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Abstract 

Background:  We present “Ask Ernö”, a self-learning system for the automatic analysis of NMR spectra, consisting of 
integrated chemical shift assignment and prediction tools. The output of the automatic assignment component 
initializes and improves a database of assigned protons that is used by the chemical shift predictor. In turn, the predic-
tions provided by the latter facilitate improvement of the assignment process. Iteration on these steps allows Ask Ernö 
to improve its ability to assign and predict spectra without any prior knowledge or assistance from human experts.

Results:  This concept was tested by training such a system with a dataset of 2341 molecules and their 1H-NMR spec-
tra, and evaluating the accuracy of chemical shift predictions on a test set of 298 partially assigned molecules (2007 
assigned protons). After 10 iterations, Ask Ernö was able to decrease its prediction error by 17 %, reaching an average 
error of 0.265 ppm. Over 60 % of the test chemical shifts were predicted within 0.2 ppm, while only 5 % still presented 
a prediction error of more than 1 ppm.

Conclusions:  Ask Ernö introduces an innovative approach to automatic NMR analysis that constantly learns and 
improves when provided with new data. Furthermore, it completely avoids the need for manually assigned spectra. 
This system has the potential to be turned into a fully autonomous tool able to compete with the best alternatives 
currently available.
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Background
The automation of chemical analysis by nuclear mag-
netic resonance (NMR) spins around two problems: the 
forward problem of predicting the NMR spectra of a 
given molecule, and the inverse problem of elucidating 
the molecular structure that generates a given experi-
mental spectrum. The forward problem is solved, in 
principle, by quantum mechanics: molecular structure 
determines a unique Hamiltonian from which all meas-
urable NMR parameters can be computed. However, 

this solution is impractical in most cases of interest. 
First, the ab  initio prediction on a personal computer 
of the NMR parameters (chemical shifts and scalar 
couplings) for a small molecule takes at least as long as 
the actual experiments. Second, an isolated molecule is 
actually a very poor model for a real NMR spin-system 
in solution, as it ignores solvent effects and the exist-
ence of multiple conformations. Accounting for these 
issues, if possible, would imply even longer calcula-
tions. Thus, ab initio prediction of NMR parameters is 
not a suitable approach for automatic analysis of NMR 
data.

In practice, the forward problem of NMR prediction 
is handled by semi-empirical methods based on previ-
ous knowledge about typical chemical shifts. Indeed, 
several commercial packages exist that perform NMR 
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prediction based on models adjusted to large databases of 
observed chemical shifts [1–9]. To build such databases 
nuclei must be assigned to observed chemical shifts, a 
task that concerns the much more challenging inverse 
problem. Furthermore, predicted chemical shifts play an 
important role in the assignment process as well. The two 
problems are thus strongly related, a fact that poses an 
important limitation to the automation of NMR analy-
sis. This reflects in existing computational tools for NMR 
elucidation and assignment: either they are not fully-
automatic, requiring preliminary analysis by the user [10, 
11], or resort to chemical shift predictions [10, 12–18] 
that rely on databases of spectra assigned ‘manually’ by 
trained experts. Regardless of the approach, a significant 
amount of labour is involved that is certainly not devoid 
of human errors.

We can turn this issue around by noting that the strong 
relation between the forward and inverse problems 
means that progress in one direction improves the other 
[19]. Indeed, successful assignment of a spectrum gener-
ates information that can enrich the database used by an 
NMR predictor. In the opposite direction, more accurate 
and reliable chemical shift predictions facilitate rejection 
of non-viable assignments.

This relation then allows to devise a fully automatic 
assignment and prediction system that progressively 
improves its capabilities. Learning ex nihilo, however, 
requires an automatic assignment method that is able to 
assign several spectra without resorting to chemical shift 
prediction. We developed such method elsewhere [20] 
and use it here to create Ask Ernö,1 a fully autonomous 
assignment—prediction program.

Methods
The concept behind Ask Ernö is summarized in Fig.  1. 
Automatic assignment of a nucleus in a molecule asso-
ciates a substructure (the nucleus and its surroundings) 
with an observed chemical shift. This information can 
be stored in a database and used to predict chemical 
shifts. As the database grows, the accuracy of the predic-
tor improves. The improved predictor, in turn, provides 
better chemical shift constraints to be used in subse-
quent assignments. Ask Ernö learns by running repeated 
assignment cycles on a given training set, using each 
new assignment to improve its predictions in the next 
cycle.

Ask Ernö was implemented as a proof of concept rather 
than a full-fleshed assignment and prediction tool. For 
this reason, it was designed with small molecules in mind 
and tested only with 1H NMR data.

1  In reference to Ernö Pretsch and his classic book compiling thoroughly 
the necessary information for humans to assign spectra [21].

Chemical shift prediction
Each entry in the database for chemical shift prediction 
consists of two terms:

• • F: a molecular fragment around a proton, comprising 
the substructure spanned by all atoms up to n bonds 
from it, with n ∊ {1, 2,…}. We refer to this fragment as 
the n-sphere around the proton and to n as its radius 
or size (see Fig.  2). These fragments are stored as 
Hierarchically Ordered Spherical description of Envi-
ronment (HOSE) codes [22].

• • δ: an observed chemical shift value for the proton.

These registers are generated by automatic assignment 
of experimental spectra (see Learning for details). Since 
the same fragment F may be observed and assigned in 
different molecules, multiple entries may exist for each 
fragment.

Predictions were done using the HOSE-based meth-
odology developed in CSEARCH for 13C-NMR [24] and 
later implemented in Modgraph NMRPredict [25]. For 
1H-NMR it works as follows: the predictor spans the 
n-sphere of radius nmax around the proton of interest, 
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encodes the resulting fragment as a HOSE code, and 
queries it on the database. If the query is successful, the 
median δ over all matches is returned as the predicted 
chemical shift, with an uncertainty ε equal to their stand-
ard deviation. If no matching entries are found, a new 
query is sent for the n-sphere of radius nmax − 1 around 
the proton and so on, until a successful match is found or 
the radius of the sphere is below nmin. In the latter case 
the predictor returns a failed status.

Assignment
We used an automatic assignment method previously 
described in [20] that performs fully automatic peak-
picking and assignment of chemical shifts based on 
peak integrals (signal intensity), 2D spin–spin correla-
tions, and chemical shifts. The assignment routine uses 
a symmetry-constrained branch and bound optimization 
that achieves a thorough exploration of the whole solu-
tion space. The result is a list of of assignments, ranked 
according to how well they fit the observed data. This 
automatic assigner has been shown to yield good results 
even if no chemical shift data is provided, which is of 
great importance for the present development.

Since we only used 1H-NMR spectra, assignments 
were performed exclusively on the basis of integration 
and chemical shift data. The auto-assigner was config-
ured to seek for assignments that perfectly matched the 
observed integrals (rounded to the closest integer), and 
that matched the predicted and observed chemical shifts 
(when available) with an error no greater than 3 times the 
prediction’s uncertainty at the current iteration. For this 
purpose, the uncertainty was estimated as the standard 
deviation of the sample of observed chemical shifts on 
which the prediction is based (see Chemical shift predic-
tion above), multiplied by the following factor:

where n is the size of the sample and I is the index of 
the current iteration (see Learning below). This factor 
contributes significantly to controlling the propagation 
of error, since the standard deviation is a poor estima-
tor of the uncertainty for small n or I. Furthermore, for 
predictions based on less than two matches the allowed 
chemical shift error was set to the maximum of 20 ppm, 
considering that no reasonable estimation of uncertainty 
is possible in that situation.

Learning
The learning algorithm is based on a self-organizing map 
and consists of a recursive cycle on the training data-
set, which is repeated until nothing new is learnt. The 
first learning iteration starts by running the automatic 
assignment algorithm without taking chemical shifts into 

1+ n
−I/2

account. We refer to it as iteration 0. Redundancy (e.g. 
multiple occurrences of methyl groups) is expected so 
that several possible assignments may be found for any 
given molecule; this is particularly true when no spin–
spin correlation data (2D NMR experiments) is available. 
Though a unique solution is unlikely, it is often possible 
to find some nuclei—chemical shift dyads that are pre-
sent in all assignments computed for a molecule and that 
can thus be assumed to be correct (see Table  1). These 
dyads are learnt by creating database entries for the cor-
responding n-spheres, with n = nmin,…, nmax (see Chemi-
cal shift prediction above).

Completing this process on all molecules of the training 
set finishes iteration 0. The system then proceeds with iter-
ations 1, 2, etc., in which newly learnt chemical shifts are 
used as additional restrictions for subsequent assignments. 
Database entries are batch-generated, that is, chemical 
shifts learnt in one cycle are only available starting from 
the next one. We found in preliminary tests that this 
approach slows down the learning process but yields bet-
ter results than the “on-line” approach. Learning continues 
until two consecutive iterations yield no improvement.

Experimental
Ask Ernö was implemented in Java (automatic assigner), 
MySQL (prediction database) and JavaScript (chemical 
shift predictor, self-learning loop and integration of the 
system’s components). The project is open source and 
available on GitHub [23], along with links to the data 
used for training and testing. A web service is available at 
https://www.cheminfo.org/flavor/askerno/index.html for 
anyone willing to evaluate the system.

The data used for the evaluation consisted of 2639 
molecules along with their experimental 1H-NMR spec-
tra. Examples of these spectra are included as Additional 
file  1. The dataset was assembled by random sampling 
from the Maybridge catalogue (2198 selected registers) 
and from our own library (441 selected registers). Data 
was split in a training set (2341 molecules, Additional 
file  2) and a test set (298 molecules, Additional file  3). 
No assignment information was provided along with 

Table 1  Results of the automatic assignment of a 5-proton 
molecule performed based on integrals exclusively

Despite the ambiguity introduced by the existence of 4 possible solutions, 
assignment of proton c to the peak at 4.16 ppm is present in all of them. This 
nucleus—chemical shift pair is thus deemed correct and selected to be learnt

Proton a Proton b Proton c Proton d Proton e

1 1.30 2.52 4.16 7.47 8.27

2 2.52 1.30 4.16 7.47 8.27

3 1.30 2.52 4.16 8.27 7.47

4 2.52 1.30 4.16 8.27 7.47

https://www.cheminfo.org/flavor/askerno/index.html
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the training set. Spectra in the test set were manually 
assigned to determine the reference experimental chemi-
cal shift values for the calculation of prediction error. Not 
all protons in the set were assigned. Most remarkably, 
labile protons were avoided considering that they are 
known to pose challenges to the components of Ask Ernö 
[20] and that we intended to evaluate the potential and 
issues of the self-learning loop rather than those of its 
components. Overall, 2007 assigned protons were used 
to test Ask Ernö’s predictions.

Ten iterations of training were run, with nmax = 4 and 
nmin = 2. At the end of each iteration, chemical shifts for 
the test molecules were predicted and compared with the 
observed values.

Results and discussion
Figure 3 shows the evolution of the correlation between 
predicted and observed chemical shifts through 10 
iterations. It can be seen that predictions oscillate from 
one iteration to the other as they converge towards the 
observed value (diagonal). Indeed, at the last itera-
tion, most predictions accumulate close to the diagonal, 
though a few large errors persist.

To get a more detailed picture of Ask Ernö’s perfor-
mance and learning process we looked at three indica-
tors: prediction error, prediction uncertainty, and the 
fraction of chemical shifts from the test set that could be 
predicted.

Prediction error
The overall prediction error is expected to decrease as 
the system iterates, and final errors to be the lowest pos-
sible. Figure  4 (top) shows the evolution of the average 
error across the iterations for nmin =  2, 3, 4. It is found 
that larger nmin values yield lower errors, but also that it 
improves less through each iteration (slower learning). 
Indeed, a larger sphere radius gives a better representa-
tion of the magnetic environment of the proton of inter-
est, producing a more accurate prediction that can hardly 
be improved. For smaller fragments the distribution of 
observed chemical shifts is wider, so there is more room 
for improvement. Thus, as the system iterates and the 
database of fragments grows, the average chemical shift 
of matching fragments moves closer to the true mean 
of the full distribution, lowering the average prediction 
error. For nmin = 2 this error decreased by 17 % across 10 
cycles, for a final value of 0.265 ppm.

Since the average error can be dominated by a few 
predictions with large errors, the cumulative error dis-
tributions were plotted (Fig. 5). It can be seen that larger 
nmin values yield a higher number of accurate predic-
tions (<0.2  ppm) and fewer predictions with high error 
(>1  ppm). Also, the number of accurate predictions 

grows faster with larger nmin (12  % at nmin =  4 vs. 4  % 
at nmin =  2), while the number of less accurate predic-
tions reduces more slowly (<1 % for nmin = 4 vs. 4 % at 
nmin  =  2). This is consistent with the observed behav-
ior of the average error and again is explained by the 
naturally higher accuracy of predictions achieved with 
larger n-spheres. In the end, with nmin = 2, over 60 % of 
the tested chemical shifts were predicted with less than 
0.2  ppm error, and only 5  % of them were found with 
error exceeding 1 ppm.

Prediction uncertainty
In Ask Ernö, the uncertainty of a prediction is associated 
with the standard error of the distribution of chemical 
shifts of matching fragments (see Methods, Chemical 
shift prediction). While the prediction error validates the 
results against an external reference (the correct chemical 
shifts), the uncertainty provides an internal validation. It 
is expected that as the system learns it gives predictions 
with lower uncertainty.

Figure  4 (mid) presents the evolution of this statistic 
through the training. It can be seen that the uncertainty 
quickly decreases, reaching a limit value. Both the rate 
and limit value are related to nmin: the smaller nmin the 
faster the uncertainty decreases and the lower it reaches 
(0.23 ppm for nmin = 2 and < 0.1 ppm for nmin = 4).

Note that this limit is nothing but the standard devia-
tion of the distribution of chemical shifts on the popula-
tion of all possible n-spheres for the corresponding nmin. 
This allows for an interesting interpretation of the limit 
uncertainty as the theoretical best that Ask Ernö can 
achieve. Noting how the final average error in Fig. 4 (top) 
is above the limit uncertainty in Fig. 4 (mid), we conjec-
ture that Ask Ernö’’s accuracy can still be improved by 
around 13 % through further training with more data.

Amount of predicted chemical shifts
For a chemical shift to be predicted, it is necessary that 
a matching substructure is found in the database. The 
fraction of chemical shifts from the test set that can be 
predicted then constitutes a third descriptor of learning. 
Figure  4 (bottom) shows that though larger n-spheres 
provide better predictions, they only cover around half of 
the test problems (54 % for nmin = 4 at the end of learn-
ing). Including predictions with nmin =  3 and nmin =  2 
allows for a major leap in coverage, up to 85 and 99 %. It 
is clear that no significant improvement can be gained by 
considering 1-spheres.

It is worth noting that the fraction of predictions with 
larger n-spheres increases by 13 % during training. This is 
pivotal to Ask Ernö’s performance: as its database grows, 
larger n-sphere matches becomes possible, which trans-
lates into a higher number of more accurate predictions.
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Sources of error
Ask Ernö is particularly prone to errors when working 
with structures underrepresented in the training set. For 
instance, consider a prediction based on a small fragment 
that is present in numerous molecules of the training set. 
Since this small fragment is unable to properly account 
for all relevant interactions, it is associated with a broad 
range of chemical shifts and the uncertainty of the pre-
diction is very high. Although such fragments are only 
used until a bigger match is found, no better match will 
ever be found for underrepresented fragments. In other 
words, Ask Ernö can’t learn to correctly predict spin sys-
tems that are not properly represented in the training 

set. The situation just described is reflected in the large 
lines of vertically aligned points, observed in Fig. 6. Most 
mistakes are located along these vertical series of points, 
proving that this was the main source of error in the test.

Other recurring mistakes can be related to underrep-
resented structures. For instance, the biggest errors for 
predictions based on 4-spheres (see Fig. 6, bottom) arose 
when the query returned a single matching fragment. In 
these cases the maximum uncertainty (20 ppm) given by 
the assigner to predictions based in less than 3 fragments 
allows for the propagation of an error that in principle 
should be rectified by new observations, but remains due 
to lack of the necessary data.
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Detailed examples are given in the Additional file 4.

Conclusions
The reduction in error and uncertainty and the increase in 
the amount of predictions proves that Ask Ernö is indeed 
improving its prediction capabilities as it iterates on the 
assignment-prediction cycle. After 10 iterations using a set 
of 2341 assignment problems, Ask Ernö was able to pre-
dict the chemical shifts of protons in a set of 298 molecules 
with an average error of no more than 0.265 ppm. At least 
60 % of the chemical shifts were predicted with an error of 
less than 0.2 ppm. These are very promising results, espe-
cially for such a basic implementation of the concept.

It must be emphasized that Ask Ernö developed this 
capability fully autonomously: at no point it was fed with 
the fruits of the labour of human experts. The learning 
process of Ask Ernö is akin to that of a newcomer to the 
realm of NMR analysis, who is told the basic rules of 
assignment and through experience and induction devel-
ops his own NMR tables.

As expected, larger n-spheres provide better but fewer 
predictions. Furthermore, it was found that most errors 
occurred for underrepresented molecules when forc-
ing highly uncertain predictions based on smaller frag-
ments. For these reasons, it is expected that with more 
data the database could grow to a point where any query 
would match a large n-sphere. Thus, though the system 

currently tops at an average error of 0.265 ppm, the limit 
of <0.1  ppm error could be reached with enough data. 
Further improvements to this limit would require tak-
ing into account other experimental parameters such as 
solvent, concentration and temperature of acquisition, as 
major source of experimental errors.

Based on the results presented here, we expect to 
develop Ask Ernö into a state-of-the-art tool for auto-
matic NMR analysis in the near future. Current efforts are 
focused in reforming the estimator of uncertainty in order 
to enhance the system’s capability to rectify its mistakes as 
it iterates. Correlation data from 2D experiments should 
also lead to significant improvement, when available.
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Availability of data and materials
The source code used in this work is available in the github 
repository https://github.com/cheminfo/autolearning. The  
dataset supporting the conclusions of this article is availa-
ble in the github repository https://github.com/cheminfo/
autolearning. The molecules in the dataset supporting 
the conclusions of this article are also included within the 
article (and its Additional file  2, Additional file  3) as sdf 
files.
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