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Neurologic deficits resulting from stroke remain largely intractable, which has prompted thou-
sands of studies aimed at developing methods for treating these neurologic sequelae. Endoge-
nous neurogenesis is also known to occur after brain damage, including that due to cerebral in-
farction. Focusing on this process may provide a solution for treating neurologic deficits caused 
by cerebral infarction. The phosphatidylinositol-3-kinase (PI3K) pathway is known to play im-
portant roles in cell survival, and many studies have focused on use of the PI3K pathway to treat 
brain injury after stroke. Furthermore, since the PI3K pathway may also play key roles in the 
physiology of neural stem cells (NSCs), eliciting the appropriate activation of the PI3K pathway 
in NSCs may help to improve the sequelae of cerebral infarction. This review describes the 
PI3K pathway, its roles in the brain and NSCs after cerebral infarction, and the therapeutic pos-
sibility of activating the pathway to improve neurologic deficits after cerebral infarction.
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The Role of the PI3K Pathway in the Regeneration  
of the Damaged Brain by Neural Stem Cells  
after Cerebral Infarction

INTRODUCTION

Stroke is one of the most common diseases and can induce several debilitating sequelae such 
as hemiplegia, aphasia, and dementia. The most important treatment for stroke thus far is 
thrombolysis, ideally within the so-called golden hour during which treatment is most likely 
to be effective, or at least within around 4.5 hours of symptom onset of a cerebral infarction.1 
However, not all patients with a cerebral infarction are candidates for thrombolysis. Due to 
the risk of hemorrhage, there are strict inclusion and exclusion criteria for thrombolytic 
therapy, and because of the nature of the disease and its treatment, many patients must un-
fortunately live with long-term neurologic deficits. Numerous clinical trials have tested di-
verse putative neuroprotective agents and stem cells as treatments for these deficits, but al-
most all of them have been found to be ineffective. Therefore, continued effort is necessary to 
develop new therapeutic strategies for treating cerebral infarctions.

Ways of reversing the sequelae of cerebral infarction have been investigated, and various 
molecular pathways have been found to play critical roles in the pathogenesis. Based on 
these findings, several methods for blocking the pathogenic mechanisms have been pro-
posed and developed. One pathogenic mechanism is the pathway involving phosphati-
dylinositide 3-kinase (PI3K), which has been investigated intensively.2-4 Since this pathway is 
important in cell survival and is significantly affected by ischemia, many attempts have been 
made to modulate it for the treatment of cerebral infarction and to prevent the programmed 
cell death caused by ischemic strokes.

Endogenous neural stem cells (NSCs) are well known to exist in the subventricular zone 
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of the ventricles and subgranular zone of the hippocampus.5,6 
They can proliferate under appropriate stress and then differ-
entiate into various neuronal cells. Several studies have found 
that mild-to-moderate ischemic strokes can induce endoge-
nous neurogenesis, and this neurogenesis may function to 
reduce the severity of neurologic sequelae.7-9 Therefore, 
methods for increasing endogenous neurogenesis have been 
sought in numerous studies. It has been established that the 
role of the PI3K pathway is crucial in the function of NSCs; 
therefore, if the PI3K pathway can be activated in NSCs after 
cerebral infarction, it could contribute to the recovery of sub-
sequent neurologic deficits.

This review describes the PI3K pathway itself, its roles in 
the brain and in the activity of NSCs after cerebral infarction, 
and the possibility of using methods for activating the PI3K 
pathway in NSCs for the treatment of cerebral infarction.

WHAT IS THE PI3K PATHWAY?

It is well known that the PI3Ks are involved in various cellular 
functions, such as cell proliferation, growth, differentiation, 

motility, survival, and intracellular trafficking. The PI3K path-
way is necessary for the survival of both neurons and NSCs.10,11 
PI3K is not a single enzyme, but rather a family of many dif-
ferent subtypes. The PI3K family is divided into three different 
classes (Class I, Class II, and Class III) based on the primary 
structure, regulation, and in vitro lipid substrate specificity.12 
Among these, the Class I PI3Ks are the best understood and 
can be divided into two groups: Class IA (p110α, p110β, and 
p110δ) and Class IB (p110γ).13 The PI3K pathway is known 
to interact with the insulin receptor substrate (IRS) and is 
closely linked with the tumor suppressor phosphatase and 
tensin homolog (PTEN), which inhibits PI3Ks. When the IRS 
is activated by insulin, it activates PI3Ks and then regulates 
glucose uptake through diverse phosphorylation events. In 
detail, activated PI3Ks phosphorylate the 3-position hydroxyl 
group of the inositol ring of phosphatidylinositol (Ptdlns) to 
produce phosphoinositide Ptdlns(3,4,5)P3 from Ptdlns(4,5)
P2.14,15 Ptdlns(3,4,5)P3 activates many different downstream 
effectors, the most well known of which is Akt (protein kinase 
B).16 Akt phosphorylated by PI3Ks (pAkt) affects many im-
portant downstream signals, including mouse double minute 

Fig. 1. Role of the phosphatidylinositol-3-kinase (PI3K) pathway in cells. Akt: protein kinase B, BAD: Bcl-2-associated death promoter, FOXO1: 
forkhead box protein O1, GSK3β: glycogen synthase kinase 3β, MDM2: mouse double minute 2 homolog, mTOR: mammalian target of rapamycin, 
NF-kB: nuclear factor kappa-light-chain enhancer of activated B cells, PKC: protein kinase C, Ptdlns: phosphatidylinositol, PTEN: phosphatase and 
tensin homolog, RAC1: Ras-related C3 botulinum toxin substrate 1, SGK: serine/threonine-protein kinase, S6K: ribosomal protein S6 kinase.
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2 homolog (MDM2), nuclear factor kappa–light-chain-en-
hancer of activated B cells (NF-kB), endothelial nitric oxide 
synthase (eNOS), mammalian target of rapamycin (mTOR), 
and S6 kinase, and inhibits Forkhead box O (FOXO)s, BAD, 
and glycogen synthase kinase (GSK)-3β.16,17 These effects 
contribute to growth, translation, and cell-cycle regulation, 
glucose metabolism, DNA repair, and inhibition of apoptosis 
(Fig. 1).16,17

Many chemicals affecting the PI3K pathway have been de-
veloped and investigated for the possibility of clinical applica-
tions. In particular, PI3K inhibitors are being investigated for 
the treatment of various cancers such as breast cancer and 
colorectal cancer,18 and PI3K activators including an IRS-1 
substrate and platelet-derived growth factor receptor 740Y-P 
(PDGFR740Y-P) have been produced and used to enhance 
neuronal cell survival and differentiation.19-21

ROLE OF THE PI3K PATHWAY IN THE 
BRAIN AFTER CEREBRAL INFARCTION

The protective role of the PI3K pathway in the brain after ce-
rebral infarction has been emphasized. It has been reported 
that ischemia and reperfusion both inhibit the PI3K pathway 
and induce apoptosis.2,3 On the other hand, activation of the 
PI3K pathway after ischemic injury has also been reported.4,22 
Considering our previous findings19 and those of other inves-
tigators,2-4,22 this discrepancy may be attributable to (among 
other possibilities) differences in evaluation time after isch-
emia or reperfusion injury, ischemic duration, or the use of 
different cell types such as neurons or astrocytes. The level of 
pAkt has been found to decrease in the hyperacute phase (less 
than 2 or 3 hours) after ischemic events, is slightly increased 
in the acute phase (from 2 or 3 hours to several hours), and 
then decreases 6–12 hours after an ischemic event.19,23 In 
summary, ischemia or reperfusion inhibits the PI3K pathway 
and then induces cell death after ischemic injury. Ischemia or 
reperfusion inhibits PI3K and then reduces the phosphoryla-
tion of Akt. Decreased pAkt cannot inhibit BAD, caspase-3, 
or GSK-3β, for example, and these changes are associated 
with cell death after ischemia (Fig. 2).

These findings have prompted many studies demonstrating 
that activation of the PI3K pathway can contribute to the pro-
tection of neurons and the brain from ischemic injury. For ex-
ample, vascular endothelial growth factor protects the brain 
after focal cerebral ischemia through activation of the PI3K 
pathway;24 the Ang1-Tie2-PI3K (angiopoietin-1-tunica inti-
ma endothelial kinase-2-PI3K) axis initiates survival re-
sponses in neural progenitor cells after oxygen and glucose 
deprivation;25 and humanin enhances the PI3K pathway and 
then contributes to protecting the brain against cerebral isch-

emia and reperfusion injury.26 Together these findings indi-
cate that appropriate activation of the PI3K pathway may be 
useful for promoting brain cell survival and thus reducing cell 
death after stroke.

ROLE OF THE PI3K PATHWAY IN NSCS

NSCs are very important in the regeneration of brain tissue 
that has been damaged by cerebral infarction. It has been es-
tablished that endogenous NSCs are located in the subven-
tricular zone of the lateral ventricles and the subgranular zone 
of the hippocampus, and that they contribute to neurogene-
sis.5,6 Endogenous NSCs can differentiate into neurons, astro-
cytes, and oligodendrocytes in the presence of exogenous 
stimuli from their environment.27 It has also been reported 
that the role of the PI3K pathway is very important for the ac-
tivity of NSCs. The PI3K/Akt pathway controls the prolifera-
tion, differentiation, and migration of endogenous NSCs.28 
For example, several kinds of neurotrophic factors such as 
brain-derived neurotrophic factor (BDNF),29 fibroblast growth 
factor (FGF),28 transforming growth factor β (TGF-β),30 in-
sulin-like growth factor-1 (IGF1),28 and C-X-C motif chemo-
kine 12; also known as stromal-cell-derived factor 1α (SDF-
1α) (CXCL12)31 activate the PI3K pathway, and activated 
PI3K/Akt affects mTORC1,32 Ras-related C3 botulinum tox-

Fig. 2. Alteration of the PI3K pathway after ischemia and reperfu-
sion. Cas-3: caspase-3, Cyto C: cytochrome C, JNK: c-Jun N-terminal 
kinases.
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in substrate 1 (Rac1),33 and Rho-kinase (ROCK)34 in NSCs.

In more detail, SDF-1α binds to C-X-C chemokine recep-
tor type 4 (CXCR4) and activates PI3K, which in turn increas-
es the phosphorylation of Akt-1.31 pAkt-1 induces the phos-
phorylation of the transcription factor FOXO3a,31 which 
contributes to the proliferation of NSCs.31 It has also been re-
ported that activation of the PI3K and extracellular-signal-reg-
ulated kinase (ERK) pathways markedly enhances the brain-
ischemia-induced proliferation of NSCs.35 A link between Akt 
and cAMP response-element-binding protein (CREB) also 
plays important roles in the proliferation of NSCs.28

The role of Akt in NSC differentiation remains a matter of 
controversy. Wang et al.36 and Zhang et al.37 reported that Akt 
mediates proneuronal basic-loop-helix transcription factor 
neurogenin 1 and another transcription factor, Brn-4, and 
that these factors regulate neuronal differentiation and neu-
rite outgrowth. However, Jin et al.38 and Chan et al.39 suggest-
ed that the PI3K pathway is not required for the differentia-

tion of NSCs. Therefore, further study is required to define 
the exact role of the PI3K pathway in the differentiation of 
NSCs.

Moreover, migration is one of the most important charac-
teristics of NSCs. Activation of the receptor tyrosine kinase 
ErbB4 leads to activation of PI3K, and in turn increases the 
migration of NSCs.40 Li et al.41 showed that up-regulation of 
CXCR4 activates the PI3K pathways and then enhances the 
migration of NSCs toward SDF-1α.

Based on all of the above findings, it can be concluded that 
the PI3K pathway plays important roles in the proliferation, 
differentiation, and migration of NSCs (Fig. 3). In addition, 
there is indirect evidence supporting the importance of the 
role of the PI3K pathway in NSC activity. Groszer et al.42 re-
ported that PTEN deletion directly induces activation of the 
PI3K pathway, thus increasing the proliferation of NSCs and 
decreasing their death in the subventricular zone. Thus, ulti-
mately, the PI3K pathway plays key roles in the proliferation, 

Fig. 3. Molecular events in the PI3K pathway. CXCR4: C-X-C chemokine receptor type 4, EGFR: epidermal growth factor receptor, ERK: extracellu-
lar-signal-regulated kinase, FGFR: fibroblast growth factor receptor, Fkhr: forkhead transcription factor Foxo1, IR: insulin receptor, NGFR: nerve 
growth factor receptor, PDGFR: platelet-derived growth factor receptor, VEGFR: vascular endothelial growth factor receptor, XIAP: X-linked inhibi-
tor of apoptosis protein.
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differentiation, migration, and survival of NSCs.

ROLE OF THE PI3K PATHWAY IN 
NSC ACTIVITY AFTER CEREBRAL 

INFARCTION

It is clear that ischemia induces neuronal cell death in the 
brain via diverse mechanisms.43-46 However, it is interesting to 
note that a small amount of ischemia, such as that resulting 
from a transient cerebral ischemic attack, is also capable of in-
ducing neurogenesis.47,48 Ischemia transiently increases BDNF 
and nerve growth factor (NGF) in the brain.49 Based on the 
findings that epidermal growth factor (EGF), FGF-2, and 
BDNF augment the proliferation of NSCs and their differen-
tiation to mature neurons in the brain,50-52 it was thought that 
ischemia could transiently increase the expression of neuro-
trophic factors in the brain and then induce neurogenesis via 
the activation of endogenous NSCs. This hypothesis was indi-
rectly supported by the finding that intraventricular injection 
of FGF-2 or EGF after brain ischemia increased the number 
of NSCs in the hippocampus.53,54 However, it has not yet been 
established how these factors enhance neurogenesis in brain 
tissue that has been damaged by ischemia.

As described in the sections above, those neurotrophic fac-
tors secreted in response to ischemia strongly stimulate recep-
tor tyrosine kinases and then activate PI3K/Akt. Activated 
Akt plays several crucial roles in the stimulation of adult neu-
rogenesis from NSCs. This is supported by the findings that 
PI3K inhibitors such as LY294002, wortmannin, and PD98059 
block DNA synthesis in NSCs and inhibit their prolifera-
tion.11,55

In addition, the migration of NSCs to the lesion after isch-
emia is important for the regeneration of the damaged brain 
tissue. The PI3K pathway plays a critical role during the pro-
cess of migration. PI3K/Akt activated by erythropoietin en-
hances the secretion of matrix metalloproteinase (MMP)-2 
and MMP-9, which are very important in the migration of 
NSCs.56 This was reconfirmed by the finding that MMP in-
hibitors significantly reduce the migration of neuroblasts in 
the brain damaged by transient focal cerebral ischemia.57

A small degree of ischemia, such as that resulting from a 
transient cerebral ischemia, may potentiate NSC proliferation, 
differentiation, and migration. However, severe ischemia in-
duces endogenous NSC damage, and a recent study showed 
that the clinical improvement after treatment with mesenchy-
mal stem cells (MSCs) was associated with the degree of in-
volvement of the subventricular zone of the lateral ventricle, 
which is well known to have a relatively high concentration of 
NSCs. This suggests that the treatment effect of MSCs is ac-
centuated due to a smaller contribution to the repair by dam-

aged endogenous NSCs.58 Given that prolonged and severe 
hypoxia inhibits the PI3K pathway, it is possible that large and 
severe infarcts inhibit the pathway in NSCs and then induce 
the NSC death.

PI3K PATHWAY ACTIVATION TO 
ENHANCE RECOVERY OR 

REGENERATION OF DAMAGED 
BRAIN TISSUE AFTER A CEREBRAL 

INFARCTION

The findings described so far suggest that the PI3K pathway 
plays several crucial roles in neurogenesis by activating the 
proliferation, migration, and differentiation of NSCs. Recent 
studies have shown that the PI3K pathway mediates neuro-
genesis of NSCs via various downstream activators.59-61 In de-
tail, PI3K activates mTORC2 in NSCs and then enhances their 
survival, proliferation, and neurogenesis.59 Inactivation of 
GSK-3 directly by PI3K induces mothers against decapenta-
plegic homolog 1 of Sma (SMAD-1) and then contributes to 
axonal regeneration after axotomy.60,61 In addition, several 
chemicals, drugs, and neurotrophic factors have been report-
ed to activate PI3K (Table 1).62-68

It is possible that appropriate activation of the PI3K path-
way and enhanced endogenous neurogenesis with these acti-
vators may help the regeneration of brain tissue damaged by 
an ischemic stroke and the recovery of neurobehavioral func-
tions impaired by cerebral infarction. There is a significant 
body of evidence indirectly supporting this hypothesis. For 
example, repetitive ischemic preconditioning inhibits brain 
damage after focal cerebral ischemia via activation of the PI3K 
pathway,69 heme oxygenase-1 (HO-1) protects hippocampal 

Table 1. Chemicals, neurotrophic factors, and other activators of the 
PI3K pathway

Activator of PI3K References
Insulin receptor substrate-1 (direct PI3K activator) 19

Coenzyme Q10 62

Propofol 67

Melatonin 63

Humanin 26

Endocannabinoid 64

Insulin-like growth factor-1 20

Vascular endothelial growth factor 24, 68

Brain-derived neurotrophic factor 29, 65

Epithelial growth factor 28, 66

Transforming growth factor β 30

Fibroblast growth factor 69

Postischemic intermittent hypoxia 70

PI3K: phosphatidylinositol-3-kinase.
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neurons from ischemic stroke via activation of the PI3K path-
way,70 and formononetin activates the PI3K pathway and pre-
vents ischemia or reperfusion injury of the brain.71

These findings suggest that direct activation of PI3K can 
contribute to protecting the brain after cerebral infarction and 
that NSCs play an important role in this protection, although 
there is no direct supporting evidence for this yet. From the 
therapeutic perspective, early activation of the PI3K pathway 
might be useful for protecting the brain in the hyperacute and 
acute stages of ischemic stroke, and its delayed activation 
would be helpful for restoring the ischemia-damaged brain in 
the subacute and early chronic stages. Further studies demon-
strating the relationship between direct activation of the PI3K 
pathway, the protection of the brain after cerebral infarction, 
and regeneration by NSCs are necessary to confirm these hy-
potheses.

CONCLUSIONS

The PI3K signaling pathway plays several crucial roles in the 
survival, proliferation, differentiation, and migration of NSCs. 
This pathway also contributes to the protecting the brain after 
cerebral infarction following stroke. Further investigation into 
methods for enhancing endogenous neurogenesis via activa-
tion of the PI3K pathway is warranted.
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