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Abstract: In this paper, we propose a logic-in-memory (LIM) inverter comprising a silicon nanowire
(SiNW) n-channel feedback field-effect transistor (n-FBFET) and a SiNW p-channel metal oxide
semiconductor field-effect transistor (p-MOSFET). The hybrid logic and memory operations of the
LIM inverter were investigated by mixed-mode technology computer-aided design simulations. Our
LIM inverter exhibited a high voltage gain of 296.8 (V/V) when transitioning from logic ‘1’ to ‘0’ and
7.9 (V/V) when transitioning from logic ‘0’ to ‘1’, while holding calculated logic at zero input voltage.
The energy band diagrams of the n-FBFET structure demonstrated that the holding operation of the
inverter was implemented by controlling the positive feedback loop. Moreover, the output logic can
remain constant without any supply voltage, resulting in zero static power consumption.

Keywords: feedback field-effect transistor; logic-in-memory; mixed-mode simulation; positive
feedback loop; silicon nanowire

1. Introduction

Although the von Neumann architecture, a revolutionary development in the semicon-
ductor industry, has improved integration density and performance in modern computers,
physical separation between the processor and memory hierarchy causes energy-hungry
data transfer and long latencies [1–3]. Considering the rise of data-intensive applications,
such as artificial intelligence, the 5G communication standard, and Internet of Things since
the fourth industrial revolution, a novel computing paradigm is essential for the massive
data processing requirements.

The logic-in-memory (LIM) architecture is gaining attention owing to its space-saving
structure and increased energy efficiency on integrating logic processes and data storage [4].
Most studies on LIM utilize emerging memories, such as resistive random-access memory
(ReRAM) [5,6], spin-transfer torque RAM (STT-RAM) [7,8], and ferroelectric field-effect
transistors (FEFETs) [9,10]. However, they comprise non-silicon components that are
expensive and require additional fabrication procedures. Moreover, owing to the high
off-current, ReRAM and STT-RAM require high supply voltages and peripheral circuits
to guarantee a sufficient sensing margin [11,12]. Additionally, although FEFETs exhibit a
relatively high ON/OFF current ratio, reducing the gate voltage based on the high voltage
drop across the interface oxide is a challenge [13], one that limits the possibility of achieving
high endurance. Therefore, LIM architecture comprising silicon-based devices needs to
be explored further to utilize the metal-oxide-semiconductor (CMOS) technology while
maintaining a simple structure and high endurance.

Therefore, in this study, we propose a CMOS-compatible LIM inverter comprising an
n-channel feedback field-effect transistor (n-FBFET) made of a silicon nanowire (SiNW) and
a SiNW p-channel metal-oxide-semiconductor field-effect transistor (p-MOSFET) made of
a SiNW. FBFETs have demonstrated steep switching characteristics and gate-controlled
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memory behavior, making them a suitable choice for the LIM inverter [14–16]. Also,
the stable performance of FBFET has been proved against charge trap and electrical bias
stresses in recent research [17,18]. The proposed LIM inverter provides a high voltage gain
while retaining the output logic at zero input voltage. Its memory behavior under zero
supply voltage is a result of the FBFET storing electrons and holes in the channel region.
Additionally, we demonstrated the hybrid logic and memory functions of the inverter
using mixed-mode technology computer-aided design (TCAD) simulation, indicating the
possibility of a novel computing paradigm beyond von Neumann’s computing.

2. Materials and Methods

All simulations were carried out using 2D structures via a mixed-mode simulation
supported by the Sentaurus TCAD simulator (Synopsys Sentaurus (O_2018.06)), which
is a commercial device simulator [19]. The physics models of n-FBFET and p-MOSFET
include the Fermi–Dirac statistics, Auger recombination, bandgap narrowing, and Shockley–
Read–Hall recombination with doping dependency, whereas the mobility models include
doping dependence, Lombardi mobility, and high field saturation to analyze the electrical
characteristics in the silicon region. We used the default parameters supported by Sentaurus
TCAD simulator for all of the presented models. Additionally, surface Shockley–Read–Hall
recombination was applied to the interface between silicon and Al2O3 in n-FBFET. In this
study, all the simulations were performed for n-FBFET and p-MOSFET at 300 K.

3. Device Structure and Simulation

The cross-sectional views of an n-FBFET with a p+-n+-p+-n+ SiNW and a p-MOSFET
with a p+-n+-p+ SiNW, and the circuit diagram of the LIM inverter are illustrated in Figure 1.
The n-FBFET had dimensional parameters of a channel thickness (TSi) of 10 nm, a channel
length (LCH) of 40 nm, and an Al2O3 gate oxide thickness (TOX) of 2 nm (Figure 1a). The
channel consisted of the p+-doped region below the gate metal and the n+-doped non-gated
region; each region had an identical length of 20 nm (1/2 LCH). The doping concentrations
of the source, drain, and non-gated channel regions were 1 × 1020 cm−3. The gated-channel
region was heavily doped with a p-dopant concentration of 7 × 1019 cm−3. For the p-
MOSFET, TSi, LCH, and TOX were 10, 40, and 2 nm, respectively (Figure 1b). The p-channel
had a doping concentration of 1 × 1019 cm−3 and the doping concentrations of the source
and drain regions were 1 × 1020 cm−3. The gate metal work functions were tuned with
5.65 eV for n-FBFET and 4.8 eV for p-MOSFET to obtain the optimal function in logic
and memory operation. For the experimental implementation of the LIM inverter, Pt and
heavily doped Si can be chosen as the gate metals for n-FBFET and p-MOSFET, respectively.
The simulations were performed in the 2D structure via Synopsys Sentaurus [19].
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Figure 1. Cross section of a (a) SiNW n-FBFET and (b) a SiNW p-MOSFET. (c) Logic-in-memory
(LIM) inverter comprising n-FBFET and p-MOSFET with load capacitor (CLOAD). Supply voltages
VDD and VSS connected to the p-MOSFET and n-FBFET sources, respectively.
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The LIM inverter is based on a conventional CMOS inverter, comprising the n-FBFET
as a replacement to n-channel MOSFET (n-MOSFET) and a p-MOSFET (Figure 1c). A
load capacitor (CLOAD) of 1 fF was connected to the output node, assuming a parasitic
capacitance existed between the line and logic gates. The circuit was biased with supply
voltages VDD and VSS corresponding to the source voltages of p-MOSFET and n-FBFET,
respectively, to calculate the output logic states, which were determined by sensing drain
voltage of the n-FBFET (VOUT). The n-FBFET in the proposed inverter performs a key
function in logic operation and data storage by implementing the memory function while
retaining the conventional CMOS logic scheme structure. Moreover, the LIM inverter is
fully compatible with the conventional CMOS process because silicon is used as the channel
material. The LIM system based on our LIM inverter can be implemented experimentally
by utilizing the conventional CMOS process and circuit.

4. Characteristics of the Proposed LIM Inverter

Figure 2 show the transfer curves of the n-FBFET and p-MOSFET under several voltage
conditions. The n-FBFET gate voltage (VG) ranges from −1.0 to 1.0 to −1.0 V to verify the
hysteresis characteristics at VD = 0.5, 0.0, and −0.5 V (Figure 2a). The latch-up phenomenon
occurs during the forward sweep of VG, that is, IDS increases steeply at VG = ~0.6 V. The
device shows an extremely low subthreshold swing (SS) of 2.3 × 10−3 mV/dec at VD = 0.5 V,
which is caused by the generation of the positive feedback loop in the channel region. After the
latch-up phenomenon, the device transitions to the ON state, showing a high ON/OFF current
ratio of 1012. However, when VG sweeps reversely, IDS decreases at VG in a manner dissimilar
to the latch-up phenomenon and is referred to as the latch-down phenomenon, after which the
device transitions to the OFF state. The gap in VG where the latch-up/latch-down phenomena
occur indicates the memory window wherein the FBFET maintains the ON and OFF states
of the device before the phenomena occur again. The ON/OFF current ratio and memory
window become larger on applying more bias to VD. However, VG remains unaffected.
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(VD) of 0.5, 0.0, and −0.5 V under a source voltage (VS) of −1.3 V and (b) a SiNW p-MOSFET with
the VD of 0.5 and 0.0 V under a VS of 0.5 V.

Figure 2b shows the absolute value of IDS versus VG for p-MOSFET. As VG decreases,
the absolute value of IDS approaches the saturation region at VG = −0.5 V. The p-MOSFET
exhibits over 60 mV/dec of SS due to the operation mechanism of thermal injection [20];
nevertheless, the high current ON/OFF ratio of ~1015.

5. Switching and Memory Operations in the LIM Inverter

Figure 3a shows the voltage transfer characteristics (VTC) of the LIM inverter with
supply voltages VDD (0.5 V) and VSS (−1.3 V). The output logic ‘0’ (or ‘1’) indicated the
distinct low (or high) voltage value of VOUT when an input voltage VIN of 0.5 V (−0.5 V)
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was applied. Unlike a conventional CMOS logic inverter, the proposed inverter exhibits
hysteresis characteristics, that is, the output logic states switch at different VIN. Therefore,
the LIM inverter holds the logic data when VIN = 0.0 V, as illustrated in Figure 3a. Hold ‘0’
and ‘1’ were determined by the processed logic state with VIN = 0.0 V.
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Figure 3b shows the inverter gains obtained from the absolute value of the differentia-
tion of VOUT from VIN. When p-MOSFET was turned on, the device transitioned from logic
‘0’ to ‘1’, and a relatively low inverter gain of ~7.9 V/V was observed, owing to the SS of
over 60 mV/dec. Alternatively, logic ‘1’ steeply transitioning to ‘0’ resulted in a high gain
of ~296.8 V/V owing to the latch-up phenomenon in n-FBFET. The LIM inverter operates
in a narrow VIN range because of the steep transition slopes. The VIN range holding the
logic data can be affected by temperature. Nevertheless, the LIM inverter still obtains a
relatively sufficient voltage margin for memory operation since the device maintains the
steep switching characteristics even under the temperature variation.

Figure 4 shows the conduction and valence bands of the n-FBFET to analyze the holding
operation. The dashed lines and solid lines in red indicate the logic and hold states, respectively.
When the output logic is ‘1’ (VIN = −0.5 V), potential barriers were created in the channel
region (Figure 4a), and the positive feedback loop is absent in the energy band diagram. The
barrier height in the conduction band decreased as VIN increased from −0.5 to 0.0 V. However,
the potential barriers were high enough at VIN = 0.0 V itself to block the injection of electrons
into the channel region. Therefore, the energy level in the drain region remained constant,
corresponding to hold ‘1’. Alternatively, when the output logic was ‘0’ (VIN = 0.5 V), a positive
feedback loop was seen in the conduction and valence bands (Figure 4b). As VIN increases,
the barrier height reduces and the electrons flow into the channel region and accumulate in
the potential well, which causes a further decrease in the barrier height, and further induces
injection of holes into the channel region. This iterative operation results in the collapse of the
potential barrier, leading to activation of the positive feedback loop. As VIN decreases from
0.5 to 0.0 V, logic ‘0’ is followed by hold ‘0’. Although the barrier height in the conduction
band is higher, the charge carriers accumulated in the potential wells impede the regeneration
of potential barriers, thereby enabling the device to maintain the energy level of the drain
region that corresponds to hold ‘0’. Moreover, the FBFET is not affected by the tunneling
mechanism during the operation. As for output logic ‘1’ and hold ‘1’, charge carriers are
absent inside the intrinsic channel under the gate, and consequently the tunneling of charge
carriers does not occur. On the other hand, for output logic ‘0’ and hold ‘0’, the tunneling of
charge carriers cannot occur due to the flattened band structure after the positive feedback
loop, even though charge carriers are present in the channel.
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logic ‘0’ and hold ‘0’.

Further, the repetitive time response of the LIM inverter was verified by applying
positive and negative input voltages with an absolute value of 0.5 V and a pulse width
of 100 ns (Figure 5). To demonstrate the holding characteristics at VIN = 0.0 V, VIN is not
pulsed for 200 ns after the logic process ends. The output logic transitions from ‘1’ to ‘0’,
as a VIN of 0.5 V is applied to input logic ‘1’. Conversely, the output logic switches to
logic ‘1’, as a VIN of −0.5 V is applied to input logic ‘0’. This stable logic process was
conducted for 100 ns. It was observed that the inverter maintained a constant logic voltage
value without voltage degradation, thereby verifying the logic processes and storage ability
of the proposed inverter within a voltage range of −0.5 to 0.5 V for 100 ns, under the
corresponding supply voltage conditions.
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6. Operation of LIM Inverter under Zero-Bias Conditions

Recently, FBFETs have demonstrated superior memory characteristics under zero-bias
conditions by controlling the charge carriers accumulated in the channel region [16]. Thus,
it was crucial to verify the memory behavior of logic circuits comprising FBFETs without
supply voltages. As shown in Figure 6, the supply voltages VDD and VSS were input to
the circuit with the same pulse width as that of the input logic pulse. Hold ‘0’ and ‘1’
(VIN = VDD = VSS = 0.0 V) lasted for 10 µs after the output logic is processed. When input
logic ‘0’ is applied for 100 ns with a VDD of 0.5 V and a VSS of −1.3 V, the LIM inverter
displays the output logic as logic ‘1’. Further, when supply voltages were removed, VOUT
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decreased slightly and was affected by the current through p-MOSFET. Nevertheless, VOUT
remained constant for hold ‘1’ because the potential barriers in n-FBFET prevented further
injection of charge carriers. When input logic ‘1’ was applied with the same supply voltages,
the output logic transitioned from logic ‘1’ to ‘0’. For hold ‘0’, VOUT consistently retained
the initial value as of output logic ‘0’ without any voltage drops. As the charge carriers were
accumulated in the n-FBFET channel region, logic ‘0’ remained consistent by maintaining
the positive feedback loop, which allowed the LIM inverter to retain data in the absence of
a voltage supply. Furthermore, the LIM inverter did not consume static power because VDD
and VSS became 0.0 V. Since the static power is calculated as a multiple of supply voltage
and current through the circuit, the LIM inverter consumed zero static power during hold
‘0’ and ‘1’ while not requiring alternate peripheral circuits.
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holding operation lasted for 10 µs.

Figure 7 shows the VOUT values of the time function after calculating the logic state for
100 ns to confirm the possible extent of the holding operation under VDD = VSS = VIN = 0.0 V.
As time was increased to 1000 s, VOUT gradually approaches zero voltage during the holding
operation, which affects the continuous leakage current running through the circuit. The time
values when VOUT increases to 63% of its initial value, were denoted as t0 and t1 for logic ‘0’
and ‘1’, respectively. At 63% of the initial logic ‘1’, t1 was 3.2 ms (Figure 7a). Alternatively,
logic ‘0’ takes much longer to lose the stored logic ‘0’, and, hence, t0 was ~127 s (Figure 7b). It
was worth noticing that logic ‘0’ showed a substantially long t0 over 100 s, based on the charge
carriers accumulated in the n-FBFET channel region. As a result, the proposed inverter can
store over 63% of output logic voltage in 127 s (3.2 ms) for logic ‘0’ (‘1’) without consuming
static power.
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7. Conclusions

We demonstrated the hybrid logic and memory operation of an LIM inverter using
mixed-mode TCAD simulations. The inverter exhibited voltage gains of ~296.8 (V/V) when
transitioning from logic ‘1’ to ‘0’ and 7.9 (V/V) when transitioning from logic ‘0’ to ‘1’, and it
processed the output logic within 100 ns. The simulated energy band diagrams of n-FBFET
demonstrated the holding operations implemented with zero input voltage by controlling the
positive feedback loop. Furthermore, the proposed inverter was able to retain 63% of the initial
output logic of logic ‘1’ and logic ‘0’ for up to 3.2 ms and 127 s, respectively, without supply
voltages. The above results verify the possibility of merging logic and memory operations
using the proposed LIM inverter while consuming zero static power.
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