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SUMMARY

Current methods of in vivo imaging islet cell transplants for diabetes using mag-
netic resonance imaging (MRI) are limited by their low sensitivity. Simultaneous
positron emission tomography (PET)/MRI has greater sensitivity and ability to
visualize cell metabolism. However, this dual-modality tool currently faces two
major challenges for monitoring cells. Primarily, the dynamic conditions of PET
such as signal decay and spatiotemporal change in radioactivity prevent accurate
quantification of the transplanted cell number. In addition, selection bias from
different radiologists renders human error in segmentation. This calls for the
development of artificial intelligence algorithms for the automated analysis of
PET/MRI of cell transplantations. Here, we combined K-means++ for segmenta-
tion with a convolutional neural network to predict radioactivity in cell-trans-
planted mouse models. This study provides a tool combining machine learning
with a deep learning algorithm for monitoring islet cell transplantation through
PET/MRI. It also unlocks a dynamic approach to automated segmentation and
quantification of radioactivity in PET/MRI.

INTRODUCTION

The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) has

been a tremendous milestone in multi-modal imaging. Simultaneous PET/MRI imaging is a powerful

tool for both functional and structural imaging of a biological target. This imaging modality has synergis-

tic advantages over alternative imaging modalities such as either PET or MRI alone as it provides two-

pronged validation of the imaging target and provides insight on cell metabolism.1,2 PET/MRI also allows

better image mapping and improved resolution over PET alone, allowing for improved visualization of

anatomical structures.3–5 Similarly, MRI alone provides minimal sensitivity and specificity of the functional

information in comparison to PET.6 Simultaneous PET/MRI also holds an advantage over PET/computed

tomography (CT) since MRI provides excellent soft-tissue contrast and lacks the exposure of ionizing ra-

diation; therefore patients are not exposed to its harmful effects and can undergo multiple scans.5,7–10

PET/MRI utilizes the advantages of both techniques, making it a formidable candidate for cellular therapy

imaging.

There have been new radiolabeling techniques used on cell transplantations which assist with molecular

tracking using PET/MRI.11–13 One of those techniques consists of the synthesis of 64Cu-CD45 and 89Zr-

CD45 performed by Tarantal et al. where PET was then used for the in vivo tracking of the radiolabeled

cells.11 Radiolabeled cell transplantations have been used for targeting surface antigens for leukemias,

Hodgkin’s lymphomas, and other hematologic malignancies.14,15 In cell-based therapy, the route of admin-

istration plays a critical role in the delivery of the therapeutic cells. To avoid repeated injections (traditional

route of administration) which risk embolism, PET allows visualization of molecular and cellular alterations

and monitoring of the stem cells.16 These advancements in medical imaging technologies are revolution-

izing the way physicians monitor treatment. However, although simultaneous PET/MRI is expanding its

scope as an imaging modality with functional and anatomical flexibility, researchers have not yet devel-

oped a standardized method for image segmentation and subsequent analysis of the complex data.17
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More importantly, the lack of computational methods to assist in dynamic analysis of PET/MRI data limits

the reliability and clinical translatability of novel techniques and therapies.

The expanding need for artificial intelligence (AI), and particularly, deep learning (DL), is becoming highly

evident in the context of image segmentation and quantification for analysis and monitoring of treatments

and therapies, especially for newer modalities such as PET/MRI which present data with spatiotemporal

heterogeneity. This heterogeneity limits the ability to definitively analyze the image data with high reli-

ability and link the analysis to a quantitative metric of interest or a diagnosis. Currently, AI algorithms

are prominently used for the diagnosis of diseases especially in medical specialties of oncology for assess-

ment of tumors and neurology for prediction of Alzheimer’s and classification of brain lesions throughmed-

ical image segmentation and analysis.18,19 AI, including machine leaning (ML) and DL, can also be trained

by datasets and makes accurate predictions as the response to treatment or the mortality after the cell

transplantation.20,21

The role of PET in monitoring cell transplantation coupled with the potential use of simultaneous PET/MRI

for greater spatial resolution is particularly important for treating diseases such as type 1 diabetes (T1D),

where islet cell transplantation therapy requires extensive imaging for detection of graft loss and adequate

intervention.22,23 However, due to variability among PET/MRI images in terms of signal distribution, signal

size, indeterminate boundaries of true signal, and the interrater variability and human bias in selection of a

region of interest (ROI) from simultaneous PET/MRI images, this task is increasingly challenging and unre-

liable. Furthermore, the time-dependent decay of signal over time in PET imaging and spatiotemporal

change in cellular signal distribution from PET/MRI create additional difficulty and add a degree of uncer-

tainty to estimating metrics that depend on radioactivity from the scan. Such metrics include quantification

of injected dose, calculation of standard uptake value (SUV) in target areas, and estimation of transplanted

cell number. Additionally, the true transplanted cell number is often unknown without the use of extensive

measures and manual measurement of dose injected and the corresponding radioactivity, and it is difficult

to correlate this to cell number without referring to a previously determined standard after mathematical

transformation of the dose reading at the time of scanning. This calls for the development of an AI algo-

rithm for standardized, automated segmentation and quantification of such metrics from simultaneous

PET/MRI scans for longitudinal monitoring and assessment of cell transplantations.

To address this problem, we aim to develop a canonical AI algorithm which uniquely combines unsuper-

vised ML and DL for the purposes of PET/MRI segmentation and quantification, respectively, for analysis

of transplanted cells labeled with 18F-fluorodeoxyglucose (FDG) in vivo. Unsupervised ML is a robust

approach to implementing AI algorithms in the field of biomedical imaging. Unlike supervised ML which

requires a large volume of training data to train the deep neural network and is often employed for quan-

tification tasks, this method of ML focuses on initial parameter optimization to perform on a wide domain of

data for segmentation tasks. This requires less volume of data for initial construction and optimization of

the algorithm and does not need the level of human interference required in supervised algorithms such

as DL. This is especially useful when deployed for image segmentation because large volumes of manually

labeled images are not necessary for optimal segmentation performance of the algorithm. For standard-

ized tasks such as selection of an ROI for image segmentation, unsupervised ML has advantages over su-

pervised ML because it is independent of the shape and distribution of signal in an ROI.24 Therefore, to

address selection bias and interrater variability in evaluation of an ROI from simultaneous PET/MRI imag-

ing, we aim to use K-means++, a clustering algorithm in the domain of unsupervised ML, for segmentation

of the desired ROI from a simultaneous PET/MRI scan (Figure 1). In our recent published studies, we have

demonstrated the capability of our K-means++ algorithm to segment the sufficient ROI from 2D and 3D

magnetic particle imaging (MPI) of human islets and stem cell transplantations in vivo.24,25 The similar, pos-

itive-contrast nature of PET images encouraged us to employ this algorithm for segmentation of the PET

ROIs in our scans. For the more challenging task of analysis of the PET signal from the 3D images and esti-

mation of cell number that was truly transplanted, we aim to use a 3D convolutional neural network (CNN),

which is a conventional DL algorithm, for prediction of the activity within the ROI in the sample (andmice) at

the time of scanning and classification of the estimated cell number in the ROI based on this value. The core

functionality of the 3DCNNwill effectively augment the role of the conventional dose calibrator that is used

to measure activity before and after scanning of the sample/subject, with the aim of automating and stan-

dardizing this process and using the information retrieved to make intended transformations, classifica-

tions, and predictions (Figure 1). The goal of the study is to establish the effectiveness of a combined
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unsupervised ML and DL algorithm for both segmentation and analysis of simultaneous PET/MRI images

for prediction of the transplanted cell number in vivo (Figures 1 and 2). If proven viable, this combined al-

gorithm can be applied to numerous other applications of segmentation and analysis of simultaneous PET/

MRI such as monitoring and quantifying injected radiolabeled nanodrug, assessing tumor response to

chemotherapy, and diagnostic imaging with radiolabeled probes.

RESULTS

K-means++ segmentation

Initial testing of the K-means++ clustering algorithm on the raw PET Digital Imaging and Communications

inMedicine (DICOM) images using the k values of 2, 3, and 4 for an arbitrary cluster of 18F-FDG-labeled cells

in agarose gel (Figure 3A) and 18F-FDG-labeled cells in an ‘‘M’’-shaped agarose gel phantom (Figure 3B)

Figure 1. Schematic overview of the combined K-means++ segmentation and deep learning algorithm for segmentation of the co-registered PET/

MRI data and simultaneous prediction of radioactivity and cell number within a 3D PET image sequence

For the 3D CNNmodel, as illustrated in the diagram, four convolutional layers and four average pooling layers are included in the 3D CNNmodel. Here, the

kernel size of each convolutional layer is set to be three and the pooling size is two. Output predictions from the 3D CNN are transformed into new

radioactivity values by the time-decay equation and undergo subsequent sorting into one of the cell line-specific classification bins to estimate cell number

based on transformed final radioactivity value.
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shows differential segmentation contingent upon different k values. As indicated by the increased segmen-

tation of true pixels when a k value of 4 is selected for clustering segmentation, the algorithm overshoots its

clustering prediction and discards pixel values that pertain to the labeled cells in the phantom in both the

arbitrary and ‘‘M’’-shaped phantoms. Contrarily, when a k value of 2 is selected for clustering-based seg-

mentation, the algorithm includes a great deal of noise pollution or signal that does not pertain to cells

within the phantom. With a k value of 3 it is evident that only signal from the actual region of labeled cells

within the phantom is clustered and segmented, and a reliable segmentation of the PET ROI can be ex-

tracted. To further test this, the elbowmethod was employed for testing of theminimum sum squared error

(MSSE) among different k values. From this analysis, an optimal k value of 3 was determined for clustering

segmentation and thus used for segmentation of the ROI throughout the rest of the study.

CNN training and comparative analysis with alternative algorithms

The comparative analysis of the 3D CNN with both 2D CNN and gradient boosting decision tree (GBDT)

models revealed superior performance of the 3D CNN over the alternative algorithms used in the study

(Figure 4). The 3D CNN had the lowest root mean square error (RMSE) of 4.2G 0.3 andmean absolute error

(MAE) of 2.6 G 0.1 as compared to the 2D CNN and GBDT (p < 0.05) (Figure 4A). It also maintained the

highest Pearson correlation coefficient (PCC) value of 97% as compared to the other two algorithms (Fig-

ure 4B). The GBDT performed with a lower RMSE of 6.1 (+/� 0.3) than the 2D CNN (7.2 G 0.2) with similar

PCC values between the two algorithms—95% for the GBDT and 92% for 2D CNN. However, the 2D CNN

did have a lower MAE (3.6 G 0.2) than GBDT (4.0 G 0.1) which is indicative of better training and overall

algorithm performance in comparison to ground truth for the 2D CNN when compared to the GBDT algo-

rithm (p < 0.05) (Figure 4A). However, the 3D CNN maintained the most optimal values across all 3 cate-

gories of performance measures. The 3D CNN and 2D CNN were trained on two datasets, dataset 1

and dataset 2, and their decreasing loss throughout ten iterations of training was evaluated for comparison

among the models (Figure 4C). Further analysis on the GBDT was omitted from the study due to the

model’s inferior performance in comparison to the CNNs as indicated by its high MAE. The respective

Figure 2. Inlustraions of 2D CNN and GBDT models

(A) Schematic overview of the 2D CNN model. Four convolutional layers and four max pooling layers are included in the

2D CNN model. Here, the kernel size of each convolutional layer is set to be three and the pooling size is two.

(B) Illustration of GBDT model with N gradient boosting trees.
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training and validation loss curves over 10 epochs of training for the 3D CNN and the 2D CNN are depicted

in Figures S1A and S1B, respectively. The first dataset, dataset 1, consisted of approximately 102 full 3D PET

volumes (n = 102). A large majority of the data volumes in dataset 1 consisted of images that corresponded

to radioactivity values greater than 10 mCi. Dataset 2 had a total of 150 (n = 150) full 3D PET image volumes,

consisting of all the images in dataset 1 with additional images of radioactivity values less than 10 mCi. Data-

set 2 also consisted of images with non-uniform pixel configuration, containing disjointed and scattered

pixel matrices instead of the largely uniform ROIs present in the first dataset. This permitted dynamic

training of the algorithm to predict future ROIs of unknown radioactivity despite a non-continuous,

segmented spatial configuration of pixels corresponding to PET signal in the images. The 3D CNN main-

tained the lowest loss value upon training on both datasets for radioactivity prediction (Figure 4C). An

improvement in 3D CNN algorithm performance is seen between training on dataset 1 and dataset 2, as

indicated by the overall decreased loss value at the end of training iteration ten. A slightly lower loss value

Figure 3. Initial results from K-means++ segmentation of PET imaging of circular and ‘‘M’’-shaped phantoms with

K values of 2, 3, and 4

(Left to right; Original DICOM, All predicted clusters, Cluster of interest, and segmented ROI using cluster of interest).

(A) Indicates segmentation results from circle phantom segmentation with K values of 2, 3, and 4.

(B) Indicates segmentation results from ‘‘M’’-shaped phantom segmentation for K values of 2, 3, and 4.
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is seen for both dataset 1 and dataset 2 training of the 2D CNN as compared to the 3D CNN (Figure 4C).

Despite the relative similar PCC values between the three algorithms, the significantly lower RMSE, MAE,

and loss values for training of the 3DCNNprovided enough support to elect this model as the DL algorithm

of choice for use throughout the rest of the study for radioactivity prediction from 3D PET image sequences

and subsequent cell number classification.

To assess the predictive accuracy of the 3D CNN, radioactivity prediction values of PET image sequences

were compared to true dose calibrator values by the intraclass correlation coefficient (ICC) analysis (Fig-

ure 4D). ICC analysis was performed for the two datasets trained on the algorithm in sequential fashion.

As mentioned previously, dataset 1 consisted of image volumes corresponding to radioactivity values

greater than 10 mCi. Despite the inherent limitation of dataset 1, ICC values for all radioactivity values in

the range of 0–70 mCi maintained strong agreement with the dose calibrator as indicated by the ICC values

of 0.70–0.90 (70–90% agreement) for images with radioactivity values in the range of 0–10 mCi and greater

than 0.90 (90%) agreement for radioactivity values beyond 10 mCi. Upon ICC analysis of dataset 2, which

contained images reflecting a broader range of radioactivity values especially those of lower mCi,

Figure 4. Comparison, testing, and training of 3D CNN

(A) Bar graph showing comparison of predictive performance of the 3D CNN, 2D CNN, and GBDT algorithms via analysis of root mean squared error (RMSE)

and mean absolute error (MAE) (*p < 0.05, **p < 0.05, the Student’s t test).

(B) Bar graph showing comparison of Pearson correlation coefficient (PCC) values between 3D CNN, 2D CNN, and GBDT algorithms.

(C) Loss graph of ten training rounds (iterations) comparing the 3D CNN and 2D CNN for both dataset 1 and dataset 2.

(D) Intraclass correlation coefficient analysis of 3D CNN’s predictive accuracy on a range of images with 0 to 70mCi radioactivity (*p = 0.001, **p = 0.001, the F

test).
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agreement values markedly increased from prior values to greater than 90% agreement for radioactivity

values lower than 10 mCi, indicating that the neural network trained with greater accuracy in predicting

on this lower range of radioactivity. After training on dataset 2, more than 95% of the range of radioactivity

predictions had greater than 90% agreement with the values read by the dose calibrator. The most signif-

icant increases in agreement were observed for values less than 10 mCi as the sample size of PET image

volumes in this range of radioactivity was deliberately increased in the second dataset to improve

predictions.

Cell number classification bins based on radioactive dose uptake

Dose calibrator-based readings of radioactivity were taken at various time points (0, 0.5, 1, 1.5, 2.5h)

following independent labeling of both the Beta-TC-6 and MC-38 cell lines with the 18F-FDG radioactive

isotope in increasing cell amounts (3.125 3 105, 6.25 3 105, 1.25 3 106, and 2. 5 3 106 cells; n = 4)

(Figures 5A and 5B). Following repeated measures of the initial radioactivity in the different cell numbers

of both cell lines, standardized classification bins with varying ranges for distinct cell numbers were estab-

lished (Table S1). This classification bin was eventually programmed into the DL algorithm to allow for iden-

tification of cell number based on the predicted radioactivity from the algorithm. The MC-38 cell line dis-

played greater average radioactive isotope uptake across all cell numbers in comparison to the Beta-TC-6

cell line, due to the greater relative cellular metabolic activity (Figure 5A). There is a distinct difference be-

tween the initial radioactivity values of the various cell numbers across both cell lines, indicating a lack of

overlap in these values. This renders the unique utility of initial radioactivity values of a sample of labeled

cells and highlights the importance of resolving the predicted radioactivity from the algorithm to an initial

time point to predict cell number using PET/MRI. The common pattern of decay within each number of cells

indicates that if the initial time point of cell labeling is known, as well as the current time of the scan, then the

half-life decay equation for the radioactive isotope under study, in this case 18F, can be used to calculate the

original radioactivity of the sample in the PET/MRI scan regardless of the time of scan. This can be done by

calculating the minutes that have passed since the initial time point of labeling and using the predicted

radioactivity from the DL algorithm at the time of scan and arranging for the half-life equation to calculate

the initial radioactivity using the values of time (minutes passed) and final radioactivity. Importantly, the

calculation of the original radioactivity to classify the cell number in the PET/MRI scan is only useful if an

accurate prediction of the current radioactivity in the scan is achieved by a well-trained and calibrated

DL algorithm. Once the radioactivity at the original time point of labeling is calculated for a sample of cells,

a classification of cell number is made by sorting the predicted, time-corrected radioactivity into one of the

classification bins based on the range of radioactivity in which the value falls.

Training of 3D CNN before and after image rescale & reconstruction

Upon initial training of the algorithm without reconstruction of the raw PET image data, MSSE values for all

ranges of radioactivity value predictions were high, with minimal decrease in MSSE values across increasing

Figure 5. Characterization of radioactive uptake and establishment of standardized classification bins for

different cell numbers in Beta-TC6 and MC38 cell lines labeled with 18F-FDG

(A) Characterization of average radioactivity (n = 3) of 2.5M, 1.25M, 0.625M, and 0.3125M MC-38 cells measured at time

intervals 0.0H, 0.5H, 1.0H, 1.5H, 2.0H (M = million; H = hours).

(B) Characterization of average radioactivity (n = 3) of 2.5 M, 1.25 M, 0.625 M, and 0.3125 M Beta-TC6 cells measured at

time intervals 0.0H, 0.5H, 1.0H, 1.5H, 2.0H.
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epochs of training (Figure 6A). More notably, the MSSE for radioactivity predictions on the ends of the spec-

trum of the range of radioactivities used in the study, such as that for less than 10mCi or greater than 20 mCi,

remained flat without any significant decrease as the number of training epochs increased. Although for the

middle range of radioactivity, between 10 and 20 mCi, the MSSE decreased among the iterations of training,

the greater overall values of MSSE indicated that the neural network was not performing with a great degree

of accuracy as compared to when the image data were reconstructed. This was due to the intrinsic properties

of CNN, which relies more heavily on image texture to establish a proper gradient for learning and decision

making in the prediction process. As a result, the images were evaluated with raw format to detect a visual

difference between increasing cell numbers and this increasing radioactivity, upon which no detectable qual-

itative difference between the images was found (Figure 6B, top row). Further evaluation of the DICOM image

files and their respective headers revealed that the images were being intrinsically altered by the scanner

through a scaling factor which standardizes the maximum and minimum pixel intensity values across all im-

ages, and this was masking the true nature and texture of the images. Computational evaluation of the

maximum and minimum intensities of images of different cell numbers and radioactivities confirmed this hy-

pothesis, with the maximum intensity remaining around 65535 for all images despite their varying radioactiv-

ities (Figure 6C). This prompted the establishment of a rescale equation (Equation 1) to undo the scaling done

Figure 6. Application of rescale equation in the preprocessing of images and the impact on training of 3D CNN

(A) Minimum sum squared error (MSSE) among ten epochs for 5, 10, 15, 20, 25, 30, 60 mCi radioactivity labeled cell sample images before rescale equation

was applied to algorithm.

(B) (Top Row) Normal 3D PET images of 5, 2.5, and 1.25 million cells before rescale equation was applied in preprocessing (Bottom Row) Rescaled 3D PET

images after rescale equation applied in preprocessing.

(C) Total pixel sum of images representing a range of 0–70 mCi before (normal) and after (rescaled) rescale equation was applied to 3D PET images used for

training the algorithm.

(D) MSSE after rescale equation was applied to 3D PET images of labeled cells of 5, 10, 15, 20, 25, 30, 60 mCi radioactivity.
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by the scanner through the DICOMheader for each image volume, to unmask the true nature and pixel values

for the dataset. Upon rescaling the images to their true maximum intensities reflective of their respective

radioactivity values/labeled cell numbers, a pattern of increasing maximum intensity and total pixel sum

for increasing radioactivity and labeled cell numbers was revealed (Figure 6C). This pattern was also apparent

visually after rescaling, with increasing pixel intensity as cell number increased (Figure 6B). Upon training of

the CNN after the rescale equation was applied to the images in preprocessing, similar decrease in MSSE

upon increasing epochs of training was found, indicating increasing accuracy of algorithmprediction of radio-

activity because of revealing the true linear pattern of increasing pixel intensity, which is indicative of

increased radioactivity, with increased labeled cells in the images (Figure 6D).

Graft cell number prediction

Following initial training of the 3D CNN algorithm on the in vitro phantom models for adequate predictive

quantification of all potential ranges of radioactivity in a 3D PET scan of 18F-FDG-labeled cells, the beta-

TC6 cells were transplanted in varying cell counts under the left kidney capsule of mice (n = 9) (Figure 7A).

PET/MRI verified the cells were transplanted in the intended location and maintained a detectable level of

radioactivity after transplantation. These in vivo images were plugged into the CNN algorithm for testing of

the model’s prediction on in vivo transplant images as it was trained on phantoms representing the labeled

cells. It is important to note that cells could be lost during the transplantation process, as vestiges may

remain in the syringe or unforeseen errors can cause a reduced number of cells than intended to be trans-

planted. Hence, it is critical for CNN to predict the radioactivity of the transplant cells with a high degree of

accuracy and classify the transplanted cell number based on this quantification.

For in vivomonitoring purposes, the acquired in vivo data from different time points were plugged into the

trained 3D CNN radioactivity prediction model within the mice post-transplantation and subsequent esti-

mation of transplanted cell number in the region based on the predicted radioactivity determined by the

algorithm. For in vitro phantom models of both cell lines, the algorithm performed with a strong degree of

accuracy in comparison with ground truth values. For the in vivomodel predictions, the accuracy of the esti-

mation of transplanted cell number decreased as per the lower ICC values seen for the maximum and min-

imum cell numbers (Figure 7B). This discrepancy in predictive accuracy observed between the 3D CNN’s

predictions on in vitro as compared to the in vivo data results from two major confounding factors: there

are more steps in preparation and thus chance for cell loss. The preparation process of the in vitro phan-

toms is straightforward and does not require a great deal of transfer of cells from flask to tubes and finally to

surgical tubing as is required in the in vivo cell transplantation process. The direct transfer of the cells in

their estimated amounts from the flask to the phantoms in which they will be imaged reduces the chances

that intended cells may be mistakenly lost or uncontrollably left in one of the many constructs in which they

are transferred and processed as is done in the in vivo transplantation process. Furthermore, for the in vivo

model, the reduced ICC values observed in cell number prediction result from a difference between the

number of cells that the experimenters believe they have transplanted in themouse and the number of cells

that were injected through the surgical tubing under the left kidney capsule and remained in the mouse for

the duration of imaging and thereafter (Figure 7B). Hence, this discrepancy for in vivo models is crucial for

support of the initial hypothesis and goal of the study which aims to highlight the fact that the experi-

menters require assistance in quantifying the actual number of transplanted cells due to the possible chan-

ces for cell or graft loss during the preparation and operation stages of the transplantation process. Here,

the algorithm which has been trained, tested, and validated in its capacity to predict the radioactivity within

3D PET/MRI scans of similar format and similarly labeled cells can more accurately define the number of

cells that are transplanted in the animal models based on its ability to directly quantify the radioactivity

in the image based on previous training and associations on similarities in image texture and their associ-

ated radioactivity values. This cannot be done automatically by the human experimenter alone when eval-

uating a 3D PET/MRI scan of transplanted labeled cells. Hence, the inconsistency observed between the

experimenter’s estimation of how many cells they have transplanted compared to the 3D CNN’s predictive

analysis on the actual radioactivity and number of cells remaining under the kidney capsule at the time of

scanning highlights the importance of training a DL algorithm to help accurately analyze such scans for

evaluation of transplanted cell number as indicated by radioactivity in the ROI.

DISCUSSION

There are numerous clinical PET/MRI applications at both the pre-clinical and clinical stage. However,

numerous studies have compared PET/MRI with PET/CT and have emphasized that experience with
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PET/MRI is limited, and further research should be performed on this modality to fully understand its ca-

pabilities within the realm of medical imaging and intervention.8,9,13,17 Currently, PET/MRI has been

used for imaging of tumors in patients with oncologic diagnoses which include anal cancer, breast cancer,

colon cancer, esophageal cancer, leukemia, lymphoma, and pancreatic cancer.8 In addition, it has also

been used for patients with disorders in the cardiovascular and central nervous system, as well as pediatric

patients in general.1,10,26

The results of the study successfully highlight the effectiveness and accuracy of a dynamically trained 3D

CNN in predicting transplanted cell number in simultaneous PET/MRI scans. It also portrays the capability

of a combined algorithm, using k-means++ clustering, to automatically segment transplanted cell ROI

from the simultaneous PET/MRI image. This was achieved through combining K-means++, an unsuper-

vised ML algorithm for segmentation of the scans,24,25 with a 3D CNN, which was used for automated

Figure 7. In vivo simultaneous PET/MRI imaging and cell number prediction of cell transplantation under left

kidney capsule of mice

(A) (Left) T2WI MRI image of transplanted labeled beta-TC6 cells under left kidney capsule of mice (red arrow) (Right) MRI

image coregistered to PET scan of transplanted labeled beta-TC6 cells shows PET signal under the left kidney capsule of

the mice (red arrow) (Top = 2.5 million cells, Bottom = 1.5 million cells). Scale bar of PET images is 0-153.5 kBq/ml, same

for both groups.

(B) Intraclass correlation coefficient (ICC) indicating percent similarity of the algorithms classification of cell number based

on input images to the true cell number as calculated manually for in vitro phantom images of both BTC6 cell line images

(purple) and MC38 cell line images (blue) and in vivo images of transplanted BTC6 cell line images (pink).
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PET signal quantification and subsequent cell number quantification. Through ICC-based statistical anal-

ysis of algorithm performance in comparison with manual quantification and estimation, we have shown

that the algorithm quantifies the ROI with a great degree of accuracy compared to the standard dose cali-

brator device used in the lab and with superior accuracy compared to human counterparts who are unable

to predict the radioactivity of the PET signal within the image. A similar, high degree of accuracy was seen

with quantification of the cell number using the predicted radioactive dose from the 3D CNN, as indicated

by the ICC scores greater than 90% for nearly all possible cell numbers in both in vitro and in vivo images.

Regarding segmentation, the algorithm was capable of segmenting islands of pixels from the entire pixel

field within a PET image, a task which is prone to error and is often overlooked by human analysts.

The engineering and training of a highly accurate and reliable DLmodel in this study was contingent upon the

generation of representative, dynamic, and uniform data.27 Often, in DL training, gathering such data is diffi-

cult, and their setup and retrieval are often prone to errors. The number of acquired data points is important

for successful training of DL algorithms, with an exponential correlation between increasing number of avail-

able training data and the consequent decrease in loss value (and thus increase in performance) of themodel.

Here, the challenge was generating enough training data that would represent the spatiotemporal distribu-

tion of signal when labeled cells were transplanted in mice. Of course, transplanting and sacrificing over 100

mice were both unreasonable and unethical, so a new method of generating a large amount of reliable and

representative training data was devised. After confirming that the metabolism of 18F-FDG was independent

of the placement of the cells in vitro or in vivo, and that the spatiotemporal nature of the signal was un-

changed between in vitro and in vivomodels of labeled cells, hundreds of phantoms were able to be gener-

ated with the same image dimensions as the in vivo dataset for which the algorithmwould be used tomonitor

cell transplants. This large volume of data represented the dynamic nature of signal ROIs in simultaneous

PET/MRI which corresponded to different radioactivity (and thus different cell numbers) and thus allowed

for robust training of the 3DCNNautomatic for signal quantification. The training of themodel used for radio-

activity prediction was based on phantoms generated with increasing amounts of cells labeled with 18F-FDG,

which permitted the collection of data with increasing image texture-related parameters such as total pixel

sum and integrated density among images with increasing radioactive dose and cell numbers. After

observing a linear pattern between increasing 18F-FDG in the form of labeled cells and the corresponding

image texture in PET, we trained the CNN on more than 150 raw PET image volumes with their associated

radioactivity values as measured by the dose calibrator device. The network was trained on recognizing

the corresponding initial radioactivity to each PET image volume which consisted of 3D spatial distribution

of pixels of a particular intensity and pattern. The initial radioactivity which was recorded at the time of scan-

ning was recorded using the dose calibrator device and used in input/output training by treating the 3D pixel

network of a single PET image volume as the input and its corresponding, measured radioactivity value as the

output value. Upon training of the CNN to predict the initial radioactivity from PET scans, statistical evaluation

of the algorithm performance in comparison with the dose calibrator device yielded excellent (0.9+) ICC

scores which indicate a high degree of accuracy for prediction of the radioactivity from the images. The pos-

itive ICC score of comparison of the DL algorithm with the physical dose calibrator device indicated that the

CNN could quantify the radioactivity within an image volume with high spatiotemporal accuracy.

To this effect, the algorithm was capable of ‘‘correcting’’ (back-calculating) the radioactivity to an initial

time point when cells were labeled using the rearranged time-decay equation for 18F (Equation 2); this cor-

rected radioactivity value indicated the number of cells. This was due to the observation of a linear trend in

increasing radioactivity with increasing cell number during the cell characterization phase of our study, in

which different cell lines (BTC6 and MC38) metabolized different amounts of 18F-FDG initially yet retained

the same linear trend of increasing radioactivity with increasing cell number.28,29 This permitted CNN to

predict the cell number from the time-corrected radioactivity value in a cell line-dependent manner. We

have chosen the cell classification bin due to the overlap in radioactivity values between different numbers

of cells from distinct cell lines. This results from different labeling efficiency between cell lines due to vary-

ing cell metabolism (hence, varying propensity toward glucose uptake). This is further complicated by the

inability of a CNN to distinguish the exact cell line solely based on the PET data generated in this study, and

therefore it would not be able to predict cell number accurately among different cell lines. Classification

bins were programmed into the inference script of the neural network for estimation of cell number

from the predicted radioactivity, with two different sets of classification bins for the two different cell lines

we evaluated in the study. It can be inferred that in cell-number prediction of a future, unseen cell line with

this algorithm, initial characterization of the cell line through measurement of 18F-FDG uptake radioactivity
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per different cell numbers within that cell line is necessary to create the cell line-specific classification bins

that the CNNwill use to make its estimation. This is similar to initial calibration that is performed for various

DL and ML algorithms in the realm of biomedical imaging.

In the training of the algorithm on a dynamic array of possible radioactivities it may encounter in a future

setting allowed for the augmentation of a dose calibrator, a device used in clinic to measure radioactivity in

samples prior to or after injection, preceding its end task in using the quantified, predicted radioactivity

that was detected in the image to classify the cell number in the region based on the developed classifi-

cation bins. Remarkably, the trained model was able to augment the dose calibrator by accurately predict-

ing (quantifying) the radioactive dose in the ROI for all new images that were fed into the neural network,

regardless of their in vivo or in vitro nature. This foundational, independent role of the 3DCNN in accurately

quantifying the radioactivity dose in an encountered sample at the time of imaging provides a useful tool

for the field of PET/MRI alone. Although here it is primarily used with the endpoint goal of cell number

quantification using the predicted radioactivity, it can also be used to quantify the uptake of radiolabeled

drugs and measure response to treatment in future applications of this algorithm. These applications

pertain heavily to the forthcoming and rapidly evolving field of precision medicine, particularly in respect

to the development of novel radiolabeled nanodrugs and tracers for theranostic imaging. In this regard,

the algorithm provides a novel paradigm for AI algorithms to automatically segment and analyze an ROI

from PET or simultaneous PET/MRI imaging for a wide variety of domains within the field. As mentioned

earlier, this permits the establishment of methods of quantification, assessment, and analysis that are

not prone to human error and bias and can act as a standardized means of monitoring novel treatments

and therapies with PET and simultaneous PET/MRI.30

Limitations of the study

There are several limitations of our study. Our method faces one limitation as it did not label the cells with

dual-modality PET/MRI probes.31,32 The integration of PET andMRI modalities into a single hybrid imaging

system has been demonstrated to synergistically compensate for the limitations of each modality.33 In our

current study, MRI was used for anatomical reference, not for segmentations, although this does not

compromise the quality of segmentation performed solely based on PET data, which adequately reflected

the location of the cells within the constructs, nor does it have any impact on quantification of radioactivity

and cell number. However, in future studies we may devise methods to label cells with all-in-one dual-mo-

dality probes that permit the incorporation of the MRI data into the pipeline for potentially better segmen-

tation, prediction, and quantification. Another limitation of our study is that the current combined

algorithm was only tested for 18F-FDG; we will test other radiotracers in our future studies.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Ping Wang (wangpin4@msu.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

All training and testing imaging data have been deposited at Mendeley. The DOIs are listed in the key re-

sources table.

All original codes for K-mean ++, 2D CNN, 3D CNN and GBDT have been deposited at Mendeley. The

DOIs are listed in the key resources table.

Any additional information required to reanalyze the data reported in this paper is available from the lead

contact upon request.

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

18F-FDG Cardinal Health https://www.cardinalhealth.com/

Agarose Sigma-Aldrich A9539

Deposited data

Raw and analyzed data This paper; Mendeley Data https://doi.org/10.17632/995vjkhm68.1

Codes for K-mean ++, 2D CNN,

3D CNN and GBDT

This paper; Mendeley Data https://doi.org/10.17632/995vjkhm68.1

Experimental models: Cell lines

Beta-TC-6 cells ATCC RRID: CVCL_0605

MC38 cells ATCC RRID: CVCL_B288

Experimental models: Organisms/strains

Mouse: NOD/scid The Jackson Laboratory RRID: IMSR_JAX:001303

Software and algorithms

Python version 3.7 Python Software Foundation https://www.python.org

ParaVision 360 1.1 and 3.1 Bruker, Billerica MA https://www.bruker.com/en/products-and-

solutions/preclinical-imaging/paravision-360.html

SPSS statistical software 28.0.1.1 IBM, Armonk, NY https://www.ibm.com/products/spss-statistics

Other

BioSpec 70/30 MRI scanner with a PET insert Brucker, Billerica, MA https://www.bruker.com/en/products-and-

solutions/preclinical-imaging/mri.html

Dose calibrator Capintec, Florham Park, NJ CRC-55tR

J750 3D printer Stratasys Ltd., Eden Prairie, MN https://www.stratasys.com/en/resources/

blog/j750-3d-printer-introduction/
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Cells

Beta-TC-6 cells were cultured in 2.8 mM glucose DMEM (Gibco, Thermo Fisher Scientific, MA) with 10% FBS

and 1% penicillin/streptomycin in an incubator at 37�C, 5% CO2. Cells were cultured to a confluence of

approximately 10 million cells per 500 mL flask. MC38 cells were cultured in DMEM (Gibco, Thermo Fisher

Scientific, MA) with 10% FBS (Thermo Fisher Scientific, MA) and 1% penicillin/streptomycin (Gibco, Thermo

Fisher Scientific, MA) in an incubator at 37�C, 5% CO2.

Animals

All animal experiments were conducted according to the institutional guidelines for the Care and Use of

Laboratory Animals and were approved by the Institutional Animal Care and Use Committee (IACUC) at

Michigan State University. All NOD/scid immunodeficient mice were obtained from the Jackson Labora-

tories (Bar Harbor, ME) and housed at animal housing facilities with a 12-h light-dark cycle at Michigan State

University. Campus Animal Resources at Michigan State University provides veterinary care, daily husband-

ry, and health checks. Female NOD/scid mice (n = 6, 10 weeks old) were used for in vivo experiments.

METHOD DETAILS

Cell labeling with 18F-FDG

Both cell lines were labeled with 18F-FDG at a dose of 6 mCi per flask and incubated for 1 h. Following in-

cubation, cells were washed three times with PBS to remove free 18F-FDG and prepared for digestion with

trypsin for phantom preparation and transplantation.

Phantom preparation and radioactivity quantification

Cells were digested with 8mL of 0.25% Trypsin for 2 min and quenched with 12 mL 2.8 mM glucose DMEM

(Gibco, Thermo Fisher Scientific, MA) with 10% FBS and 1% penicillin/streptomycin for a final volume of

20 mL/10 M (M = million) cells suspended in culture medium per flask. Aliquots in increments of 0.625,

1.25, 2.5, 5, and 10 mL corresponding to approximate cell number amounts of 3.125 3 105, 6.25 3 105,

1.25 3 10 6, 2. 5 3 106, and 5 3 106 cells, respectively, were transferred to centrifuge tubes. The tubes

were centrifuged at a rate of 1000 RPM for 5 min at a temperature of 20�C. During centrifugation, prepared

1% agarose gel was warmed for approximately 30 s in the microwave (until liquefied). The gel was held in a

50 mL tube placed in a beaker of warm water to prevent solidification of the gel for duration of the phantom

preparation process. Following centrifugation, supernatant was removed carefully from each tube using

sterile pipette technique. Once all supernatant was removed from the tubes and only cell pellets remained,

the cells were resuspended and mixed in 200mL of the 1% agarose gel using pipette pumping technique

and transferred to the 3D-printed phantoms (Figure S2) after mixing by trituration until homogeneous.

Phantoms were labeled with their respective cell amounts and subsequently placed one at a time into

the dose calibrator device for immediate quantification of radioactivity. Radioactivity values were recorded

in mCi for each different cell number phantom and the values were corrected to the initial timepoint of la-

beling for generation of a standard curve of cell number corresponding to different radioactivity for the cell

line being studied.

In vivo cell transplantationin mice

Labeled cells were detached and collected with 0.25% trypsin. Female NOD/scid immunodeficient mice

(n = 6, 10 weeks old, Jackson Laboratory, Bar Harbor, ME) were anesthetized with 2% isoflurane. An incision

was made to expose the left kidney of the mouse, then a catheter needle was inserted underneath the kid-

ney capsule and cells labeled with 18F-FDG were transplanted.

PET/MRI

Images were acquired on a Biospec 70/30 with a PET insert using Paravision 1.1 and 3.1 (Bruker, Billerica,

MA). MRI images of phantoms were acquired using an 86-mm transmit/receive volume coil: T2 map param-

eters were: multi-spin multi-echo sequence, TR/TE: 2200/8.4, field of view 60 3 30 mm, resolution 200 3

2003 800 mm, 15 slices, 12 echo images acquired (fewer points were used for generating maps, depending

on signal becoming equivalent to the noise), acquisition time 5min30s. PET images were acquired for

10 min, and were reconstructed using a calibrated MLEM (maximum likelihood expectation maximization)
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algorithm with a resolution of 0.5 mm and 16 iterations, and corrections for scatter, randoms, decay and

partial volume. Phantom images were not attenuation corrected.

Mice were positioned on top of a 4 cm 4-channel array receive coil and an 86-mm volume coil was used to

transmit the RF signal. T2* weighted image: 2D T1 FLASH, TR/TE: 200/8 ms, field of view 30 3 30mm, res-

olution 200 3 200 3 500 mm, 6 slices, flip angle 30�, 16 averages, acquisition time 4min3s. T2 weighted im-

age: 2D-TurboRARE, TR/TE: 2200/40 ms, RARE factor 8, field of view 30 3 30 mm, resolution 200 3 200 3

500 mm, 6 slices, 4 averages, acquisition time 2min38s. T2map: multi-spin multi-echo sequence, TR/TE:

2200/8.4, field of view 30 3 30mm, resolution 200 3 200 3 500 mm, 12 echo images acquired (fewer points

were used for generating maps, depending on signal becoming equivalent to the noise), acquisition time

5min30s. A 3D FISP image with 200 3 200 3 400 mm resolution was used for attenuation correction of the

PET signal for the mouse images.

Mouse PET images were acquired for 30 min, and were reconstructed using a calibrated MLEM method

with a resolution of 0.5 mm and 48 iterations, and corrections for scatter, randoms, decay, and partial

volume.

PET image preprocessing and rescale

Raw, unregistered 3D PET DICOM image sequences of voxel dimensions (sized 0.5mm) [z, x, y] mm = [300 3

160 3 160] were resampled to reduced dimensions of [150 3 160 3 160] to create a dataset with uniform

dimensions, and avoid memory allocation and computational overload errors. Every DICOM image volume

from the scanner had a respective rescale slope [header 0028,1053] and intercept [header 0028, 1052] head-

er values that resulted from the differing maximum and minimum intensities inherently present in the data.

The image volumes look the same with respect to intensity, density, and overall image texture by creating

uniform maximum and minimum intensities across all volumes captured by the scanner, despite a different

amount of radioactivity (cell number) present amongst the images. To reverse the effect of the scanner’s

rescale factor and slope on the pixel intensities of the images, a rescale equation was formulated to reverse

the effect of the inherent rescaling properties of the data by the scanner, thus revealing the true linear

pattern of increasing radioactivity that is apparent with increasing total pixel sum (and increasing cell num-

ber). The rescale equation (Equation 1) is formatted as follows:

Mx = ðMr � RsÞ+ ðRiÞ (Equation 1)

The rescale equation (Equation 1) generated a new pixel matrix, Mx , by multiplying the raw pixel matrix

values, Mr , by the rescale slope from the DICOM header, Rs, and adding the product of these values to

the rescale intercept from the DICOM header, Ri. This rescale equation was applied to all image volumes

as a pre-processing step before the images and their corresponding radioactivity values were input to the

CNN for training.

3D CNN architecture, training and cell number classification

The Convolutional Neural Network (CNN) was engineered using theKeras and TensorFlow libraries within

Python (Wilmington, DE). The CNN algorithm consisted of a feature extraction, flattening layer, and re-

gressing layer for complete analysis of the 3D PET data of input shape [150, 180, 180] after preprocessing

and rescale by the aforementioned rescale and resampling steps (Figure 1). As shown in Figure 1, the

feature extraction process includes three convolutional layers and three average pooling layers. The con-

volutional layer extracts the local features of the initial input, and the average pooling layer increases trans-

lational invariances of the network and reduces the required training parameters. The kernel size of each

convolutional layer is [3, 3, 3], and the pooling size of each average pooling layer is two. The shape of

the output of the last pooling layer is [17, 20, 20]. The flatten layer reshapes the 3D array to a 1D array to

feed the feature into a fully connected layer with sixteen neurons. Then the regressor is fed the integrated

information to make the final predictions. In this structure, the learning rate used was a = 10� 5, the batch

size was four, and the Adam optimizer was applied under 200 iterations. Loss was estimated using mean

absolute error values from the previously established gradient descent loss algorithm.34 A checkpoint al-

gorithm function with an increased learning rate a = 10� 4 was used in the case of no improvement in loss

after 7 sequential iterations. Our dataset consists of 104 3D images with shape of [150, 180, 180]. A 5-fold

cross-validation was applied to randomly divide 104 samples in five subgroups. All machine learning and

deep learning models used in the study were trained using 4-folds as training set. The other remaining fold

served as the test set for the evaluation.
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Post-processing steps converted the predicted radioactivity value from the PET image sequence into an

estimated cell number value depending on the cell line. A rearranged half-life equation for the 18F radio-

active isotope used the predicted radioactivity value and converted it to an initial radioactivity value, R0, by

considering the amount of time passed between the time of sample labeling and scanning, t, and the half-

life for the 18F isotope t1=2 of 109.7 min. The equation below describes the relationship (Equation 2):

Rp = R0

�
1

2

� t
t1
2 (Equation 2)

Following conversion to R0, the converted value was sorted into hard-coded classification bins based on

the standardized ranges of radioactivity corresponding to different initial radioactivity values of varying

cell numbers as was measured and recorded by the dose calibrator experiment. These classification

bins were cell lines specific and consisted of 5 different ranges of radioactivity corresponding to 5 cell

numbers: 3.125 3 105, 6.25 3 105, 1.25 3 10 6, 2. 5 3 106, and 5 3 106 cells. As mentioned previously,

the ß-TC-6 and MC38 cell lines had different classification bins due to their differing metabolic uptake

of 18F-FDG across all five potential cell number amounts. However, it is important to note that the

CNN does predict cell numbers— the bins convert the value predicted by the CNN into a usable metric

for inference on input data. Users can apply the algorithm to predict cell number if the standard ranges of

radioactive uptake are known for a particular cell line without the classification bins. A schematic overview

of the DL model with preprocessing, 3D CNN and post-processing cell number classification steps is

shown in Figure 1.

2D CNN architecture

For comparison with the 3D CNN, a 2D CNN was built using Keras and TensorFlow libraries in Python. For

the 2D CNN model, we divided the 3D images into 150 slices (channels) of 2D images with shape of (180,

180). As shown in Figure 2A, the feature extraction process includes four convolutional layers and four max

pooling layers. The convolutional layer extracts the local features of the initial input, and the average pool-

ing layer increases translational invariances of the network and reduces the required training parameters.

The kernel size of each convolutional layer is (3, 3), and the pooling size of each max pooling layer is two.

The shape of the output of the last pooling layer is (9, 9). The flatten layer reshapes 2D array to 1D array to

feed the feature into a fully connected layer with sixteen neurons. Then the regressor is fed the integrated

information to make the final predictions. In this structure, the learning rate is a = 10� 4, the batch size is

four, and the Adam optimizer is applied under 200 iterations.

The output predictions from the 2D CNN did not undergo subsequent post-processing steps of time-

correction of the predicted radioactivity values and sorting into one of the classification bins to estimate

cell number in the images. The 2D CNN was used solely for comparison with the 3D CNN and GBDT algo-

rithms in the study.

Gradient-boosted decision tree architecture

As a basic machine learning algorithm, gradient boosting decision tree (GBDT) acts as an ensemble of de-

cision tree with a flowchart-like structure that performs both classification and regression tasks. A GBDT

predictor usually displays strong predictive power, which is robust to outliers. In the present work, we focus

on the regression performance of the GBDT predictor and compare the algorithms performance to our pri-

mary 3D CNN algorithm employed throughout the study.

The GBDT model was set up through the following algorithm: Suppose we have a training set

fðxi; yiÞjxi ˛Rm; yi ˛Rgni = 1. Initially, we built the first gradient boosting tree to fit training data, and the pre-

dicted label of Tree 1 is p1ðxiÞ. Then the residues were displayed as r2ðxiÞ = yi � p1ðxiÞ. If Tree 1 does not fit
the data perfectly, then r2ðxiÞs0. Therefore, we built Tree 2 to compensate for the shortcoming of the ex-

isting Tree 1. Tree 2 is designed to fit the dataset fðxi; r2ðxiÞÞjxi ˛Rm; r2ðxiÞ˛Rgni = 1. Similarly, the predicted

label of Tree 2 is p2ðxiÞ and the residues can be showed as r3ðxiÞ = r2ðxiÞ � p2ðxiÞ = yi � p1ðxiÞ � p2ðxiÞ,
which leads the predicted label for initial training set fðxi; yiÞgni = 1 for by combining Tree 1 and Tree 2 to be

p1ðxiÞ+p2ðxiÞ. We repeated the same procedure until rNðxiÞ/0. Hence, N consecutive Trees are built as

illustrated in Figure 2B. In general, the predictions of N Trees (Equation 3.1) are defined as
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byNðxÞ =
XN
j = 1

pjðxÞ (Equation 3.1)

The general loss function of Tree N (Equation 3.2) is defined as

LN =
Xn

i = 1

lðbyNðxiÞ; yiÞ (Equation 3.2)

where the square loss (Equation 3.3)

lðbyNðxiÞ; yiÞ =
ðbyNðxiÞ � yiÞ2

2
(Equation 3.3)

is equipped. Then, the general loss function L can be minimized along the gradient direction (Equation 3.4)

� vLN
vpNðxiÞ = yi � byNðxiÞ = rN+1ðxiÞ (Equation 3.4)

For the GBDT model, we first flatten the 3D images as a 1D array, which makes the feature size to be [# sli-

ces, z, x, y] = [104, 150, 180, 180]. Next, the initial feature of the training set was fed into the aforementioned

GBDT regressor for the prediction. Here, our model consists of a total of 30,000 trees with a 0.01 learning

rate. The predicted radioactivity outputs of the GBDT model were used solely for comparison with the 3D

CNN and did not undergo further post-processing for time-correction and cell number classification.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data are presented as mean G SD. Three metrics were used in this work to evaluate the performance of

different machine learning and deep learning regression models: root-mean-square deviation (RMSE),

mean absolute error (MAE), and Pearson correlation coefficient (PCC). Statistical comparisons between

two groups were evaluated by Student t test and corrected by one-way ANOVA for multiple comparisons

using the SPSS statistical software (IBM, Armonk, NY). Here, the scikit-learn package in Python was applied

to calculate the RMSE, MAE, and PCC of each model. A similar K-Fold CV approach was used to split the

dataset of 150 image volumes into five total sets with four sets used for training and one test for testing

validation. For analysis of Intraclass Correlation Coefficient between model predicted measures of radio-

activity, true calibrator measured doses and corresponding cell numbers, the F-test was utilized. A value of

p < 0.05 was considered to indicate statistical significance.
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