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A B S T R A C T

Antivirals already on the market and expertise gained from the SARS and MERS outbreaks are gaining momentum
as the most effective way to combat the coronavirus outbreak. SARS-CoV-2 has caused considerable mortality due
to respiratory failure, highlighting the immediate need for successful therapies as well as the long-term need for
antivirals to combat potential emergent mutants of coronaviruses. There are constant viral mutations are being
observed due to which world is experiencing different waves of SARS-CoV-2. If our understanding of the virology
and clinical presentation of COVID-19 grows, so does the pool of possible pharmacological targets. In COVID-19,
the difficulties of proper analysis of current pre-clinical/clinical data as well as the creation of new evidence
concerning drug repurposing will be crucial. The current manuscript aims to evaluate the repurposing of an anti-
HIV drug Darunavir Ethanolate in COVID-19 treatment with in silico study and we discuss the therapeutic progress
of Darunavir Etanolate, to prevent SARS-CoV-2 replication, which supports its clinical assessment for COVID-19
therapy.
1. Introduction

COVID-19 is a disease that is caused by the novel coronavirus known
as severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). As of
now, many newer strains of the virus have been found in some countries
and vaccines are ineffective on newer strains and any specific drug
molecule is also not available for such new strain of virus hence, the
necessity of drug repurposing and treatment identification is emerging
demand of the current situation [1]. Unmet needs for modern antivirals
include increased effectiveness, oral bioavailability, usefulness for pro-
phylaxis as well as treatment, and understanding that combined therapy
can improve efficacy and avoid drug resistance [2,3]. Clinical trials and
high throughput screens of repurposed drugs can show a safe and suc-
cessful medication that also happens to treat COVID-19; however, drugs
found using this strategy would almost certainly need more structural
optimization to improve antiviral effectiveness against coronaviruses or
reduce side effects [4]. The clinical evidence as a part of clinical trials
with Remdesvir and favipiravir suggests that there is a need to find the
alternate repurpose drug for COVID-19 management until a new thera-
peutic agent is approved.
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2. SARS-CoV-2 viral lifecycle

SARS-CoV-2, like most other coronaviruses, does indeed have a
positive-sense single-stranded genomic RNA that is approximately 30 kb
in length, making it one of the biggest known RNA genomes [5]. The
coronavirus genome is organised as follows: 50-leader-UTR-replicase-S
(Spike)-E (Envelope)-M (Membrane)-N (Nucleocapsid)-30 UTR-poly (A)
tail, with accessory genes intermingled within coding sequences at the 30

end of the genome [6]. The S protein (150 kDa), which is used to obtain
ER entry by an N-terminal signal chain, is heavily glycosylated by
N-linked glycosylation. The homotrimer of the S-encoded virus is the
virus's characteristic spike shape [7,8].

Trimeric S glycoprotein is a fusion protein of class I and encourages its
adherence to the host receptor [9,10]. These proteins' operation aids in
the transport of the viral genome to the replica-transcriptase (RTC)
complex, which then inserts the encapsidated genome into viral particles.
A fifth structural protein, hemagglutinin-esterase (HE), is present in a
subset of beta coronaviruses and aids S-protein-mediated cell entry and
viral propagation via the mucosa [11].

As a receptor alphacoronaviruses use APN [12], Angiostensin
logy, L.M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India.
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Fig. 1. Lifecycle of the SARS-CoV-2 in the host cell.
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converter (ACE2) enzymes are used as receptors by SARS-CoV, SAR-
S-CoV-2, and HCoV-NL63 [13–16]. S1 and S2 are the S protein's two
regions. The interaction between S1 and its cognate receptor causes the S
protein to change/modify [17]. The virus must gain access to the host cell
cytosol following receptor binding by endosomal cysteine protease
cathespins [18,19], TMPRRS2 (transmembrane protease serine 2) or
TMPRSS11D implements S1/S2 cleavage to invoke the S-protein and the
viral and cellular membrane fusion. S protein cleavage operates at two
locations inside the S2 protein element with the first effective cleavage to
distinguish the RBD(receptor binding domain) [20] and fusion domain
[20] of the S protein [21].

S2 cleavage exposes a membrane-embedded fusion peptide, which
then attaches two heptad repeats to S2 to form an antiparallel six-helix
collection, and this package formation allows the viral and cellular
membranes to merge, allowing fusion and subsequent release of the viral
genome into the cytoplasm. Since the endosome is the primary site for
the activation of the toll receptor, which triggers an innate immune
response, the endosome is ultimately bypassed by accessing the cell
through TMPRSS2 and evading the innate host immune systems [22].

The coronavirus lifecycle continues to translate the replicase gene
from the virion genomic RNA after the viral nucleocapsid escapes and
becomes uncoated (Fig. 1) [6,23,24]. CoV amplification begins with the
translation of the virus genome's 50 proximal ORFs (ORF1a and ORF1b),
which results in the synthesis of two significant pp1a (4382 amino acid)
and pp1ab (7073 amino acid) replicase polyproteins. In certain instances,
the ribosome eliminates/removes/unwind the pseudoknot form and
continues translation before rep1a stop codon is encountered.

Following that, multiple nsps are placed in the RTC (replicase tran-
scriptase complex) to initiate the RNA synthesis process and are then in
charge of replicating and transcribing the RNA [25]. The
replica-polymerase transcribes the entire positive range of genomic RNA
as a total negative range template to direct the formation of new genome
RNAs and overlap subgenomic negative range templates. Subgenomic
RNAs act as messenger RNAs for the structural and accessory genes found
downstream of the polyprotein replicase.

Appropriate fold and maturation of viral transmembrane protein
2

(especially S) also depend heavily on ER protein chaperons such as cal-
nexin [26]. Upon translation alteration particulate matter is installed/-
placed in the intermediate compartment of ER-Golgi (ERGIC) and
arranged with the M protein [27,28]. Homotypic M protein interaction
provides a scaffold for morphogenesis, whereas M � N and M � S in-
teractions promote the deployment of structural elements on the location
[29]. E protein leads also to the assembly of particles by communicating
with M and causing membrane curvature [30]. Next, coronavirus parti-
cles budded into the ERGIC are eventually transferred in smooth vesicles
and exchanged via the secretory path to exocytosis.

3. Immunopathogenesis of SARS-CoV-2

During the entry of replicated viral particles into the cell, its antigen is
accessed by the antigen-presenting cells (APC) which is a dominant part
of the host's antiviral immunity. In this response, viral peptides are
accessed by major histocompatibility complex (MHC) or human leuko-
cyte antigen (HLA) and then further recognized by virus-specific cyto-
toxic T lymphocytes (CTLs) [31]. Specifically, in the case of SARS-CoV-2,
the antigen presentation is mainly obtained by the MHC I molecules [32].
However, MHC II molecules also take part in its presentation [31].

After the viral presentation by APC, the innate immune system of the
host instantly gets activated to eliminate the viral particles from the body
without injuring the host cells. The innate immune system is responsible
for protecting the host cells until the acquired immunity gets developed
maybe within 7 or more days after the infection [33]. APC system will
further activate the B cells and cytotoxic T cells.

As a part of the humoral response, B cells will develop virus-specific
antibodies such as IgM and IgG. The SARS-specific IgM antibodies are
almost disappeared after 12 weeks, whereas the IgG antibody can last for
a longer period, specifying that the IgG antibody may chiefly play a
protective role against SARS-CoV-2 [34]. Due to this mechanism, the
reduced level of B cells and increased level of antibodies (IgM and IgG)
are found in the infected patients. Hence, the measurement of both an-
tibodies can provide a higher understanding of the diagnosis of acute
infection [35]. These antibodies can prevent the re-infection in the same



Fig. 2. Transmission and life-cycle of SARS-CoV-2 causing COVID-19 (Adapted from Ref. [48] under CC BY).
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patient but the World Health Organization (WHO) specified that
currently there is no proof presenting that recovered patients are
completely sheltered from re-infection [36]. Though, SARS-CoV-2
infected rhesus macaques verified that primary infection will produce
successful protection from re-infection [37].

CD4þ and CD8þ T cells also play a key role in the pathogenesis of the
disease [38]. These cells further produce other cells like dendritic cells,
macrophages, neutrophils, and natural killer (NK) cells that are also
found to be involved in providing innate immunity. Type I interferons
(IFN) which are generally produced by virally infected cells are similarly
supposed to be involved in COVID-19 infection [39]. Furthermore, S
protein-specific CD4þ T cells were also noticed in infected patients [40].
Some studies have shown that the CD4þ and CD8þ T cell populations are
decreased in response to indicating that overall T cell response becomes
impaired during the progression of the disease especially in severe cases
[35,41,42]. Virus-specific memory CD8þ T cells were revealed to protect
infected persons from mortality [41]. However, the role of CD4þ T cells
in the control of disease infection is still unclear [35].

Such innate immune response along with the successively developed
acquired immune response is sufficient to get rid of the infection in about
80% of patients who can recover mostly without any antiviral treatments;
conversely these responses may not be strong enough to destroy the virus
in the leftover infected patients. In such patients, initiation of consequent
inflammatory response and recruitment of excess numbers of dendritic
cells, T cells, B cells, NK cells, neutrophils, and monocytes/macrophages
take place due to continuous viral replication [43]. Such responses can
lead to moderate to severe lung damage. The extra cells are assumed to be
recruited by several cytokines [tumor necrosis factor (TNF)-α, interleukin
(IL)-6] and chemokines [CCL2/MCP-1, CCL3/MIP-1α, and
CXCL10/IP-10] produced by infected airway epithelial cells and alveolar
macrophages [44]. A fatal and uncontrolled anti-inflammatory response
can take place due to the release of a large number of pro-inflammatory
cytokines (IFN-α, IFN-γ, IL-1β, IL-6, IL-12, IL-18, IL-33, TNF-α, TGFβ, etc.)
and chemokines (CCL2, CCL3, CCL5, CXCL8, CXCL9, CXCL10, etc.) [45,
46]. This event is known as a “cytokine storm” which can induce an
intense attack by the immune system to the body which further leads to
the ARDS (acute respiratory distress syndrome) followed by multiple
organ failure and finally to the death in severe patients. ARDS is found as
one of the major responsible reasons for the death in COVID-19 patients
[47]. Fig. 2 is labelled for a better understanding of the immunopatho-
genesis of SARS-CoV-2.
3

4. Drug repurposing and its approaches for SARS-CoV-2
treatment

Drug repurposing is also known as drug reprofiling, repositioning, or
re-tasking. It is the approach to identify the newer uses of previously
approved or investigational drugs other than the original indication of
that drug. This approach offers several rewards and benefits over
developing an exclusively new drug molecule for any disease [49]. It
reduces the cost and time of drug development. Additionally, phase I
clinical trials can be avoided as human safety data has been already
established [50]. Several drug candidates (Table 1) and biologics
(Table 2) have been tested for repurposing to treat COVID-19.

As of now, remdesivir and favipiravir are used to manage the disease
condition but they have several limitations. Remdesivir is found to pro-
duce crucial adverse events when it combined with corticosteroids [95].
Also, it cannot provide statistically significant clinical benefits in the RCT
(Randomized controlled trial) performed and also 66% of the patients got
serious adverse events from the drug [72]. Similarly, several adverse
events such as hepatic enzymes elevation, nausea and vomiting and
tachycardia have been observed from the use of favipiravir. Severe and
lethal events happened more commonly in men and patients above the
age of 64 years. Blood and lymphatic disorders, cardiac disorders, hep-
atobiliary disorders, injury poisoning, and procedural complications
were found as a more common ADEs (Adverse drug events) [96]. Hence,
repurposing of other drugs is highly desired and patient safety is also the
concern. As per the clinical data obtained, the above two antiviral agents
are not much effective in managing COVID-19.

5. Darunavir acting through polypeptide packing

Before the formation of virions in case of SARS-CoV-2, the functional
proteins are cleaved from the polypeptide chains which have been
translated from the viral RNAs. This cleavage is mediated by the viral
main proteases enzyme. It is interesting to note here that SARS-CoV-2
protease has 96% similarity with the proteases of SARS-CoV. Several
protease inhibitors which are used in the treatment of HIV-1 virus
infection are found to be effective against SARS-CoV-2. The inhibition of
SARS-CoV-2 protease using HIV-1 protease inhibitors have been vali-
dated through some in-silico and in-vitro approaches [97]. Darunavir
(originally approved by the FDA in 2006) is a protease inhibitor drug
used along with the other HIV protease inhibitors as well as ritonavir to



Table 1
Drug Candidates (small molecules) evaluated for the COVID-19 as a part of Drug Repurposing.

Class of the Drug Drug Function Clinical Outcome Reference

Antiviral (RNA
viruses)

Favipiravir An antiviral medication was utilized for the treatment of flu
and it was additionally endorsed for use in clinical
preliminaries as a treatment for nCoV-2019 pneumonia.

It can produce a better therapeutic response in the
prevention of disease progression and enhancement of
viral clearance along with radiological improvements.

[51,52]

Antimalarial,
amebicides

Chloroquine phosphate It is a seasoned enemy of jungle fever/anti-malaria
medicate which has indicated a wide scope of antiviral
impacts, which incorporates anti-coronavirus

It can efficaciously treat pneumonia in COVID-19 but
still, there are several disadvantages so, more RCTs
(Randomized controlled trials) are required.

[53,54]

Antimalarial Hydroxy chloroquine
sulfate

Hydroxychloroquine is a jungle fever/malarial drug which
has indicated viability against coronavirus in lab condition,
it was first endorsed in 1995 by FDA under the name of
Plaquenil. It has additionally been utilized to treat lupus
and joint pain/arthritis.

The drug can significantly improve pneumonia in
patients with body temperature normalization and
shortening of cough remission time. However, the RCT
done by Self et al. doesn't support the use of this drug in
COVID-19.

[55,56]

Anthelmintics Ivermectin An opponent of parasite drugs (anti-parasite) which have
proved effective in in-vitro/cell infection against SARS-
CoV-2.

Early intervention of the drug can produce faster viral
clearance and prevent significant immune involvement.
But some RCTs suggest the inefficacy of the drug.

[57–60]

Analgesic Colchicine It is a more established anti-inflammatory drug and is being
concentrated to forestall the complexity of COVID-19 in
high hazard patients.

It has been found to reduce the need for oxygen therapy
and hospitalization along with clinical improvisation
with a reduction in CRP (C- reactive protein) level. It
also reduces the hospitalization events and death rate
in non-hospitalized patients.

[61,62]

HIV protease
inhibitor

Darunavir It is the drug approved for the treatment of HIV and used in
the combination with cobicistat to inhibit the viral main
protease. It has been assumed that it can also inhibit the
protease of the SARS-CoV-2.

In one of the RCT it was found that the drug was well
tolerated without any major side effects. Though, it is
found effective in in silico studies, it was not found
effective in in vitro study. More trials shoul be
conducted for the final conclusion about the efficacy.

[63,64]

Antiviral EIDD-2801
(Molnupiravir)

It is an extensive range of oral antiviral that could be
utilized as a potential prophylactic or treatment for COVID-
19 and different coronaviruses.

Wahl et al. have claimed by their in vivo study that the
drug can inhibit viral replication and can be used to
prevent or treat the infection.

[65]

Antimalarial,
antibacterial

Hydroxy chloroquine
and azithromycin

COVID-19 patients are treated with a mix of the anti-
malaria medication (hydroxychloroquine) and the
macrolide antibacterial medication azithromycin, and the
patients taking the mix were virologically relieved within
six days of treatment.

No stronger evidence of antiviral activity and viral
clearance was observed by this drug combination.

[66,67]

Protease
inhibitor

Camostat mesylate It is a Protease inhibitor to treat incessant pancreatitis. In
vitro analyzes discovered it hinders a mechanism in SARS-
CoV-2, which the virus uses to enter human cells. It is
assessed that 180 COVID-19 patients aged between 18 and
110 were being enlisted for second phase preliminary
studies that will inspect 30 days changes in infection
diversity and mortality.

It can decrease the severity of the disease and prevent
the viral spread in the lungs by inhibiting the TMPRSS2
and related proteases.

[68,69]

Viral fusion
inhibitor

Umifenovir It is an antiviral medication promoted under the name of
Arbidol and utilized against flu and as of now being
examined for the treatment of COVID-19.

It can potentially improve the clinical and lab status,
including oxygen concentration, ICU requirements,
hospitalization time, chest CT value, WBC, and ESR. It
was found efficacious with supportive therapy in mild
to moderate COVID-19 symptomatic patients without
any side effects.

[70,71]

Antiviral Remdesivir Antiviral medication and is under examination in clinical
trials in China, the UK, and US. It has exhibited in vitro and
in vivo in animal models against the viral pathogens that
cause MERS and SARS, which are coronaviruses basically
(structurally) like SARS-CoV-2.

It reduces the infection and provides faster recovery to
adult patients. However, it does not effective in RCT
done by Wang et al. and Spinner et al. Wang et al. have
also reported adverse events in 66% of the patients.

[72,73,
74]

Corticosteroids Methylprednisolone It is a glucocorticoid and at present, it is being examined for
its wellbeing/safety and adequacy in the treatment of novel
coronavirus pneumonia.

It reduces the hospital stay, need for ventilation and
improves the clinical status. It also lowers the hyper
inflammation status.

[75,76]

Antiviral (HIV) Lopinavir and ritonavir A mixture of medication to treat HIV and this medication
has been examined in blend with influenza medication
Also, it has been seen that patient had caused the total to
recoup after suffering from acute COVID-19 related
pneumonia

These drugs are found to have good pharmacokinetic
properties without any adverse events and potential in
vivo profile but RCTs did by Horby et al. and Cao et al.
do not support the use of these drugs for COVID-19.

[77–80]

V.P. Chavda et al. European Journal of Medicinal Chemistry Reports 3 (2021) 100013
manage the infection of HIV-1 efficaciously. Darunavir is considered for
combating the resistance to standard HIV therapy as a second generation
protease inhibitor and it is generally used in combination with cobicistat
to produce more therapeutic effectiveness.

Darunavir is being studied as a probable treatment for SARS-CoV-2,
because of its in vitro results supporting its potency to eradicate this
infection. Some clinical trials are on-going and are predicted to conclude
soon.

Various protease inhibitors such as saquinavir, amprenavir, indinavir,
nelfinavir, ritonavir, and lopinavir are accepted by FDA to utilize in HIV
therapy. Some of them are being also considered against the SARS-CoV-2
infection as a part of drug repurposing. As discussed earlier, darunavir is
a second-generation non-peptide protease inhibitor having enhanced
4

binding affinity, reduced dissociation rate and more potency than the
other protease inhibitors due to its diverse chemical structure. Darunavir
was acknowledged as one of the promising hits for inhibition of
chymotrypsin-like protease or main protease of SARS-CoV-2 through
computational drug design methods (Fig. 3).

Recently in Shanghai, 30 potential agents against COVID-19
including darunavir with potential antiviral activity against SARS-CoV2
have been revealed using in-silico and an enzyme activity based
screening [98]. Excitingly, darunavir has found with the wide safety
margin along with the very low therapeutic doses to cause cytotoxic ef-
fects. In an in-vitro study, darunavir at 300 μMconcentration was found to
inhibit replication of SARS-CoV-2 virus by 280 times more than the un-
treated group [99]. Further, in Italy, darunavir tablet with the dose of



Table 2
Biologics evaluated for the COVID-19 as a part of Drug Repurposing.

Class of the Drug Drug Function Clinical Outcome Reference

IL-6 inhibitor Sarilumab An interleukin-6 (IL-6) receptor opponent/antagonist
utilized against rheumatoid joint pain and is being studied
as a potential treatment against intense respiratory misery
disorder (ARDS: acute respiratory distress syndrome) in
acutely sick patients with COVID-19.

It was found ineffective in phase III RCT and open-label
cohort study however, faster recovery was associated with
the drug in patients having minor lung consolidation at
baseline.

[81,82]

Immunosuppressant Baricitinib It is a Janus kinase inhibitor showcased under the brand
name Oluminat and used to treat rheumatoid joint
inflammation and now it is being utilized in the treatment
of COVID-19 patients.

It is a safe and promising drug for moderate COVID-19
pneumonia observed in the retrospective multicenter study
and it also blocks the viral penetration into the cell but it
should be used with cautions.

[83,84]

Kinase inhibitor Ruxolitinib It is created to treat inflammatory and autoimmune
ailments and advertised under the name Jakavi and it is
being examined for COVID-19 patients with serious
respiratory side effects related to the cytokines storm
immune response.

It is found to inhibit the cytokine storm one of the lethal
events of the disease and also prevents multiorgan failure
and hyperinflammation. Faster improvement in symptoms
and CT scan, recovery from lymphopenia without side
effects are observed in RCT.

[85,86]

IL-6 inhibitor Tocilizumab
(Altizumab)

It is mainly an immunosuppressant drug used to treat
rheumatoid arthritis. As it inhibits the interleukins
production it is being examined for COVID-19.

It can lower the mortality rate by preventing and decreasing
the inflammatory response It was also found to reduce the
requirement of mechanical ventilation. However, it was not
found to prevent intubation and death in moderately ill
patients reported by Stone et al.

[87–89]

Antiangiogenic Bevacizumab It is a VEGF inhibitor delivers as a treatment for intense
respiratory distress condition (ARDS: acute respiratory
distress syndrome) in acutely sick patients with COVID-19
pneumonia.

It shows potential clinical efficacy by shortening the
oxygen-support duration and improving oxygenation when
combined with standard care in severe COVID-19 patients.
A drastic survival benefit was also observed in critical
patients by this drug.

[90,91]

Chemokine receptor
blocker

Leronlimab A CCR5 opponent/antagonist has demonstrated promise
against the cytokine storm in acute sick COVID-19 patients.

A high recovery rate along with reduced inflammatory
markers and CRP was observed by Yang et al.

[92]

Interferons IFN β-1a/b Interferons (IFNs) are a family of cytokines that play a vital
role to protect against viral infections as a part of the human
innate immune system They can be a potential treatment for
COVID-19 as per their in vitro and in vivo antiviral properties

Monfared et al. have reported that early administration of
the IFN β-1a was found to reduce mortality significantly and
increase discharge rate in severe patients but it was not
found to change response time in RCT. IFN β-1b was found
to reduce the mortality rate and it also shortened the time of
recovery along with increased discharge rate

[93,94]

Fig. 3. Mechanism of action of Darunavir Ethanolate in eradicating SARS-CoV-2 from the host.
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600 mg at every 12 h has been utilized with other anti-viral agents and
supportive therapy to clinically manage the patients having COVID-19
5

with a range of MEWS [100]. It has very quick oral absorption and ter-
minal elimination half-life of 15 h. Approx. 95% of the drug remains



Fig. 4. Interaction of Darunavir Ethanolate with main protease (6LU7).
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plasma protein bound and gets totally metabolized by CYP3A4. Hence,
co-administration of small doses of ritonavir (CYP3A4 inhibitor) can
further enhance the bioavailability of the darunavir however; combina-
tion therapy with other CYP3A4 inhibitors (e.g. statins) with dar-
unavir/ritonavir necessitates the cautions or is even contraindicated
sometimes.

We have also performed the molecular docking of the darunavir
ethanolate on the SARS-CoV-2 main protease (PDB ID: 6LU7) using
Autodock Vina to ensure the binding affinity of the drug (Fig. 4) [101].
We observed the binding affinity �7.8 kcal/mol which is superior to the
co-crystallised ligand (�7 kcal/mol). This result provides one more evi-
dence that darunavir ethanolate can be the potential inhibitor of the
SARS-CoV-2 protease.

6. Preclinical and clinical studies

There is a very less amount of evidence of preclinical and clinical
trials of the use of darunavir in COVID-19 hence, more studies should be
conducted to evaluate the potential of the drug. Chen et al. have evalu-
ated the darunavir/cobicistat for safety and efficacy in COVID-19 pa-
tients with their single-center, randomized, and open-label trial
(NCT04252274), and they found that the drugs are well tolerated but
they have not observed any significant benefit in clinical improvisation
and viral clearance [63]. At the same time, darunavir was not found
equally effective during in vitro study when compared with remdesivir as
a positive control [64]. An observational, retrospective trial is ongoing on
200 patients in Qatar (NCT04425382) to evaluate the safety and efficacy
of Darunavir/Cobicistat vs. Lopinavir/Ritonavir [102]. Mostly the anti-
viral drugs works well in the combination therapy hence it is essential to
evaluate the potential of darunavir ethanolate with different clinical set
up and studies which will provide a better holistic picture. The drug is
used as boosting agent in the HIV Therapy hence more number of trials
shall be designed using different combination of the drug to get the more
fruitful results. It is well evident from the current efforts to test the
molecule against SARS-CoV-2 that alone it will not be much effective.
Johnson & Johnson is testing its antiviral medicines, notably darunavir,
in vitro for possible SARS-CoV-2 resistance. As per the Janssen, they have
supported three numbers of open labelled randomized clinical trials in
china but the data is still not available and published [103]. There was no
advantage to darunavir therapy beyond conventional care in hospitalized
adult patients (Very limited number) with severe Covid-19. Future trials
in severely ill individuals may assist to confirm or rule out the probability
of a therapy benefit. There is another trial is going on in chine
(ChiCTR2000029541; ICTPR) using a combination of arunavir/cobicistat
and thymosin with enrolment of 100 patients and results are awaited. On
6

the other hand, a different trail is established with combination of dar-
unavir/ritonavir and atomised interferon (NCT04291729; ClinicalT
rials.gov) with enrolment of 50 patients and results are not public yet.
There is a large randomized blinded trial is planned in the spain
(NCT04304053; ClinicalTrials.gov) which is ongoing with 3040 patients
enrolled and still recruiting to evaluate the darunavir/cobicistat safety
and efficacy. This all studies under development suggest that molecule
has potential but waiting for the fruitful outcome to be declared in the
clinical setup.

7. Adverse events

There are no major adverse event observed to date for the Darunavir
Ethanolate but as we have very little amount of data for the safety trials,
further clinical trials should be performed to have the actual safety
profile of the drug. Mild diarrhea and renal dysfunction were observed in
patients who received darunavir/cobicistat in comparison with standard
care [63]. The drug should be used cautiously in patients having cardiac
comorbidities as increased risk of myocardial infarction in HIV patients
who were on the treatment of darunavir. A detail pharmacological profile
should further be investigated before regular use of this drug in
COVID-19 patients. A recent research linked darunavir usage to an
elevated risk of myocardial infarction in HIV patients, concluding that
darunavir raises the risk of cardiovascular disease (CVD). As a result, it
should be administered with caution in individuals with underlying heart
problems [104]. Prior to regular usage of this medicine, further phar-
macological characteristics may be examined during COVID usage in a
total of 19 patients.

8. Conclusion and future remarks

The enormity of the morbidity and mortality imposed on the global
population in less than a year has forced the unavoidable decision that
finding and developing successful COVID-19 antiviral drugs is imperative
and should be prioritized. There are few vaccines approved but the viral
mutations render them ineffective for providing complete protection
against SARS-CoV-2. Many medications are presently being repurposed
utilising fundamental understanding of viral aetiology and pharmaco-
dynamics, as well as computational methods. In the current context, drug
repositioning might be viewed as a potential therapy option for COVID-
19. Darunavir is identified as a potential drug to inhibit the SARS-CoV-2
viral protein synthesis by inhibiting one of the vital main proteases
enzyme through in silico studies. However, there is too little amount of
evidence from preclinical and clinical trials available to ensure its safety
and efficacy. It has been also found well tolerated in clinical trials. Hence,

http://ClinicalTrials.gov
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more studies should be carried out to evaluate the results obtained from
in silico studies. There are ample scope to further evaluate the potential of
this candidate under clinical setup globally as the recent clinical evi-
dences reveals many complications with Remdesvir and Favipiravir
which are currently prescribed by the medicinal practitioners for COVID-
19 management of moderate to severe cases.
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