automated methods (such as CAR
and GWR, see also Supplementary Figure 2). Furthermore, we
decoded the hand gestures based on a single-frequency band and
found that the decoding performance of the Laplacian reference
in LFB (e.g., delta and theta bands) significantly outperformed
CAR and GWR (Figures 6A–E). Current results are also in
agreement with the previous study, where Laplacian reference
has been shown to be able to enhance the relationship with the
task for LFB (e.g., alpha) power activity (Li et al., 2018).

Besides, in the frequency band, the power of the high-
frequency band has been demonstrated to be correlated with
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FIGURE 6 | Single-frequency band-based decoding accuracy (SDA) of data cleaning methods for multiple sub-bands. (A) Laplacian reference versus bipolar
reference; (B) Laplacian reference versus ESR; (C) Laplacian reference versus CAR; (D) Laplacian reference versus GWR; (E) Laplacian reference versus Raw.
Sub-bands included delta band (1–4 Hz), theta band (4–8 Hz), alpha band (8–13 Hz), beta band (13–30 Hz), and high gamma band (60–195 Hz). Asterisks denoted
statistical significance level of SDAs between paired methods (***p < 0.001; **p < 0.01; *p < 0.05, paired t-test). Box and line represented boxplot and mean
accuracy across all subjects. (F) Comparison of SDAs of different frequency bands. Bars and error bars represented mean accuracy and standard error calculated
across all subjects, respectively. Redline represented average SDAs across all methods for different bands, respectively.

the population-level cortical activity associated with different
motor, sensory, or cognitive tasks (Gaona et al., 2011; Ray and
Maunsell, 2011; Miller et al., 2014; Potes et al., 2014; Pesters
et al., 2016; Branco et al., 2017) and, therefore, generally yield
a higher classification accuracy than the low-frequency range
(e.g., 8–32 Hz) in multiple tasks decoding (Ojemann, 2007;
Kai et al., 2010; Gruenwald et al., 2017). The consistent results
were found in this work (Figure 6F). Notably, several pieces
of evidence tended to support the notion that the delta band
also has an important effect on motion execution. Specifically,
Graimann et al. (2004) showed a clear correlation between
the normalized band power changes in the delta range with
movement execution. Aleksandra found that the delta band
carried significant motor-related information in classifying real
wrist movements (Vuckovic and Sepulveda, 2008). In this work,
the delta band had been found to be able to achieve the
highest accuracy among the LFB of all automated methods,
which highlighted the importance of the delta band in motion
execution decoding (Schalk et al., 2007; Pistohl et al., 2012).
Moreover, the delta band even achieved similar accuracy with
the high-frequency band under the Laplacian or bipolar method
in this work. One explanation for this result may be that the

repetitive hand movement in our experiment required multiple
movement initiation, which was modulated by delta band
amplitude (Kobler et al., 2020). However, the reasons behind
this result still need further investigation. Overall, the findings
of this work highlight the importance of taking the high gamma
band and delta band into consideration together for further
BCI application.

Although we have presented the optimal SEEG data cleaning
method for BCI usage based on the data observations, this
work also has some limitations. First, for the comparison
between Laplacian and other locally processed automated data
cleaning methods (e.g., Bipolar reference and ESR), the Laplacian
method held advantages on performance indicators on average
but without significance (Figures 5, 6). This may be because
of the limited number of subjects. Therefore, further study
using a large number of subjects is still necessary for the
next step. Second, in this study, we only used a DA to
measure the effect of different automated methods on SEEG-
based BCI without showing the anatomical information of
the used key decoding electrodes. Due to the wide coverage
in both cortical and subcortical levels for SEEG recordings,
the spatial analysis on different brain regions is also of great
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FIGURE 7 | Relationship between task relevance and significance level of spectral difference for all channels from a typical subject (Subject 5). Frequency bands in
delta, theta, alpha, beta, and high gamma band were analyzed, and five paired methods (Laplacian reference versus bipolar reference, ESR, CAR, GWR, and Raw,
respectively) were presented. Each red dot represented one channel from the subject, and black dots represented the selected channels used for decoding under
Laplacian reference (Performance index–decoding accuracy). In the subgraph, the x-axis represented the task relevance of channels, the y-axis represented the
significance level of spectral difference of channels, and the straight gray line was the first order linear fitting of task relevance and significance level of difference.
Three indices were presented (R-square, p-value of F-Test, and the number of subjects with significant linear relationship).

importance for BCI research, which will be conducted in
future work. Third, as the following study of our previous
work (Li et al., 2018), we conduct analysis among the same
different data cleaning methods and draw the conclusion within
these tested methods. Although we also notice that some
other data cleaning methods have been reported for SEEG
recordings (Arnulfo et al., 2015; Schaworonkow and Voytek,
2021), further comparison between the Laplacian with these
methods will be meaningful and thus worth of exploration in
the future.

CONCLUSION

This study mainly explored the influence on the decoding
performance of five automated data cleaning methods commonly
used in SEEG studies. Moreover, we further investigated why the
different methods may result in different decoding performances.
The result showed that Laplacian reference produced the
best enhancing effect on decoding performance, and such
phenomenon may be caused by the increased ability on the
task information retainment of low-frequency band activities

compared with other data cleaning methods. This study provided
practical guidance for the data cleaning method to be used for
further BCI applications based on SEEG signals.
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