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ABSTRACT. Reliable methodology for predicting the age of mature dogs is currently unavailable.
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The ability to accurately predict the age of an adult dog would provide useful information for those involved in veterinary
medicine and animal science. For example, companion animal veterinarians take age into consideration when making diagnoses
and determining treatment plans. In animal shelters, most people hope to know the age of the animal before they adopt. However,
the age of a dog is not always self-evident in situations where breeding is uncontrolled. Several molecular biology-based age-
prediction methods have been reported in humans; these include quantitative analysis of T-cell receptor excision circles [4, 19, 21,
32], mitochondrial DNA fragment deletion [1, 2, 11, 15, 20], telomere DNA fragment shortening [24, 28] and age-related DNA
methylation levels at specific genomic loci [3, 18, 26, 29, 31]. Although radiography can be used to predict the age of young dogs
(less than 1 year old) by their skeletal development [14, 25], the age of adult dogs is usually predicted by subjective observations
of characteristics, such as overall appearance or tooth abrasion. Previously, we attempted molecular biology-based age-prediction
by measuring the level of blood signal joint T-cell receptor excision circles (sjTREC) in dogs [12]; sjTREC levels reflect the
number of T-cells freshly recruited from the thymus and thus potentially indicate age-related thymic atrophy. However, we found
no significant correlation between sjTREC levels and age, probably owing to the process of thymic involution that occurs at an
early stage of life in dogs. Although age-related telomere length shortening in normal mammary gland tissue has been reported
[30], age prediction from the measurement of telomere length has not been attempted in dogs.

DNA methylation is characterized by the addition of a methyl group to a cytosine nucleotide primarily at cytosine-phosphate-
guanine (CpQ) sites. Short DNA elements that have a much higher density of CpG sites, so-called CpG islands, are often located
near transcription start sites. Hypermethylation of these regions is usually associated with transcriptional silencing. With increasing
age, some gene-specific CpG dinucleotides can become hypermethylated or hypomethylated [10]. These age-related methylation
changes have been used as a biological marker for forensic age-prediction in humans and may have the potential to be used for
predicting age in dogs. Recently, several studies have tried to use methylation-predicted age in humans as an indicator of risk of
age-related diseases and mortality [9, 10]. In humans, several CpG sites have been identified as age-related markers [3, 7, 13], and
quantitative analysis of the methylation levels of multiple genomic regions simultaneously makes age-prediction practical with an
average accuracy of 4 to 10 years [3, 18, 26, 29, 31]. The aim of the present study was to identify age-related methylation sites in
dogs. We selected loci for testing based on the findings of human studies [5, 6].

In the first experiment, blood samples were obtained from 50 dogs; forty-five of these were client-owned, diseased dogs that
were brought to the Kagoshima University Veterinary Teaching Hospital for veterinary care, and five were healthy dogs owned
by faculty staff. Genomic DNA was extracted from 100 to 200 u/ of EDTA-K2-treated blood using a DNeasy Blood & Tissue Kit
(QIAGEN, Venlo, The Netherlands). The eluted DNA solution was concentrated using a DNA Clean & Concentrator-5 Kit (Zymo
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Table 1. Nucleotide sequences of PCR primers designed against bisulfite-treated dog genomic DNA

. Gene specific primer
Primer name

nucleotide sequence (5'-3")

Dog chromosome (Chr), NCBI Number of CpG
reference ID, Target region,

sites in the target

Adjacent gene
and remarks

Corresponding

age-related CpG site

PCR product size (bp)? region in human (ref.)
A-sense ttttgggagttttggtgagaa Chr 5, NC 006587.3, 15 GSE1 cg07082267 [6]
A-reverse ataaaaaaaaccccataaatct 67230026:67230305, 280
C-sense gtttttttatgaatgaatattga Chr 6, NC_006588.3, 17 VGF cg21186299 [6]
C-reverse aataaattaaactcaactaaatc 8701204-8701368,165
E-sense ggtaaggagaggaggtagttttagg  Chr 24, NC 006606.3, 31 SLCI2A5 cg07547549 [6]
E-reverse ccccacctttcaactaaaaatct 332936467373294073, 428
F-sense ggtgtttaaagtaaattagagagt Chr 35, NC_006617.3, 21 SCGN cg06493994 [5, 6]
F-reverse tccaaatcctttcaaaaaaacta 23602291-23602560, 270
H-sense gttaaattttgtttaatttgttgtg Chr 10, NC 006592.3, 13 KCNK12 ¢g27320127 [5]
H-reverse aaatcctttcccccaaaaaaacc 49672242@9672424, 183
I-sense ggtttttattattaaggatttttttt Chr 3, NC_006585.3, 13 OTUD7A cg01763090 [6]
I-reverse aaactacaaatttctttatttctcttatta  37548040-37548332, 293 (3'UTR)
J-sense ggagtttaataggggagagagattt Chr 5, NC_006587.3, 36 BCL6B cgl0137837 [6]
J-reverse taaaacccctccaaaatacctaac 32051030-3205 1450, 421
K-sense ttatatagtggggagaaaggtaagtt Chr 15, NC 006597.3, 32 POU4F2 cg05991454 [6]
K-reverse accctaaaactaaacactaaaatcc 45028967-45029372, 406

Adapter nucleotide sequence (5'-3") Remarks

Sense? acactctttccctacacgacgctcttcegatct-(Primer) Adapter for sense primer
Reverse gtgactggagttcagacgtgtgctettccgatet-(Primer) Adapter for reverse primer

a) PCR product size was predicted from the gene-specific DNA fragment (excluding adapter nucleotides). b) Adapter nucleotides were added to the 5
end of each gene-specific primer.

Research, Irvine, CA, U.S.A.) if necessary. Bisulfite treatment of DNA was performed using an EZ DNA Methylation-Gold Kit
(Zymo Research) according to the manufacturer’s instructions, and treated DNA was used as a template for PCR. The genomic
region of interest was selected to analyze the methylation levels of CpG regions that correlated to the regions showing age-related
methylation changes in humans [5, 6]. Briefly, approximately 1,000 bases flanking previously reported age-related methylation
sites were retrieved from the human genome assembly hg38 using the UCSC genome browser (https://genome.ucsc.edu/cgi-bin/
hgGateway). Homologous regions in the canine genome were identified using the Basic Local Alignment Search Tool (BLAST)
from the NCBI website (https://blast.ncbi.nlm.nih.gov/Blast.cgi). Homologous DNA regions in the canine genome were identified
for some, but not all, of the human age-related regions. In total, 11 genomic regions were identified for analysis in the canine
genome. Oligonucleotide PCR primers were designed for bisulfite-treated DNA (converted DNA) using the Methprimer web tool
(http://www.urogene.org/cgi-bin/methprimer/methprimer.cgi) and were synthesized commercially (FASMAC, Atsugi, Japan). The
nucleotide sequences of these primers, and their locations within the canine reference genome, are shown in Table 1. Adapter
nucleotides were added to the 5’ end of these PCR primers to provide primer binding sites for second-round PCR. First-round PCR
was performed using the Epitaq HS PCR Kit (Takara, Kusatsu, Japan) according to the manufacturer’s instructions. Second-round
PCR was performed using the GoTaq Hot Start Colorless Master Mix (Promega, Madison, WI, U.S.A.) to add a nucleotide adapter
for next-generation sequence analysis and nucleotide tags for individual discrimination from mixed samples. PCR products were
electrophoresed and extracted from agarose gels, and then purified using the High Pure PCR Product Purification Kit (Roche
Diagnostics, Mannheim, Germany).

We failed to amplify DNA fragments from four of the 11 regions. The PCR products from the seven successfully amplified
genomic regions were submitted either for 250- or 300-bp pair-end Miseq analysis (Illumina, San Diego, CA, U.S.A.) at FASMAC
Co., Ltd., depending on the length of the amplicon. Sequence data from Miseq analysis were processed and then aligned
using U-gene software (Unipro, Novosibirsk, Russia) to find specific, highly methylated CpG sites. The numbers of changed
(unmethylated) and unchanged (methylated) CpGs at each site were counted individually using a textedit word processor (Apple,
Cupertino, CA, U.S.A.). Only regions with more than 200 sequences per individual were included for further analysis. The
methylation rate was calculated as the number of unchanged CpGs divided by the sum of changed and unchanged CpGs for each
site. Pearson’s correlation coefficients were calculated to assess the correlation between each CpG site and the age of the dog. The
CpG site with the highest correlation coefficient was selected for each DNA region (Table 2). A scatter plot of the methylation rate
at each CpG site against age, with a straight-line approximation, is shown in Fig.1. There was a significant correlation between
methylation levels and age at four of the seven CpG sites (P<0.05, Pearson’s correlation coefficient). Neighboring CpG sites in the
same DNA region with the four sites showed 90% (37/41 sites) agreement in their slope direction with age as reported in human
cases [5].

We then examined the methylation levels at the four CpG sites with significant correlations between age and methylation in
clinically healthy dogs. Blood samples were obtained from 31 toy poodles at the Nishi Animal Hospital (Kagoshima, Japan) or at
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Table 2. Correlation between age and methylation level in CpG sites in 50 dogs

Region name  NCBI reference ID  CpG position in reference  Adjacent gene  Correlation coefficient (r)?  P-value

A NC_006587.3 67,230,027 GSE1 —0.367 0.009
C NC_006588.3 8,701,563 VGF —0.195 0.175
F NC_006617.3 23,602,365 SCGN 0.291 0.040
H NC_006592.3 49,672,518 KCNK12 0.150 0.297
I NC_006585.3 37,548,075 OTUD7A 0.194 0.196
] NC_006587.3 32,051,190 BCL6B —0.354 0.013
K NC_006597.3 45,029,058 POUA4F2 0.421 0.003

a) Pearson’s correlation coefficient.
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Fig. 1. Scatter plots of age (months) and methylation rates of CpG sites with the highest correlation coefficients in seven DNA regions (A, C, F,
H, I, J and K) in the canine genome. These seven regions were expected to show age-related methylation changes based on human studies [5, 6].
The name of the adjacent gene in the canine genome is given as the header label for each scatter plot. Straight-line approximations have been
applied to each scatter plot, and Pearson’s correlation coefficients are shown.

the Harada-gakuen Animal School (Kagoshima, Japan). Methylation levels were measured as described for the previous samples.
There were significant correlations between methylation level and age at two of the four CpG sites that were analyzed (Fig.2).
We then attempted age prediction using another 11 client-owned dogs brought to Kagoshima University for veterinary care. Age
was predicted by multiple regression analysis of the four CpG sites from the initial 50 client-owned dogs or the 2 CpG sites from
the 31 healthy toy poodles (Table 3). The mean absolute difference between actual and predicted age, calculated using multiple
regression of data from four CpG sites, was 34.3 months. In five of the 11 dogs, the difference between actual and predicted age
was less than 24 months. The mean absolute difference between actual and predicted age calculated using data from two CpG sites
was 23.1 months. The difference between actual and predicted age was less than 24 months in seven of the 11 dogs. The maximum
difference between actual and predicted age was observed in a 140 month-old dog whose predicted age based on methylation of
two CpG sites was 70.8 months. Marked diremption was observed in some dogs. Factors (e.g. nutritional state, breed and disease)
that influence methylation levels should be identified. Further exhaustive research, such as genome-wide methylation sequence
analysis or development of a cost effective methylation array assay, may identify other, more accurate, age-related changes in the
methylation of the canine genome. Consolidation of public databases of canine genome methylation may also help to identify other
age-related methylation changes, as has been shown in humans [8].

The biological relevance of some of the genes adjacent to the CpG sites that we studied has been reported, while the function of
others, such as Genetic suppressor element 1 (GSE1), is largely unknown. Secretagogin (SCGN) is a calcium binding protein. A
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Table 3. Age prediction by multiple regression analysis in 11 dogs

Case No. Actual age Predic?ed age from Difference Predic_ted age from Difference
(months) 4 CpG sites (months)® (months) 2 CpG sites (months)?  (months)

1 140 50.3 -89.7 70.8 —69.2

2 50 55.4 5.4 86.8 36.8

3 130 26.1 -103.9 118.8 -11.2

4 15 18.4 3.4 453 30.3

5 115 73.7 —41.3 129.7 14.7

6 124 106.4 -17.6 1214 -2.6

7 120 77.6 —42.4 96.0 -24.0

8 78 86.2 8.2 97.0 19.0

9 110 82.0 -28.0 90.3 -19.7

10 125 93.7 -31.3 106.2 -18.8

11 75 69.0 —6.0 82.3 7.3

Mean absolute Difference 343 23.1

Standard deviation (SD) 37.2 30.0

a) Age was predicted by multiple regression analysis using methylation data at 4 CpG sites from 50 dogs (mostly
diseased dogs). b) Age was predicted by multiple regression analysis using methylation data at 2 CpG sites from

31 clinically healthy toy.
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Fig. 2. Scatter plots of age (months) and methylation rates of CpG sites in four DNA regions (A, F, J and K) in blood samples
obtained from 31 clinically healthy toy poodles. The name of the adjacent gene in the canine genome is given as the header label.
Straight-line approximations were applied to each scatter plot, and Pearson’s correlation coefficients (r) and P values are shown.
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negative correlation between SCGN mRNA expression in peripheral blood mononuclear cells and age has been reported [27]; this
age-related decrease in mRNA expression is possibly regulated by epigenetic changes. B-cell CLL/lymphoma 6 member B protein
(BCL6B) is a transcription repressor and a potential tumor suppressor. Epigenetic silencing of BCL6B has been reported in human

hepatocellular carcinoma [16]. Although expression of BCL6B by CDS8 positive T cells has been reported [17], its association

with aging is unknown. Interestingly, the correlation between age and methylation observed in dogs at the BCL6B CpG site was
the inverse of that found in humans [6]. The reason for this is unclear, and age-related BCL6B expression in dogs needs a further
study. POU domain, class 4, transcription factor 2 (POU4F2) is a transcription factor, and hypermethylation of POU4F2 CpG sites
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has been reported in some tumors [22, 23], but its biological relevance in aging has not been reported.

Age-prediction by DNA methylation levels has been reported in humans using various tissue samples, including saliva, teeth
and brain [2, 5, 10, 26]. However, blood sample are used in most studies, because they are easily obtained. The leukocyte subtype
composition of the blood sample does not seem to affect the accuracy of the age prediction [10]. Thus, in this study, we examined
methylation levels in dogs using peripheral blood samples. A major limitation of this study is the potential bias in the samples
used in the first experiment, which were obtained mostly from sick dogs. Poor health status, especially in the case of age-related
diseases, may cause methylation patterns that mimic age-related changes in methylation. A recent study in humans found that
some age-related methylation changes become insignificant after restricting the study sample to those without history of major
age-related diseases, such as diabetes mellitus, cardiovascular disease, stroke and cancer [6]. Our first experiment included dogs
with age-related diseases, such as diabetes mellitus (n=4), cardiovascular disease (n=5) and tumors (n=12). Although the four
age-related CpG sites identified in the first analysis were homologous to regions showing age-related changes in humans without
age-related diseases [6], the correlations between methylation and age in two of the four sites were not significant in our second
experiment using only healthy toy poodles. Ideal age markers should be minimally affected by environmental or genetic factors.

In conclusion, we measured the methylation levels at selected CpG sites in dogs using next-generation amplicon sequencing and
identified some age-related changes in methylation. Although age predictions made using the methylation levels at these CpG sites
are not yet sufficiently accurate for practical use, further research to identify other age-related methylation sites may make accurate
age prediction possible.
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