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Binomial outcomes in dataset with some
clusters of size two: can the dependence of
twins be accounted for? A simulation study
comparing the reliability of statistical methods
based on a dataset of preterm infants
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Abstract

Background: The analysis of perinatal outcomes often involves datasets with some multiple births. These are
datasets mostly formed of independent observations and a limited number of clusters of size two (twins) and maybe
of size three or more. This non-independence needs to be accounted for in the statistical analysis. Using simulated
data based on a dataset of preterm infants we have previously investigated the performance of several approaches to
the analysis of continuous outcomes in the presence of some clusters of size two. Mixed models have been
developed for binomial outcomes but very little is known about their reliability when only a limited number of small
clusters are present.

Methods: Using simulated data based on a dataset of preterm infants we investigated the performance of several
approaches to the analysis of binomial outcomes in the presence of some clusters of size two. Logistic models, several
methods of estimation for the logistic random interceptmodels and generalised estimating equations were compared.

Results: The presence of even a small percentage of twins means that a logistic regression model will underestimate
all parameters but a logistic random intercept model fails to estimate the correlation between siblings if the
percentage of twins is too small and will provide similar estimates to logistic regression. The method which seems to
provide the best balance between estimation of the standard error and the parameter for any percentage of twins is
the generalised estimating equations.

Conclusions: This study has shown that the number of covariates or the level two variance do not necessarily affect
the performance of the various methods used to analyse datasets containing twins but when the percentage of small
clusters is too small, mixed models cannot capture the dependence between siblings.

Keywords: Binomial outcomes, Small clusters, Generalised mixed models, Generalised estimating equations,
Perinatal outcomes

Background
In clustered data the basic assumption that observa-
tions are independent is violated within clusters and an
adequate statistical analysis must be performed. Various
authors explored the issue in the area of randomised
controlled trials [1, 2] where various methods have been
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proposed such as using cluster-level summary measures
[3] and mixed models [4]. In cluster trials, the clusters
are typically quite large but the number of clusters is rel-
atively small. This situation contrasts strongly with the
structure of the data in samples of infants where most
observations are independent (i.e. from singleton births)
but a few are clustered (i.e. from multiple births). Here
we ignore possible higher level of clustering like at hos-
pital level. This is often the case in datasets of preterm
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infants where there may be as many as 20%multiple births
such as in the United Kingdom Oscillation Study (UKOS)
[5, 6]. For these reasons, samples of birth data contain
mostly clusters of size one, i.e. singleton births, and the
remaining observations are in clusters of size two (twins)
or more for higher order multiple birth. This therefore
produces a mix of data where the majority are inde-
pendent (i.e. from singletons), but a minority are non-
independent (i.e. from the multiple birth siblings). Before
methods to control for non independent data were widely
available, researchers analysing studies among preterm
infants have tended to ignore the non-independence in
such data and treated the multiple births as if they were
independent observations [7]. Recalling what we already
mentioned in [8], researchers have discussed the meth-
ods available to deal with clustering in different contexts;
Gates adjusted the standard error for a binary outcome
in multiples [9], Carlin analysed twins using mixed mod-
els and GEE [10], Louis discussed a range of approaches
including mixed models and GEEs for analysing stud-
ies of repeated pregnancies [11], and Shaffer also com-
pared mixed models and GEEs for continuous and binary
outcome models without covariates [12]. In a previous
publication [8], we explored the effects of having differ-
ent proportions of multiples in models with a continuous
outcome that included different types of covariates. Our
conclusions were that there were no particular threshold
in the proportion of multiples from which mixed mod-
els would start making a difference. For any percentage
of twins, the standard errors were better estimated from
mixed models than from a linear regression. There were
only very limited problems of convergence.
However, there is only limited evidence available on the

effect of not controlling for the dependence of twins for
binary outcomes. A comparison of methods of analysis of
binomial outcomes by Ananth et al. [13] indicated large
differences in values obtained for the standard errors of
estimates in a dataset containing only twin pairs. A recent
work by Ying et al. [14] looked into at the behaviour of
various methods of analysis of binary outcomes in simu-
lated datasets with either limited fixed number of small
clusters at 10% or a number of clusters of size two depend-
ing on covariate values. Similarly McNeish [15] simulated
datasets with small cluster size focusing on the perfor-
mance of GEE models but did not cover the case where
most cluster are of size one. Their conclusions were that
all methods compared well but the logistic regression pro-
vided biased results for one scenario with sample size
200.
Therefore open questions remain as for what to expect

faced with a real dataset containing a realistic percent-
age of twins when a true binomial outcome needs to be
analysed. These questions include how much the per-
centage of twins matters, the number of covariates, and

the size of the effect of covariates and their nature (cat-
egorical or continuous) for results to be reliable. Using
a similar simulation strategy as in [8] based on a real
dataset, we compare parameter estimates and standard
errors obtained by three models with several widely avail-
able methods of estimation: generalized linear regression
(no control for dependence of siblings), generalised lin-
ear mixed models and generalized estimating equations.
As well as varying the percentage of twins, we also look
at the effect of the random intercept variance and of the
number of covariates on the reliability of parameter esti-
mates and their standard error as well as the occurrence of
non convergence in mixed models. To illustrate this work
we surveyed which methods have been used in recently
published articles in some high impact journals where
datasets of preterm infants were analysed.

Method
Survey
A small survey of how twins are accounted for in the
analysis of datasets of preterm children was performed in
order to illustrate the practice. Three journals were cho-
sen, two general, the British Medical Journal (BMJ) and
the Journal of the American Medical Association (JAMA)
and one specialist, Pediatrics. The aim of the survey was
to record the percentage of twins in the datasets anal-
ysed and whether the correlation between siblings was
accounted for, and how. The aim was to find 10 studies
in the general journals and 20 in the specialist one within
the last ten years. Studies in which we felt it was justi-
fied to exclude multiple births because multiple birth was
a confounding factor, were not considered for the survey.

Simulation study
We follow a similar simulation strategy as in our previous
work [8]. Datasets were simulated using the distributions
of variables obtained from the original dataset of the
UKOS study [5].

Simulated data
Simulation of the covariates: Simulation parameters were
obtained from the UKOS dataset including 797 live birth
preterm infants among which 190 were from a multi-
ple birth. The two binary outcomes of interest are death
(before hospital discharge) and oxygen dependence at 36
weeks post-menstrual age (O2 dep) of which there were
26% and 56% respectively. These outcomes are commonly
used as main outcomes in neonatal trials. Only birth-
related covariates were considered so that the outcomes
were not playing any censoring role in the data.While here
death is considered as a binomial outcome in this simu-
lation study, it should be noted that useful information is
lost by ignoring the time to death and that a survival anal-
ysis should be preferred. The covariates we considered are
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birthweight (BW, in grams), sex, Apgar score evaluating
the physical condition of a newborn shortly after delivery
[16], gestational age (in weeks) and smoking status of the
mother because they were significant predictors of at least
one of the two outcomes of interest.
For each outcome, data were simulated generating four

covariates. The continuous covariates were simulated
assuming a multivariate normal model with parameters
obtained from the original dataset for single children and
twins separately using a separate model per set of lev-
els of categorical variables. This strategy will model the
dependence of the outcome with the size of the cluster.
We treated Apgar score as continuous but generated

values above 12 were replaced by 10 and generated val-
ues between 10 and 12 were replaced by 9. In this way
we obtained a distribution of scores similar to the orig-
inal one. Probabilities of all combinations of categorical
outcomes were obtained. These, together with means and
variance-covariance matrices, are provided as supplemen-
tary material.
Given a set of simulated covariates for infant j, a 2-level

model for the logit of the probability pij of death and O2
dep of infant j in cluster i is assumed:

logit(pij) = β0 + u0i + β1BWij + β2SEXij + . . .

where the type and number of covariates varied. The val-
ues of regression parameters (βs) were obtained for the
UKOS dataset using a random intercept model with the
Gauss-Hermite method of estimation. Those β param-
eters were similar to those obtained using a MCMC
method. The covariates and their β values used in the
simulations are shown in Table 1 and form the “true
parameters” to which other models will be compared.
The value for death or O2 dep. are then obtained ran-

domly following a Bernouili model with probability pij.
The following algorithm was used:

• Obtain the number of singletons ns and twin pairs nt
given the size of the dataset and the percentage of
cluster of size two.

• Obtain ns and nt sets of levels for categorical
variables using a multinomial random distribution

(for outcome death, sex only and for outcome O2
dep, sex and smoking).

• Given a combination of levels, the corresponding
vector of means and variance-covariance matrix is
used to obtain the continuous covariates using a
multivariate normal distribution for one singleton
child or for the two siblings in the case of twins.

• For each cluster, u0i is obtained from a normal
distribution N

(
0, σ 2

u0i
)
.

• Eq. 1 provides the probability of death or O2 dep.
• Given this probability, the outcome is obtained using

the corresponding binomial distribution.

For each scenario (sample size of cluster, percentage
of twins and variance) 5000 simulated datasets were
obtained. The fixed percentage of twins ranged from 2 to
20%. This range was chosen to be large enough to show
any trend but limited by the necessary time to run the
simulations. The number of clusters were 150, 500 and
1000. The random intercept variance σ 2

u0i were 0.5, 1 and
2. In order to check if the patterns observed with these
variances remained with increasing variance, a limited
number of simulations were also performed with variance
of 4 and 8.

Regressionmodels and analysis of results
Once simulated, the datasets were analysed using three
models: logistic regression model (logistic regression) ,
logistic random intercept model and generalized estimat-
ing equations (GEE). Three methods of estimation were
used for the multilevel models: penalised quasi-likelihood
(PQL), adaptive Gauss-Hermite (GH) with 5 point per
axis [17]. For these R packages glmmPQL, lme4 and
geepack were used.
Given a scenario, all parameter estimates for the inter-

cept and covariates in the model, standard errors and
when appropriate (logistic random intercept model) the
variance component, were collected. If a convergence
problem defined as an error message being returned
instead of estimated parameters, was reported then
“NA”s were collected in order to provide the percent-
age of non-convergence. For the PQL and GEE methods

Table 1 Parameters values for the simulation scenarios

Outcome Dependent variables

death intercept bweight (g) sex (male) gest. age (w) Apgar Variance* ICC

4 var. 10.70 -0.004 0.410 -0.039 -0.212 0.48 0.13

2 var. 3.037 -0.006 0.598 0.79 0.20

O2 dep intercept bweight (g) sex (male) gest. age (w) smoking Variance* ICC

4 var. 14.7 -0.0045 0.954 -0.058 0.654 2.80 0.47

2 var. 5.315 -0.006 1.001 2.95 0.48

*Random intercept, these values are given for information only, they were not used for the simulations
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of estimation, while the model almost always reported
estimates, those were, in few cases, of an unlikely mag-
nitude (1012). Therefore, we replaced all the parameter
estimates given by this method for a dataset in which the
estimation of at least one parameter was above 1000 in
absolute value by “NA” i.e. reporting non-convergence for
the corresponding method of estimation. This value was
arbitrary but estimates were either small or very large.
Therefore the choice of cut-point did not influence the
results.
Assessment of the different methods of analysis

included the bias of the estimates for the intercept, birth-
weight and sex for both outcomes and number of covari-
ates as well as the variance of the intercept for logistic
random intercept models, how accurately the standard
error measured the variability of the estimates and the
overall quality of estimates with the mean squared error.
The relative bias for the conditional models (Logistic

regression and and mixed logistic regression) was calcu-
lated as the mean value, over all the simulated datasets for
a given scenario for which convergence was reached, of

(
β̂ − β

)
/β .

Where the β̂s are the estimated parameters obtained from
the simulated data and the βs are the parameters used
to simulate the data. Therefore a positive bias indicates
that on average the estimated parameter overestimated
the true value.
In order to obtain the relative bias for the population

average model (GEE), as the “true β values” are only
known for the random intercept model, we used the fol-
lowing approximate relationship between marginal (GEE)
and conditional (logistic random intercept model, logistic
Regression) parameters (see [18] Chap. 7.4)

βGEE =
√

1
0.346 ∗ σ 2

u0 + 1
βlogisticregression

where σ 2
u0 is the true random intercept variance. While

the parameters estimated from a logistic regression model
differ from the one estimated from a random intercept
model, we assume that they are interpreted in the same
way by researchers and therefore we do not use any
corrections for them in the calculation of bias.
We also provided the empirical bias with 95% confi-

dence intervals by calculating the difference between a
mean estimate over all simulated datasets.
The coverage of the 95% confidence interval was

assessed calculating the proportion of simulated datasets
for which β is included in the confidence interval [ β̂ −
1.96SE ; β̂+1.96SE] (using for GEE βGEE instead of β).We
based this proportion on the simulated datasets for which
the estimation algorithm converged.

The overall quality of the parameter estimates is mea-
sured with the mean squared error (using for GEE βGEE
instead of β).

MSE = var(β̂) +
(
E(β̂) − β

)2
.

Results
Survey
The aim was to obtain 10 studies in the two general
journals and 20 in the specialised one. Commencing in
2013, we have been able to survey 38 studies including
preterm infants up to 2012 for Pediatrics, 2003 for JAMA,
and 2004 for the BMJ. They showed that only about a
third (12/38) mentioned the percentage of multiple birth
which varied from 10 to 30%. Two studies did remove
multiple birth from the analysis without justification (the
effects of being preterm were being analysed). Only a fifth
(8/38) of studies mentioned controlling for the non inde-
pendence of sibling in their analysis. The most frequent
method was to use robust estimates for standard errors
( 4/8), two studies used GEEs and one generalised lin-
ear mixed models. One study used multiple birth as a
covariate.

Simulation study
Convergence
Percentages of cases of non-convergence for each scenario
are reported in Table 2 for numbers of clusters of 150 and
500. The patterns of convergence were different for the
two outcomes but an effect of the number of clusters was
clear in both cases. For PQL and GEE there were scenar-
ios with a percentage of non-convergence above 1% for
a number of clusters of 150 whereas the estimation algo-
rithm always converged for sample sizes of 500 or more.
For the outcome death, the method of estimation GH had
percentage of non-convergence in the range of 2 to 19%
and 0 to 1% respectively for a number of clusters of 150.
There was also an effect of the percentage of clusters

of size two (twins) independent of the sample size effect.
For PQL and GEE the percentage of non-convergence
decreased with the percentage of clusters (e.g. death:
2 covariates, number of cluster=150 GEE model, non-
convergence of 3% for 2% of twins and 0% for 20% of twins,
variance=2) whereas the percentage of non-convergence
increased for GH with the percentage of twins.
For GEE and PQL, the effect of the cluster level vari-

ance seems very small but for GH the effect is that
increasing the variance does increase the percentage of
non-convergence.
The effect of the number of covariates depends on the

model coefficients as far as GH are concerned. While for
the outcome death there were slightly less instances of
non-convergence in models with two covariates than with
four covariates for GEE and PQL, the picture is different
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Table 2 Percentage of non-convergence for 150 and 500 clusters

Outome/ Method of Random intercept Perc. of non- Random intercept Perc. of non-
No of clusters estimation variance convergence* variance convergence*

2 covariates 4 covariates

death PQL 0.5 to 2 3 to 0% 0.5 to 2 53 to 0%

150 GH 0.5 to 2 0 to 1% 0.5 to 2 0 to 1%

GEE 0.5 to 2 3 to 1% 0.5 to 2 3 to 1%

death PQL 0.5 to 2 ≤ 1% 0.5 to 2 ≤ 1%

500 GH 0.5 to 2 0% 0.5 to 2 0%

GEE 0.5 to 2 ≤ 2% 0.5 to 2 ≤ 1%

O2 dep PQL 0.5 to 2 0% 0.5 to 2 18 to 0%

150 GH 0.5 20 to 27% 0.5 0%

1 19 to 28% 1 0%

2 18 to 28% 2 0%

GEE 0.5 to 2 5 to 0% 0.5 to 2 6 to 0%

O2 dep PQL 0.5 to 2 0% 0.5 to 2 0%

500 GH 0.5 37 to 48 0.5 ≤ 1%

1 35 to 46% 1 ≤ 1%

2 34 to 46% 2 ≤ 1%

GEE 0.5 to 2 0% 0.5 to 2 ≤ 1%

*for percentage of twins ranging from 2 to 20%

for GH with either the same low instance or much more
for two covariates than with 4.
Having two simulated outcomes showed the potential

differences that model parameters can have on conver-
gence. For the outcome death the percentage of non-
convergence were very small for GH. For the outcome O2
dep, models with two covariates had a percentage of non-
convergence for the method GH which increased with
the number of clusters and reached the range of 55-64%
for 1000 clusters and variance of 0.5 (data not shown).
Such problems were not seen for the model with four
covariates.

Estimation of regression parameters
Given a simulation model the patterns of bias for the
parameter estimates of intercept, birthweight and sex
were similar showing that each method of estimation pro-
vided similarly good or poor estimates for all parameters.
There is no distinction to be made between continu-
ous and categorical covariates. The relative bias for the
parameter of birthweight are presented in Figs. 1 and 2.
The relative bias for GEE estimates was not affected by

sample size, percentage of twins, number of covariates or
level two variance and was consistently over all scenar-
ios the model which provided the least biased estimates.
The bias for the logistic regression was not affected by
sample size, percentage of twins or number of covariates
but increased with increasing random intercept variance.

The PQL method of estimation provides extremely unre-
liable estimates with very variable bias. The method of
estimation GH provides estimates with equal or similar
bias in most situations we have simulated. The amount
of bias decreases with increasing percentage of twins
but increases with increasing random intercept variance.
There is a similar increase in bias for the logistic regres-
sion with the increase in random intercept variance.
The empirical bias with 95% confidence interval is given

in Table 3 for the sample size 150. While the method
which overall provides the smallest empirical bias is GEE
(but with larger standard errors for this bias leading to
some confidence intervals containing 0), logistic regres-
sion provides slightly more biased results than GH esti-
mates. This difference is marginal for small percentages of
twins but increases with percentage of twins as the bias for
GH decreases. Other than some case for GEE with sam-
ple size 150, none of the confidence intervals contained 0
(data not shown for sample size of 500 and 1000).
When the variance of the intercept increases the same

pattern of increased bias for logistic regression and logis-
tic random intercept methods can be observed (data not
shown).

Coverage of the 95% confidence interval
For most scenarios, there is predominantly an over-
coverage of the 95% confidence interval apart for the
PQL method and the GEE method if there are only two
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Fig. 1 Bias of estimates for the variable Birthweight, outcome death. Logistic: ◦, random intercept, PQL: +, random intercept Gauss-Hermite: ♦, GEE:�

variables. The mean coverages over all sample sizes are
provided in Table 4. Over-coverage indicates that the
results are conservative with increase Type II error (here
the true value is not zero) [19]. For GEE with two variable,
the coverage is very low indicating that the standard errors
are two small.

Mean squared error (MSE)
GEE is the method which consistently provides the small-
est mean squared error (Figs. 3 and 4). For larger sample
sizes the difference with logistic regression and GH can
be marginal however. GEE is also the method which is the

least affected by the actual percentage of twins. The ran-
dom intercept variance affects the MSE for all methods
(increasing MSE with increasing variance).

Estimation of the random variance
The logistic random intercept method of estimations GH
fails to adequately estimate the variance of the random
intercept if the number of clusters with two elements is
too small. This might explain why the bias of estimates is
similar to logistic regression when the number of clusters
of size two is smaller. The mean variance estimations for
the GH method are presented in Table 5.
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Fig. 2 Bias of estimates for the variable Birthweight, outcome O2 dependence at 36 weeks. Logistic: ◦, random intercept, PQL: +, random intercept
Gauss-Hermite: ♦, GEE: �

Discussion
The analysis of dataset of preterm infants
Our review showed that datasets with preterm infants
may contain percentages of multiple birth between 10
and 30%. It seems that in most cases researchers take
no particular statistical precaution to allow for the non-
independence of twins in a regression model. In our small
survey half the studies which did correct for clustering
used a robust estimate for the standard error. Our simu-
lation suggested that it might be an adequate solution as
a simple logistic regression will provide underestimated
standard errors. The two outcomes considered in this

work are true binomial outcomes but researchers need to
keep in mind that when a binomial outcome is in real-
ity a continuous outcome which has been dichtotomised,
then there are other issues than those encountered here.
Indeed much information is lost in the process and it is
easier to fit a mixed model on continuous outcomes than
on binomial outcomes. If suitable, alternative methods for
dichotomisation should be considered [20, 21].
The Gauss-Hermite quadrature method [22] for gen-

eralised linear mixed models has been introduced as an
alternative to the penalized quasi-likelihood which have
been shown to provide biased estimates. The Laplacian
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Table 3 Empirical bias (×10−4) for birthweight and 95% confidence interval for sample size 150

Logistic regression GLMM PQL GLMM GH GEE

Percent. Random Int. Empirical 95% Conf Empirical 95% Conf Empirical 95% Conf Empirical 95% Conf
Twins variance bias Interv. bias Interv. bias Interv. bias Interv.

Outcome Death 4 variables

0.02 2.00 9.60 [9.30 ;10.00] -4.30 [-7.30 ; -1.30] 7.10 [6.60 ; 7.60] 0.00 [-0.60 ; 0.60]

0.05 2.00 9.90 [9.60 ; 10.30] -45.90 [ -50.10 ; -41.70] 4.60 [4.00 ; 5.20] 0.30 [-0.20 ; 0.80]

0.10 2.00 9.90 [9.60 ; 10.30] -44.30 [ -48.40 ; -40.20] 0.90 [ 0.20 ; 1.70] 0.50 [0.20 ; 0.90]

0.20 2.00 9.80 [9.50 ; 10.20] -33.20 [-36.90 ; -29.50] -1.20 [-1.90 ; -0.40] 0.40 [0.10 ; 0.80]

0.02 1.00 5.60 [5.30 ; 6.00] -11.90 [-15.30 ; -8.50] 2.20 [1.60 ; 2.70] 0.10 [-0.20 ; 0.50]

0.05 1.00 5.60 [5.20 ; 6.00] -60.80 [-65.90 ; -55.80] -0.70 [-1.40 ; -0.00] 0.10 [-0.30 ; 0.50]

0.10 1.00 5.40 [5.00 ; 5.70] -61.40 [ -66.40 ; -56.30] -4.10 [-4.80 ; -3.30] -0.20 [-0.50 ; 0.20]

0.20 1.00 5.60 [5.20 ; 6.00] -47.20 [ -51.90 ; -42.40] -5.30 [-6.10 ; -4.50] -0.00 [-0.40 ; 0.30]

0.02 0.50 2.80 [2.50 ; 3.20] -14.30 [-17.90 ; -10.70] -1.80 [-2.40 ; -1.10] 0.00 [-0.50 ; 0.50]

0.05 0.50 2.70 [2.30 ; 3.10] -65.50 [-71.00 ; -60.10] -4.80 [-5.60 ; -4.10] -0.20 [-0.60 ; 0.10]

0.10 0.50 2.60 [2.20 ; 2.90] -64.00 [-69.30 ; -58.80] -6.90 [-7.80 ; -6.10] -0.50 [-0.90 ; -0.10]

0.20 0.50 2.60 [2.20 ; 2.90] -48.90 [-53.80 ; -43.90] -7.60 [-8.50 ; -6.80] -0.50 [-0.90 ; -0.20]

Outcome Death 2 variables

0.02 2.00 9.60 [9.30 ; 10.00] -4.30 [-7.30 ; -1.30] 7.10 [6.60 ; 7.60] 0.00 [-0.60 ; 0.60]

0.05 2.00 9.90 [9.60 ; 10.30] -45.90 [-50.10 ; -41.70] 4.60 [4.00 ; 5.20] 0.30 [-0.20 ; 0.80]

0.10 2.00 9.90 [9.60 ; 10.30] -44.30 [-48.40 ; -40.20] 0.90 [0.20 ; 1.70] 0.50 [0.20 ; 0.90]

0.20 2.00 9.80 [9.50 ; 10.20] -33.20 [-36.90 ; -29.50] -1.20 [-1.90 ; -0.40] 0.40 [0.10 ; 0.80]

0.02 1.00 5.60 [5.30 ; 6.00] -11.90 [-15.30 ; -8.50] 2.20 [1.60 ; 2.70] 0.10 [-0.20 ; 0.50]

0.05 1.00 5.60 [5.20 ; 6.00] -60.80 [-65.90 ; -55.80] -0.70 [-1.40 ; -0.00] 0.10 [-0.30 ; 0.50]

0.10 1.00 5.40 [5.00 ; 5.70] -61.40 [-66.40 ; -56.30] -4.10 [-4.80 ; -3.30] -0.20 [-0.50 ; 0.20]

0.20 1.00 5.60 [5.20 ; 6.00] -47.20 [-51.90 ; -42.40] -5.30 [-6.10 ; -4.50] -0.00 [-0.40 ; 0.30]

0.02 0.50 2.80 [2.50 ; 3.20] -14.30 [-17.90 ; -10.70] -1.80 [-2.40 ; -1.10] 0.00 [-0.50 ; 0.50]

0.05 0.50 2.70 [2.30 ; 3.10] -65.50 [-71.00 ; -60.10] -4.80 [-5.60 ; -4.10] -0.20 [-0.60 ; 0.10]

0.10 0.50 2.60 [2.20 ; 2.90] -64.00 [-69.30 ; -58.80] -6.90 [-7.80 ; -6.10] -0.50 [-0.90 ; -0.10]

0.20 0.50 2.60 [2.20 ; 2.90] -48.90 [-53.80 ; -43.90] -7.60 [-8.50 ; -6.80] -0.50 [-0.90 ; -0.20]

Outcome O2 Dep. 4 variables

0.02 2.00 9.60 [9.30 ; 10.00] -4.30 [-7.30 ; -1.30] 7.10 [6.60 ; 7.60] 0.00 [-0.60 ; 0.60]

0.05 2.00 9.90 [9.60 ; 10.30] -45.90 [-50.10 ; -41.70] 4.60 [4.00 ; 5.20] 0.30 [-0.20 ; 0.80]

0.10 2.00 9.90 [9.60 ; 10.30] -44.30 [-48.40 ; -40.20] 0.90 [0.20 ; 1.70] 0.50 [0.20 ; 0.90]

0.20 2.00 9.80 [9.50 ; 10.20] -33.20 [-36.90 ; -29.50] -1.20 [-1.90 ; -0.40] 0.40 [0.10 ; 0.80]

0.02 1.00 5.60 [5.30 ; 6.00] -11.90 [-15.30 ; -8.50] 2.20 [1.60 ; 2.70] 0.10 [-0.20 ; 0.50]

0.05 1.00 5.60 [5.20 ; 6.00] -60.80 [-65.90 ; -55.80] -0.70 [-1.40 ; -0.00] 0.10 [-0.30 ; 0.50]

0.10 1.00 5.40 [5.00 ; 5.70] -61.40 [-66.40 ; -56.30] -4.10 [-4.80 ; -3.30] -0.20 [-0.50 ; 0.20]

0.20 1.00 5.60 [5.20 ; 6.00] -47.20 [-51.90 ; -42.40] -5.30 [-6.10 ; -4.50] -0.00 [-0.40 ; 0.30]

0.02 0.50 2.80 [2.50 ; 3.20] -14.30 [-17.90 ; -10.70] -1.80 [-2.40 ; -1.10] 0.00 [-0.50 ; 0.50]

0.05 0.50 2.70 [2.30 ; 3.10] -65.50 [-71.00 ; -60.10] -4.80 [-5.60 ; -4.10] -0.20 [-0.60 ; 0.10]

0.10 0.50 2.60 [2.20 ; 2.90] -64.00 [-69.30 ; -58.80] -6.90 [-7.80 ; -6.10] -0.50 [-0.90 ; -0.10]

0.20 0.50 2.60 [2.20 ; 2.90] -48.90 [-53.80 ; -43.90] -7.60 [-8.50 ; -6.80] -0.50 [-0.90 ; -0.20]

Outcome O2 Dep. 2 variables

0.02 2.00 9.60 [9.30 ;10.00] -4.30 [-7.30 ; -1.30] 7.10 [6.60 ; 7.60] 0.00 [-0.60 ; 0.60]

0.05 2.00 9.90 [9.60 ; 10.30] -45.90 [-50.10 ; -41.70] 4.60 [4.00 ; 5.20] 0.30 [-0.20 ; 0.80]
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Table 3 Empirical bias (×10−4) for birthweight and 95% confidence interval for sample size 150 (Continued)

0.10 2.00 9.90 [9.60 ; 10.30] -44.30 [-48.40 ; -40.20] 0.90 [0.20 ; 1.70] 0.50 [0.20 ; 0.90]

0.20 2.00 9.80 [9.50 ; 10.20] -33.20 [-36.90 ; -29.50] -1.20 [-1.90 ; -0.40] 0.40 [0.10 ; 0.80]

0.02 1.00 5.60 [5.30 ; 6.00] -11.90 [-15.30 ; -8.50] 2.20 [1.60 ; 2.70] 0.10 [-0.20 ; 0.50]

0.05 1.00 5.60 [5.20 ; 6.00] -60.80 [-65.90 ; -55.80] -0.70 [-1.40 ; -0.00] 0.10 [-0.30 ; 0.50]

0.10 1.00 5.40 [5.00 ; 5.70] -61.40 [-66.40 ; -56.30] -4.10 [-4.80 ; -3.30] -0.20 [-0.50 ; 0.20]

0.20 1.00 5.60 [5.20 ; 6.00] -47.20 [-51.90 ; -42.40] -5.30 [-6.10 ; -4.50] -0.00 [-0.40 ; 0.30]

0.02 0.50 2.80 [2.50 ; 3.20] -14.30 [-17.90 ; -10.70] -1.80 [-2.40 ; -1.10] 0.00 [-0.50 ; 0.50]

0.05 0.50 2.70 [2.30 ; 3.10] -65.50 [-71.00 ; -60.10] -4.80 [-5.60 ; -4.10] -0.20 [-0.60 ; 0.10]

0.10 0.50 2.60 [2.20 ; 2.90] -64.00 [-69.30 ; -58.80] -6.90 [-7.80 ; -6.10] -0.50 [-0.90 ; -0.10]

0.20 0.50 2.60 [2.20 ; 2.90] -48.90 [-53.80 ; -43.90] -7.60 [-8.50 ; -6.80] -0.50 [-0.90 ; -0.20]

method is similar to the Gauss-Hermite but uses less
interpolation points and therefore is quicker to converge.
However these methods are known to have difficulties
converging and it was not known how they would behave
in cases with a limited number of very small clusters of
size 2 while the rest of the data are independent. Our
simulations have shown that the convergence situation
will not be determined by factors like the percentage of

small clusters or the number of covariates alone. How-
ever in the majority of the scenarios we simulated, the GH
method had no problem converging even for the small-
est sample size. In practice it will be difficult to know
at the time of planning a study if the model will con-
verge. It is therefore wise to plan an alternative in case
of non-convergence. While GEE models have performed
well in our simulations they can be an alternative only

Table 4 Mean coverage of the 95% confidence interval by the true value over the three sample sizes for outcome Birthweight

Death 4 covar. Death 2 covar. O2 dep. 4 covar O2 dep 2 covar
Perc. Random inter. var Random inter. var Random inter. var Random inter. var

Twins 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2

Logistic regression

2% 0.99 1.00 1.00 0.93 0.92 0.91 1.00 1.00 1.00 0.99 0.99 0.99

5% 0.99 1.00 1.00 0.95 0.94 0.94 1.00 1.00 1.00 0.99 0.99 0.99

10% 0.99 1.00 1.00 0.98 0.98 0.98 1.00 1.00 1.00 1.00 1.00 1.00

20% 0.99 1.00 1.00 0.99 0.98 0.98 1.00 1.00 1.00 1.00 1.00 1.00

Mixed logistic regression, PQL

2% 0.67 0.66 0.68 0.79 0.79 0.82 0.69 0.71 0.76 0.95 0.96 0.97

5% 0.59 0.58 0.58 0.91 0.91 0.92 0.76 0.79 0.85 1.00 1.00 0.99

10% 0.57 0.56 0.58 0.96 0.96 0.97 0.87 0.89 0.93 1.00 1.00 1.00

20% 0.56 0.55 0.60 0.99 0.99 0.99 0.95 0.96 0.97 1.00 1.00 1.00

Mixed logistic regression, Gauss-Hermite

2% 0.99 1.00 1.00 0.94 0.96 0.97 1.00 1.00 1.00 0.99 1.00 1.00

5% 0.98 0.99 0.99 0.94 0.96 0.98 1.00 1.00 1.00 0.99 1.00 1.00

10% 0.98 0.98 0.99 0.94 0.97 0.99 1.00 1.00 1.00 0.99 1.00 1.00

20% 0.97 0.97 0.98 0.95 0.98 0.99 1.00 1.00 1.00 0.99 1.00 1.00

GEE

2% 0.98 0.98 0.98 0.50 0.56 0.60 0.99 0.99 0.99 0.59 0.67 0.77

5% 0.98 0.98 0.98 0.54 0.63 0.68 1.00 1.00 1.00 0.66 0.76 0.86

10% 0.98 0.98 0.98 0.58 0.71 0.84 1.00 1.00 1.00 0.71 0.83 0.93

20% 0.98 0.98 0.98 0.65 0.80 0.92 1.00 1.00 1.00 0.78 0.90 0.97
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Fig. 3Mean squared error for the variable Birthweight, outcome death. Logistic: ◦, random intercept, PQL: +, random intercept Gauss-Hermite: ♦,
GEE: �

if population averages are of interest for the research
questions.

Reliability of estimates and coverage of 95% confidence
interval
The choice of a method of analysis for data with a small
number of clusters of size two depends on the purpose of
the analysis. But if the aim is to compare two groups and,
as for an randomised control trial, test hypotheses based
for example on p-values, i.e significance of the test, then
both reliable estimates and standard error are important.
We have see that in most cases there is an over-coverage
of the 95% confidence interval indicating that the results

are conservatif appart for PQL and GEE if the number of
covariate is two.
In the case of logistic regression, parameters will be

underestimated as well as for GH methods for logistic
random intercept models, though to a lesser extent espe-
cially when the number of twins increases. The results of
a statistical test and the coverage of a confidence interval
depend also on the bias of the parameter estimates and
this should be taken into account as well as the precision
of the standard error.
The similarity of results between logistic random

intercept (GH method) and logistic models for bias of
estimates could be explained by the inability of the GH
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Fig. 4Mean squared error for the variable Birthweight, outcome O2 dependence at 36 weeks. Logistic: ◦, random intercept, PQL: +, random intercept
Gauss-Hermite: ♦, GEE: �

method to correctly estimate the variance component
of the model and therefore they behave like logistic
regression. As the estimation of the variance component
improves with increasing percentage of twins, then the
underestimation of parameters which remains constant
for the logistic regression, is reduced for the logistic ran-
dom intercept model. As the random intercept model
tends to underestimate the true variability, it may provide
misleading results in terms of precision.

Strength, limitation and further work
The strength of this study is that we based our simulation
scenarios on a real dataset and considered two separate
outcomes that are commonly used in neonatal research.
We varied our scenarios so to evaluate how much the
results obtained were dependent on the percentage of

twins, sample size, variance, etc. The range of variance
simulated reflected the range we saw within the two out-
comes we simulated (see Table 1).
However we only tested methods of estimation imple-

mented in R. The bias for the estimates for GEE were
obtained using an approximative formula and not the GEE
estimates form the real data. Doing so may have given
slightly different results for bias estimates. The results are
based on a single dataset with two different outcomes
and on models with a limited number of covariates. This
was due to the restricted availability of statistically sig-
nificant covariates in the dataset. However there was no
evidence of negative effects on the reliability of any of
the models when increasing the number of covariates
from two to four. The effect of fitting a less parsimo-
nious model remain unknown. There are indications that
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Table 5 Estimated random intercept variance from mixed logistic regression model (Gauss-Hermite estimation)

Death 4 covar. Death 2 covar.

Perc. Twins Random inter. var Random inter. var

0.5 1 2 0.5 1 2

2% 0.60 0.45 0.32 0.69 0.60 0.36

(2.54) (2.05) (1.39) (2.85) ( 0.74) (1.92)

5% 0.96 0.84 0.79 1.01 0.73 0.76

(3.21) (2.78) (2.46) (3.45) (1.27) (2.90)

10% 1.25 1.33 1.39 1.24 1.24 1.20

(3.73) (3.75) (3.47) (3.85) (3.65) (3.27)

20% 1.37 1.58 1.86 1.19 1.50 1.84

(3.55) (3.58) (3.69) (3.33) (3.53) (3.67)

O2 dep. 4 covar O2 dep 2 covar

2% 0.08 0.08 0.10 0.06 0.07 0.08

(0.23) (0.10) (0.10) (0.08) (0.08) (0.09)

5% 0.15 0.16 0.21 0.10 0.13 0.17

(0.44) (0.31) (0.31) (0.16) (0.19) (0.20)

10% 0.19 0.26 0.36 0.14 0.21 0.30

(0.43) (0.46) (0.46) (0.24) (0.35) (0.34)

20% 0.23 0.37 0.59 0.20 0.32 0.53

(0.34) (0.45) (0.54) (0.25) (0.32) (0.43)

Mean value over all sample sizes (Standard deviation)

the probability of the outcome may have an effect on the
accuracy of the estimates for the logistic regression and
logistic random intercept methods. This was not explicitly
tested in this work and further research should be done to
assess this.
Other methods of estimation could be investigated like

the stochastic approximation expectation maximisation
algorithm [23]. The MCMC method of estimation for
the random intercept model has not been used in this
work due to the difficulties of checking the convergence
of the algorithm in an automated way, which would have
been suitable for a large number of simulated datasets.
However this alternative method of estimation could be
considered for the analysis of data with small clusters.

Conclusion
Our simulation study has shown that there is no single
best method for the analysis of binomial outcomes with a
restricted number of clusters of size two. It is a question
of balance between the method offering the least bias in
parameter estimates and the best measure of precision for
these estimates. The GEE method seems in that respect
to be safest in all situations. However there are indica-
tions, when they converge, that for larger percentage of
twins, estimates are far less biased with the GH method
of estimation for logistic random intercept with standard

errors being acceptable. Therefore we recommend the
following:

• Overall GEE method may be a reliable choice but
provides population average effects;

• If the percentage of twins is large (above 10%) then
the random intercept model with Gauss-Hermite
method of estimation will be more reliable;

• If the logistic random intercept model does not
converge even with a large percentage of twins then
one could try to modify the starting value for the
estimating algorithm or use either a logistic
regression which will provide underestimated effects
with small standard errors or use GEE.
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