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Summary
In this Personal View, we address the latest advancements in automatic text analysis with artificial intelligence (AI) in
medicine, with a focus on its implications in aiding treatment decisions in medical oncology. Acknowledging that a
majority of hospital medical content is embedded in narrative format, natural language processing has become one of
the most dynamic research fields for developing clinical decision support tools. In addition, large language models
have recently reached unprecedented performance, notably when answering medical questions. Emerging applica-
tions include prognosis estimation, treatment recommendations, multidisciplinary tumor board recommendations
and matching patients to recruiting clinical trials. Altogether, we advocate for a forward-looking approach in which
the community efficiently initiates global prospective clinical evaluations of promising AI-based decision support
systems. Such assessments will be essential to validate and evaluate potential biases, ensuring these innovations can
be effectively and safely translated into practical tools for oncological practice. We are at a pivotal moment, where
continued advancements in patient care must be pursued with scientific rigor.
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Introduction
Numerous artificial intelligence (AI) applications
designed to bolster medical decision-making have
recently exhibited remarkable performance. In the field
of oncology, there is a particular need of streamlining.
Yet, therapeutic decision support is a relatively new
application of AI in the field of oncology, which is slow
in coming perhaps due to the complexity of the chain of
decision-making and the continuous multiplication of
therapeutic options. As an illustration, out of 71 devices
granted by the FDA in oncology-related fields in 2022,
only three could impact treatment decision,1 all of which
being radiotherapy treatment planning systems, i.e. AI-
based algorithms used to contour the tumor and organs
at risk on imaging data.

Beyond validation, in order to ensure the broad
acceptance of a tool among the medical community, its
use must be easy and intuitive, and limit prior time-
consuming processing such as data structuration. In
hospital systems, when browsing through the medical
record of a patient, >80% of the number of files are in
narrative format. Most of these clinical text files are
inherently rich in key information, as they compile
multiple patient-centered dimensions such as medical
history, ongoing medications, medical examination,
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analyses of biological and imaging exams and clinical
interpretation. Texts are daily used by doctors and care-
givers to review a patient’s history. It is a matter of course
that natural language processing (NLP) underwent a
great development in recent years, including for tasks
related to therapeutic decision support in oncology.

NLP is dedicated to developing programs capable of
integrating, interpreting and generating human language.
Beginning in the 1950s with rule-based systems, NLP
evolved to incorporate statistical methods like Hidden
Markov Models in the 90s, and witnessed a breakthrough
with compact word embedding spaces introduced in the
early 2000s, popularized by the Word2vec algorithm in
2013, for example. The advent of attention mechanisms in
2017, embodied in Transformer models like BERT and
GPT, revolutionized the field. Language Models such as
BERT and its derivatives,2 utilizing stacked encoder layers
and attention mechanisms, have shown remarkable per-
formance in tasks like Named Entity Recognition and Text
Classification, particularly in biomedical domains.3–5

Conversely, generative (Large) Language Models (LLMs),
designed with a decoder-only architecture, excel in tasks
like question-answering (detailed below) but pose chal-
lenges due to high computational demands, ethical con-
siderations for the use of protected health information,
potential bias, reliability, and interpretability in medical
applications (Panel 1). This has prompted the develop-
ment of strategies like In-Context Learning, Augmented
1
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Panel 1: The dark side of LLMs and potential harm for healthcare applications

1. Environmental impact
Very large models consume substantial amounts of energy and water, contribute to the depletion of materials used in computer equipment
manufacturing, and can lead to soil pollution.54,55 Multi-purpose, generative architectures are orders of magnitude more expensive than task-specific
systems for various tasks.56 As an illustration, today’s most energy-intensive generative models consume as much energy per inference as half a
smartphone charge. This issue has been known for some time,57 yet instead of addressing the ecological impact, some authors either avoid disclosing it or
downplay its significance.58

2. Alienating work
The parceled work of click workers has become indispensable to the development of Large Language Models and the filtering of results. This work is often
alienating, conducted under unacceptable and sometimes toxic social and health conditions, and frequently remains invisible to minimize its perceived impact.59

3. Disproportionate fashion
In 2022, 40 new LLMs were trained and published. They were more than 200 in 2023.60 One might question the reasons behind this apparent redundancy
in repeatedly training these models from scratch. The political and economic situations of countries can also influence the data types used for the
development of large and costly AI systems, with underrepresentation of minority languages, for example.

4. Gender discrimination
Among many similar reports over recent years, a UNESCO report from March 2024 highlighted that gender biases influence the predictions of several
Large Language Models, often resulting in sexist outputs. For instance, women are frequently associated with family, children, and home-related roles,
while men are more commonly linked to work, pay, and business. Such biases can have significant consequences, including affecting automatic
suggestions for postgraduate study options.61

5. Demographic origin and other stigmatisations
Bias in natural language processing applications, rooted in factors such as origin, religion, disabilities, can arise from various sources. These includes stereotypes
present in the training data, the annotated data used to refine the models, the input representations, the models themselves, and especially the way the
research task are defined.62 As an illustration, Omiye et al. showed that four different commercialized LLMs were propagating race-based medical
misconceptions and thus spreading harmful inaccurate content.63 In another example, an algorithm designed to identify patients who would benefit from
specialized referrals and that did not use race as an input to avoid bias still resulted in fewer Black patients being referred compared to White patients with
similar disease burdens. This outcome was due to the model using healthcare costs as a proxy, which reflected systemic disparities in access to care.64 This is
not a new phenomenon in language models; even with improved controls over model outputs, recent models still frequently generate discriminative texts.

6. Models’ ditractions
Deep learning models can rely on unexpected and sometimes undesired informations in the input data to make their predictions. Many classical examples
exists in image analysis. For example a deep-learning method used across three hospitals for pneumonia screening mistakenly focused on text markers on
X-rays rather than the pathology itself, leading to misdiagnosis.65,66

7. Bias transmission to offspring models
Generalist Large Language Models can be applied to a wide array of tasks beyond mere conversation, either with minimal modifications, through fine-
tuning, or by generating synthetic data to train new models. The latter approach is particularly common among healthcare startups, as sharing patient
data involves stringent controls and intense procedures. However, this method can inadvertently perpetuate and even amplify existing inequalities and
biases learned by the foundation models.

8. Humans under influence
If an AI device finds a role in a repetitive application, it is likely intended to reduce the number of humans required for the task. This raises important
questions about how decisions made by the AI can be scrutinized. An intriguing and potentially alarming phenomenon is that humans may internalize the
biases present in the model’s outputs, even after the AI is no longer in use, as seen in applications like image-based diagnosis.67

9. Challenge for reproducibility in AI
Deep learning methods inherently use non-deterministic tools to enhance their efficiency and learning speed. As a result, even with identical inputs (data
and parameters), an algorithm can produce models with significantly varying accuracy and convergence speeds.68 Moreover, the underlying libraries, such
as TensorFlow (an open-source machine learning tool developed by Google), can introduce additional variance. This variance arises from parallelization,
which can lead to a variable order of operations and can lead to results that is not reproducible even by its author(s).

10. Impossible evaluation
Evaluations are most often carried out retrospectively on small datasets that may not accurately represent the language, demographic and epidemiological
characteristics of patients encountered in clinical practice. The confidentiality of health data and major constrains on data sharing further limit the possibility to
assess the generalization performance of the language models. Moreover most public benchmark narrative datasets have recently become saturated, either
because Language Models were trained on these datasets, or models are overfitting it by the number of times these datasets were used for benchmark.42
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11. Hustling the physican-patient relationship
Decisions that lean heavily on AI recommendations can significantly impact the shared medical decision-making. Biases can emerge not merely because of
biased datasets or algorithms, but because of factors involved in real-world implementation: Clinician-, patient-, and social-level factors can interact to
create biases in the adoption of AI for clinical decision support.69,70

Viewpoint
Language Models or multi agentic workflows to enhance
their performance and mitigate biases.3,6 Recent efforts
explore avenues for improved efficiency and broader data
analysis capabilities, including integration with other data
formats like images. Despite advancements, the energy-
intensive nature of LLMs also remains a concern, even
for inference in cloud computing environments.7

Facing the growing demand, the trajectory of lan-
guage processing-based medical decision support sys-
tems is currently fasting forward, but its progress
towards regulatory approval is conditioned by their
comprehensive understanding and their thorough eval-
uation by the caregiving community, with the objective
of gaining the trust of all healthcare actors.8 A carefull
evaluation strategy is necessary to mitigate bias and
potential harm throughout the AI algorithm’s lifecycle
(Panel 2). However, initiating this process can be chal-
lenging at this stage. In this Personal View, we present a
classical evaluation approach used in medicine, which
includes retrospective studies, non-interventional and
interventional prospective studies, and multicenter
evaluations, all of which could be applied to the most
promising tools. We begin by exploring applications of
language models in oncology, followed by an examina-
tion of the evaluation methods and their purposes.
Finally, we outline strategies for prospective clinical
evaluations, including the design of clinical trials.
Medical question answering: [medical student
in training may ask] “what is the treatment of
pulmonary embolism?”
Medical question answering serves as a prime example of
the remarkable progress seen in NLP models over the
past 15 years. It started with the public release of medical
question answering databases such as the United States
Medical Licensing Examination.9 As NLP models evolved
in architecture, size, and sophistication, their perfor-
mance on medical tasks improved significantly. The best
performing models to date achieved unprecedented test
accuracy of 90.2% by the end of 202310,11 represented by
generative language models, particularly LLMs, equipped
with advanced prompting methods. Prompt engineering
involves designing task-specific instructions to guide
model outputs without altering the model parameters.12

Recent promising methods in prompt engineering
include few-shot, chain-of-thought, self-consistency, and
ensemble refinement, achieving accuracy rates of
[80–86%] on MedQA (USMLE) database.13,14 As an illus-
tration, the Chain-of-Thought prompting technique
www.thelancet.com Vol 46 November, 2024
allows a large language model (LLM) to base its output on
its own intermediate reasoning steps by simply adding
‘Let’s think step-by-step’ at the end of the prompt.
Additionally, a useful practice is to specify the context for
the model by including a description such as ‘You are a
medical doctor answering real-world medical entrance
exam questions.’ Prompts are generally relatively long
(with the paragraph headings of this manuscript not be-
ing typical prompts). Moreover, prompt engineering is a
rapidly evolving field and is highly dependent on the
specific LLM being used.

Even with the best prompting technics, LLMs’ could
have the tendency to produce incorrect responses
resembling authentic ones, termed hallucinations, which
may undermine clinical applications. For instance, to the
question “what are the common side effects of metfor-
min”, a LLM may respond, “metformin side effects
include nausea as well as trouble breathing”, which is
partly incorrect. The intricacies of clinical decision-
making, which includes patient presentation and prefer-
ences, stepwise diagnostic processes, treatment planning
based on evolving guidelines and reporting, creates sig-
nificant challenges for answering medical questions in
actual clinical environments. This is in contrast to the
more straightforward scenarios presented in hypothetical
patient vignettes or clinical case challenges. When
applied to real patient data (derived from the MIMICS
dataset), five LLMs consistently fell short of matching the
diagnostic accuracy of clinicians across four urgent
abdominal pathologies. Their accuracy further declined
when required to independently gather diagnostic infor-
mation, and they failed to consistently adhere to treat-
ment guidelines.15 It clould pose potential serious risks to
the health of patients. Altogether, bridging the gap be-
tween medical question answering in medical exams and
real-world clinical practice remains a significant chal-
lenge for LLMs applications. It is clear that dedicated real-
world evaluations and adptations are crucial before these
tools can be responsibly implemented in clinical settings.

Natural language processing for prognosis
estimation: [clinical trial investigator may ask]
“what is the predicted life expectancy of this
patient given […]?”
In oncology, therapeutic options often hinge on life ex-
pectancy considerations and prognosis estimation is
often the first step towards treatment recommendation.
Prognosis prediction in cancer care is useful to spare
patients from intensive procedures with limited
3

http://www.thelancet.com


Panel 2: Checklist to increase the bright side of language models in healthcare

These recommendations can help ensure that a project using language models for healthcare is well-structured, ethical, and effective in achieving its goals.

1. Data collection and cleaning: addresses Panel 1 Gender discrimination, Demographic origin stigmatization, Models’ distraction and Impossible
evaluation
Data quality is a cornerstone of any data science project. This is a broad and complex topic that applies to multiple types of projects. If the dataset is
private, early discussions with the Informatic Team is highly recommended. For public or synthetic data especially if generated by a foundation Large
Language Model, it is important to verify and address potential biases in the data. Debiasing is an intense filed of research and several approaches exist.62

Finally, when data is in a structured format and some values are missing, one can consider imputation techniques or use models that can handle missing
values effectively.

2. Model training: addresses Panel 1 Environmental impact, Disproportionate fashion and Bias transmission to offspring models.
Many educational materials exist on how to train a machine learning model and select the appropriate model architecture, among other considerations.
Intense research continues with the objective to improve speed, efficiency, reduce energy consumption, among other factors. But in the era of Large
Language Models, the primary question should be: « Do I really need to train a new model?». One solution could be to use a model pre-trained on the data
of interest, and prompt it appropriately. Another option is to fine-tune a pre-trained model, but you should evaluate whether you have sufficient
computational resources and consider the quality (and biases) of the foundation model you choose.

3. Selection of the outcome: addresses Panel 1 Alienating work and Impossible evaluation
You may want your model to predict something useful for the clinic. Obtaining labels can be challenging, either due to the considerable effort required or
regulatory constraints. A statistician can provide you with guidance on the type of label data you have: survival data, continuous or categorical data, text
(as for generation)—as well as the methodological challenges, such as competitive biases. Additionally, consider the impact of the predictions, how
humans will use it, and whether you have sufficient data considering the complexity of the task and the size of the model you intent to use.

4. External validation: addresses Panel 1 Challenge for reproducibility in AI
A longstanding rule (but worth repeating) in predictive tasks is to split your data into training, validation and testing sets. Validation in machine learning
serves as a proxy for generalization performance. The true evaluation of the generalization performance—i.e. testing how your model behave in real-world
scenarios—requires new, ideally external data, and continuous monitoring.

5. Data sharing: addresses Panel 1 Challenge for reproducibility in AI and Impossible evaluation
To evaluate the generalization performance, it is crucial to use data that the models have not been trained on, ideally sourced from a different hospital if
relevant to the task. Additionally, sharing data with others can help reproduce our work, promoting transparency and reproducibility. However, data
sharing comes with ethical challenges, particularly the protection of patient privacy. Ensuring the privacy of patient data is essential for maintaining a
trust-based relationship between caregivers and patients.

6. Federated learning: addresses Panel 1 Challenge for reproducibility in AI and Impossible evaluation
Data sharing may be impossible for various reasons, such as challenges in fully anonymizing data, privacy concerns, and technical requirements, among
others. Federated learning infrastructure can help to train or evaluate models across different decentralized data sources while preserving privacy.
Federated learning can nevertheless be complex due to technical requirements (such as installing and managing the infrastructure), interoperability of the
data, computational resources, and monitoring of the process.

7. Generalization performance and evaluation: addresses Panel 1 Models’ ditractions, Challenge for reproducibility in AI and Impossible evaluation
Evaluating generalization performance involves assessing how well the model performs on unseen data to ensure it extends beyond the training set. This
helps verify that the model can make accurate predictions on new, real-world examples and is not merely overfitting to the training data. Effective
generalization is critical for ensuring that the model maintains its utility and reliability in practical applications. Generalization evaluation is also the good
moment to evaluate potential biases in the model such as language formatting, regional or cultural influences, among others.

8. Deployment of the tools: addresses Panel 1 Humans under influence and Hustling the physican-patient relationship
This refers to elaborating a plan for the practical deployment of a model, including integration into existing systems and user training. It is the good
moment to plan the monitoring and how it integrates into practice, how it can affect the physician-patient relationship, among other considerations.

9. Calibration drifts: addresses Panel 1 Models’ ditractions
Calibration drifts require regular monitoring and adjustment of model predictions to maintain accuracy over time, particularly after deployment.71

10. Monitoring for dataset shifts: addresses Panel 1 Models’ ditractions and Impossible evaluation
Monitoring for dataset shifts involves regularly checking for changes in data distributions that could impact model performance. It is crucial to identify
these shifts promptly and update the models accordingly to maintain their accuracy and relevance.72
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11. Master regulatory requirements: addresses Panel 1 Challenge for reproducibility in AI, Impossible evaluation and Hustling the physican-patient
relationship
see Panel 3 and look for the help of experts.

12. Ecological impact of your project: adresses Panel 1 Environmental impact
You can learn about the environmental impact of the tools you intent to use, make a Life Cycle Assessment, and consider frugal AI, for example.

13. Evaluate impact on patient-physician relationship: addresses Panel 1 Hustling the physican-patient relationship
It aims at reducing biases in how clinicians and patients use AI-based algorithms. To mitigate potential biases, physicians must emphasize patient-centered
communication, ensuring AI’s role remains that of a support tool rather than a decision maker. Human supervision of AI is a good practice, for example in
image analysis application, but for NLP, human-aware supervision is preferable.70,73

Viewpoint
probability of clinical benefit when the prognosis is
poor. It is also a valuable indicator of whether or not a
patient could be a good candidate to enter a clinical
trial.16

Caregivers are known to overestimate their patient’s
life expectancy, which could paradoxically negatively
impact the quality and the quantity of the end of life. As
a baseline reference for ‘human’ performance, expert
oncologists are expected to accurately predict the sur-
vival at two years of patients affected by cancer with an
Area Under the ROC Curve (AUC) ranging between
72% and 81% (with AUC values of 100% indicating
perfect prediction and 50% indicating random predic-
tion), which suggests that their prognosis is wrong in
about one case out of four.17,18 In comparison, the NLP
model NYUTron, trained and tested on over 7.2 million
Panel 3: Regulations on IA

In Europe, AI tools intended for clinical use are classified as medica
After intense negotiations, the world’s first legislation on artificial i
The objective of this Regulation is ‘to improve the functioning of
artificial intelli gence (AI).’ (Article 1 of the AI Regulation). Tthe EU A
presenting an unacceptable risk, which must be prohibited; system
models for general use’ and, among them, those presenting a ‘syst
to the measures to be taken if the system is also high-risk; and othe
regulation that applies to all authorized systems (including those
possible, a sufficient level of AI proficiency for their staff and othe
encouragement to “draw up codes of conduct […] designed to pr
The CE mark is mandatory for the clinical use, marketing and/or com
pertaining to medical devices with clinical application. These regu
mandate clinical trials, including those involving multi-center coh
requirements, comprehensive planning and documentation of all
employed, data sources, etc.), clear differentiation between trainin
mirroring the procedures of drug clinical trials. Additionally, guide
applications in the clinic (SPIRIT-AI) and how to report their resul
Altogether, it is worth noting that such evaluations can be expensiv
matching tools. A typical scenario might involve randomizing patie
(relying on standard procedures to access clinical trials), with over
unethical, as it involves withholding potentially beneficial informa
involve using historical controls, comparing recruitment rates in cli
it carries potential selection and historical biases. We are currently
innovative designs are required to go to interventional evaluation
impact on patients.
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clinical notes from >380,000 patients, demonstrated
reliable performance in predicting in-hospital mortality
(AUC of 94.9%) and 30-day readmission risk (AUC of
79.9%), potentially surpassing human estimation.19

Importantly, while NYUTron excelled in most med-
ical specialties, its efficiency in estimating cancer prog-
nosis was lower (overall AUC of 63.8% for oncology
patients versus 90.1% for neurology and 67.9% for in-
ternal medicine excluding oncology), highlighting the
need for specialized oncology-specific NLP models. For
example, our team developed K-memBERT, a French
NLP model trained solely on text data from 2053 K
deceased cancer patients, achieving superior 3-month
survival predictions (AUC of 85% on an unseen test
cohort and 87% on an external dataset) compared to
NYUTron for oncology patients.20 This trend suggests
l devices and fall under the regulatory oversight of the EU AI Act and the CE Marking.
ntelligence (AI) was definitively adopted by the European Union (EU) on 21 May 2024.
the internal market and to promote the uptake of human-centred and trustworthy
I Act follows a ‘risk-based’ approach, categorizing AI systems into four groups: systems
s presenting a high risk and requiring control measures adapted to these risks; ‘AI
emic risk’. These systems are subject to specific control measures, which may be added
r systems which are not subject to specific control procedures. The only measure in this
classified as risk-free) is a simple invitation to ‘[take] measures to ensure, as far as
r persons involved in the operation and use of AI systems » (Article 4), as well as an
omote the voluntary application’ of the requirements applicable to high-risk systems.
mercialization of these systems. Two years ago, the EU implemented new regulations

lations, in addition to enforcing a stringent and controlled development approach,
orts. From a technical standpoint, these regulations necessitate, among other
code development phases (including details such as personnel involved, methods
g and validation cohorts, and obtaining authorization for all clinical validation phases,
lines are emerging on how to design protocols of prospective evaluations of AI
ts (CONSORT-AI).74,75

e and, in some cases, challenging to implement, particularly for systems like clinical trial
nts into two groups: one that uses clinical trial matching tools and one that does not
all survival comparison as the primary endpoint. However, this approach may be
tion from the control group about therapeutic options. An alternative approach could
nical trials before and after the intervention. While this method seems straightforward,
at the stage of prospective non-interventional evaluation of trial matching tools, and
to seek for reglementary approval, conditioned by the demonstration of a positive
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that model performance may improve with training
specificity, akin to physicians’ expertise in specialized
areas. Nevertheless, the external comparison of studies
should be carefully interpreted as each study used
different sources of data, and in some cases, proprietary
data that precludes reproducibility checks with external
researchers. In this regard, the generalization perfor-
mance of models across hospitals is often very difficult
to evaluate, meanwhile it is mandatory for any distri-
bution of the tools. Collaborative federated learning,
which utilizes multiple independent datasets to train or
evaluate a common algorithm, offers an approach to
address this challenge in health data applications.21 This
advocates for propsective and multi-centric evaluation of
AI devices.

Therapeutic decision support systems
including: 1) treatment effect prediction:
[medical oncologist may ask] “what is the
predicted benefit of maintenance olaparib for
this patient, given […]?” and 2) treatment
recommender systems: [medical student in
training may ask] “what treatment(s) should I
prescribe for a patient with cough, fever and
gram-positive bacillus in sputum?”
Once the disease is precisely diagnosed and the prog-
nosis is estimated, oncologists envisage treatment among
a wide variety of modalities including surgery, radiation
therapy, cancer-directed systemic therapies (for example,
chemotherapy and targeted therapies) and co-
medications (for example, antiemetic agents and pain-
killers). All of these fields could benefit from the devel-
opment of decision support applications using AI with
the aim of saving time and energy for tasks that are more
‘humanly-relevant’, possibly with significant benefit in
terms of survival and quality of life for patients (Fig. 1).
Fig. 1: Repartition of the number of machine learning methods applied to
February 2024). The right panel specifies the repartition of methods uti
specified in bold with the related fraction. The color legend indicates the
Two main ways to address medical decision assis-
tance can be distinguished: 1) treatment effect predic-
tion: “what are the chances of success of this precise
strategy in this context?” and 2) treatment recommen-
dation: “what is the best treatment option in this situa-
tion?”. Depending on the clinical situation, one
approach can be favored over the other. For example,
when radiotherapy is planned, the act itself (tumor and
organs at risk contouring) is prescribed directly onto the
patient’s imaging data, which is a task that can be highly
accurately performed by AI as a treatment recommen-
dation proposal and directly plugged in the treatment
planning systems that radiation oncologists already use
in routine.22 Conversely, systemic therapy decisions
often require broader information of different natures
(imaging, clinical, biological, tumor molecular data,
patient’s wish etc.) and can largely benefit from both
treatment recommendation and individualized treat-
ment effect predictions.

In the clinic, personalized treatment effect predic-
tion consists of AI-based estimation of individual out-
comes of patients on a specific treatment. The system
would rely on clinical context, genomic information
and complementary exams. Most existing treatment
effect prediction approaches are composed of shallow
machine learning tools requiring structured clinical
variables or distribution based analysis that utilize gene
signatures requiring molecular data.23 Some deep
learning models were published to predict specific
treatment effect, such as FOLFOX regimen in patients
with colorectal cancer, adjuvant chemotherapy for pa-
tients with breast cancer, or immune checkpoint in-
hibitors, often with limited number of patients but
sometimes with extensive data types (histopathological
slides, multi-omics data, and even multiple data inte-
gration).24,25 Interestingly but rarely, some models were
trained to predict the onset of treatment-related
adverse events.26,27
oncology-related tasks (left panel), as per PubMed query (assessed in
lizing deep learning. MeSH terms that were used for each query are
absolute count of results per query.
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Conversely, the concept of treatment recommenda-
tion systems is more complex as they aim to output the
best treatment among all possible options upon
reviewing the input data, which could be of any kind
(structured or free text, biological exams, imaging, etc).
The main limitation of recommendation systems
trained on retrospective medical data is that they may
become quickly obsolete in rapidly-evolving fields such
as oncology. Treatments should be chosen according to
constantly-evolving guidelines that follow up-to-date ev-
idence-based-medicine demonstrations.15 These systems
may lack the ability to guide treatment over novel
authorized options. To address this issue, one approach
is to develop tools that can learn from recent clinical
data and/or incorporate high-impact literature, as seen
with Retrieval-Augmented Language Models.

In oncology, there is a long history of systems
mimicking therapeutic recommendations of multidisci-
plinary tumor boards. The main advantage of such sys-
tems is that they are often trained on both hospital and
literature data. The most visible and well-evaluated exam-
ples are Watson for oncology and CSCO AI in China. Two
meta-analyses showed performance that ranged between
74% and 81% of concordant recommendations compared
to tumor boards.28,29 The performances varied depending
on the medical specialty, the type of treatment and the
treatment line, requiring either refining of the predictive
models or defining the clinical situations where it can be
applied for prospective, comparative and interventional
evaluation.

Clinical trial matching systems in oncology:
[clinical trial investigator may ask] “does this
patient’s profile […] matches with accessible
ongoing clinical trials given that […]?”
In cancer care, participation to a clinical trial is a way for
patients to access therapeutic innovation and increase
their therapeutic options. Yet, there is a wide discrep-
ancy in participation rates across cancer centers and less
than 8% of all patients participate in a clinical trial
worldwide.16 The trial refereeing process depends
mainly on relationships and knowledge shared between
doctors, and thus often confined to one hospital.30 NLP
can be useful to automatically match patients’ profiles
with clinical trials according to study’s selection criteria.
If generalized, these tools could drastically improve pa-
tients’ access to clinical trials even beyond their local
cancer center.

Automatic clinical trial matching approaches in
oncology have shown remarkable retrospective perfor-
mances with on average 90.5% sensitivity and 99.3%
specificity according to a meta-analysis published in
2023 that scanned over 50,000 patients from 19 data-
sets.31 Nearly all studies used a list containing expert
annotated pairs of patient/trial on retrospective cases.
Most approaches relied on structured clinical and trial
www.thelancet.com Vol 46 November, 2024
data, and few of them used advanced Language Models.
In information retrieval applications (i.e. evaluating the
performance of search engines), common performance
metrics include Mean Average Precision (MAP, using
binary relevance) and Normalized Discounted Cumula-
tive Gain (NDCG using graded relevance). Our team has
prospectively evaluated the performance of four web-
based trial matching tools on sequential patients from
the Molecular Tumor Board of our institution. We
found a drop in performance, with a mean MAP@5 (i.e.
for the first 5 results) of 0.51 (SD 0.47) and a mean
NDCG@5 of 0.44 (SD 0.43). These results underscore
the need for prospective evaluation and improvement of
these tools.

Without great surprise, Large Language Models have
recently entered the arena. The Text REtrieval Confer-
ence (TREC) 2021 and 2022 released two public clinical
trial matching datasets.32,33 Initial NDCG@10 perfor-
mances ranged around 0.6125 (i.e. the ranking is 60%
right compared to the ideal ranking), then trialGPT
improved it to an NDCG@10 of 0.82, and more recently
the best performing models at SemEval F1 Scores of 0.8
(but unfortunately without NDCG scoring available).33–35

All performed on retrospective, and synthetic data,
lacking prospective real world evaluation for now.
Compared to structured data, Large Language Models
for trial matching can limit the data curation burden,
can virtually review all selection criteria of clinical trial
protocols, can allow human interpretation of the model
reasoning, and motivates multiple methodological im-
provements (Fig. 2).

Beyond trial matching, AI can be valuable to estimate
whether a patient will remain long enough in the trial.
This can limit the risk of early-discontinuation and
improve the quality of the data to allow robust clinical
trial conclusions. Few examples exist but a Language
Model successfully predicted screening and dose-
limiting toxicity period completion with an AUC of
0.8822.36

When mature enough, these approaches will require
prospective and multicentric evaluation to confirm their
generalization performance, utility and impact for patients.
Evaluation of AI applications in healthcare
Numeric medical device development in healthcare
faces several challenges, the major being the including
non-reproducibility of results.37 For language models in
healthcare, evaluation on external datasets is highly
recommended to evaluate the impact of multiple
possible undesirable biases (Panel 1). Evaluation in real-
world setting is important in technologies where ma-
chines operate with varying degrees of self-governance,
such as self-driving cars, in dynamic environments
with multiple stakeholders.38 This issue has pushed the
community toward data and model sharing to confirm
observations and analyze further models’ performances.
7
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Fig. 2: Trial Matching example by prompting the Large Language Model GPT4-turbo from https://chat.lmsys.org/. The medical report and
synthetic patient profile was extracted from SemEval 2024, and selection criteria of the trial extracted from clinicaltrials.gov.
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In their work to curate a catalog of existing datasets
about clinical and biomedical NLP, Blagec et al. identi-
fied 450 unique datasets, of which less than 30% were
publicly available, and only 10% were deemed directly
relevant to clinical tasks. Furthermore, among seven
main applications to clinical care, only three matched to
relevant benchmarks in the catalog.39 In this setting we
can acknowledge GDPR-compliant data-sharing initia-
tives including MIMICS, TREC, and SemeVal, among
others.32,33,40

The testing of reproducibility and the analysis of po-
tential bias and model performances are essential for the
evaluation of language models. LLMs produce text that are
reflections of their training data and thus could perpetuate
biases for example pertaining to race, sex, language, or
culture and may negatively impact predictions in
healthcare applications8,41 (examples in Panel 1). In 2007,
Aravind Joshi proposed the analogy that datasets are the
telescopes of data science. Telescopes for languages
models would analyze their representation of the data they
have been trained on. Private LLMs are trained and vali-
dated on non-publicly available demographic data, and
access to narrative clinical data in oncology remains a
great challenge, and thus very limited. The community
favored applications derived from publicly available
educational healthcare datasets, which are inherently
anonymous, such as MedMCQA.14 However, most public
benchmark datasets for language models have recently
become saturated, with models outperforming human
performance (either because Language Models were
trained on these datasets, or models are overfitting it by
the number of times these datasets were used for
www.thelancet.com Vol 46 November, 2024
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benchmark).42 The difficulty in accessing clinical data, the
scarcity of comprehensive oncology benchmarks, and the
saturation of public educational medical datasets highlight
the need for direct model evaluation for specific applica-
tions. In other words, initiating dedicated clinical evalua-
tion of language models, ideally prospective.
Prospective clinical trials of AI applications
Few recent studies have proposed a non-interventional
prospective comparison of the performance of NLP tools
to that of physicians.19,43,44 In these scenarios, the applica-
tion does not impact clinical decisions. Non-interventional
comparative analyses have been used for FDA approval
and CE marketing, for instance for automatic breast
cancer screening from mammography.45 Two studies
published in 2024 evaluated the performance of Large
Language Models for diagnostic and treatment recom-
mendations. One study focused on 11 cases of patients
with gastrointestinal cancers and reported optimistic re-
sults.46 The other study, which examined 2400 patients
with abdominal emergencies (appendicitis, cholecystitis,
Scenario #1: inter-patients comparison
• Patient monitoring (e.g symptoms)
• Treatment recommendation systems
• Treatment effect prediction
• Prognosis estimation for an intervention

Scenario #2: intra-patient comparison
• Clinical trial matching systems 
• Treatment recommendation systems 
• Multidisciplinary tumor board

recommendations 

Electronic
consent

Arm 1: prediction
Arm 2: standard o
(+ prediction in 3 m

?
R
1:1

NSCLC 
KRAS G12C mu

Fig. 3: Examples of AI-stratified prospective clinical trial designs with rando
the predictions of the tool, inspired from.53 This applies to situations suc
standard procedures), orientation to a specific interventions or another
biomarker), or evaluate a new prognosis tool to decide for an interventi
designs alows to derive clear conclusion of the superiority of the predic
obtain the information now or in a pre-defined periode of time, i.e. intra-
models are used as search engines for medical treatments or clinical trials, i
to several clinical decision support systems, to the evaluation of the efficac
the impact on the work load of careguivers, the quality of life of patients, a
care arm, can have acess to the results of the system after an observatio
between the two period of time allows concluding on the impact of the

www.thelancet.com Vol 46 November, 2024
diverticulitis or pancreatitis), highlighted significant con-
cerns due to critical errors of the LLMs.15

Even though non-interventional studies are valuable
elements to gain the trust among users, in medicine,
prospective interventional and comparative studies are
the gold standard for validating the performance and the
clinical impact of a device or a treatment. Prospective
evaluations in real-world clinical settings are important
to assess and manage bias in AI models to support fair
and equitable development47,48 and to estimate their
performance, usability, and impact on patient outcomes.
This process enables to ensure the safety, reliability, and
effectiveness of these systems before their deployment
in clinical practice. For instance, a post-marketing pro-
spective interventional evaluation has recently
confirmed the usefulness of AI-aided breast cancer
screening alongside standard procedure.49

A search in clinicaltrial.gov using ‘artificial intelli-
gence cancer’ and filtering for ‘recruiting’ and ‘inter-
ventional’, in January 2024, returned 86 studies
including 27 (31%) using a randomized design. The
majority focused on imaging data (50% of studies
Consent

Prediction + Prediction -

Randomize Randomize

Use it
Dont use it:
standard of

care

Use it Dont use it:
standard of

care

f care 
onths)

Human supervision of
the prediction

3 months follow-up

Arm 1: 85% success
Arm 2: 70% success

R
1:1

Treatments and trials: 
NCT05462717
NCT04956640

Adagrasib
Sotorasibta on

Objec ve: recruitment
in clinical trials

misation. Scenario#1: randomization to assign patients to use or not
h as patients monitoring (e.g. using automatic altert systems versus
(e.g. orientation to targeted therapies based on the presence of a
on or not (e.g. a surgery, a new treatment line, a clinical trial). This
tion compared to the standard of care. Scenario #2: randomization
patient comparison, also known as N-of-1 trials. In practice, when AI
t seems unethical to spare patients from the information. It can apply
y of a treatement (using overall reponse rate as primary endpoint), to
mong other criterias. Patients that are randomized in the standard of
n period, here 3 months. The comparison of the endpoint measures
intervention.
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Search strategy and selection criteria

The search and selection criteria used were hybride. As per
2023, 17K papers on Large Language Models were
published in Arxiv; we thus could not be totally exhaustive
in our search method. We have extracted the most
significant messages, derived from our experience and
literature watch in the field of Natural Language Processing
for Oncology during the last 5+ years, to illustrate our
Personal View article. The reviewing process spanned over 6
months and influenced significatively the literature search
and the topics presented.
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containing ‘image’ in the description), 24% were
surgery-related, 10% radiotherapy-related, and only
three studies included NLP methods. Few publications
report on the randomized evaluation of antitumor
treatment predictions.50,51 There is a clear need to pro-
spectively evaluate the performance of NLP therapeutic
decision support systems in medicine and for us, in
oncology.

Interventional prospective evaluations for medical
devices demonstrate how AI interventions can enhance
existing procedures, such as patient monitoring during
radiotherapy,50 selecting adjuvant treatment for localized
RH + HER2-breast cancer,51 or breast cancer creening
with mammographies.45 These studies require a multi-
disciplinary team, including medical investigators, en-
gineers, biostatisticians, regulators, ethicists, and
patient representatives. Their design and execution
must consider specific patient recruitment, data collec-
tion methods, and outcome measures tailored to the tool
being evaluated and its potential clinical impact. Ran-
domized participant recruitment allows for comparison
between intervention and control groups, with pre-
planned statistical analyses revealing the intervention’s
impact on outcomes like adverse event rates, treatment
completion, and survival. Additionally, prospective in-
terventions can assess the tool’s adoption probability in
the medical field, examining its utility, impact, logistical
requirements, and effects on caregiver workload.52 We
can imagine various designs, inspired by biomarker-
based clinical trial designs, for the evaluation of more
recent devellopements such as prognosis estimation,
treatment recommendations, multidisciplinary tumor
board recommendations and matching patients to
recruiting clinical trials53 (Fig. 3).
Conclusion
The realm of language models is bursting with prom-
ising experimental models that could drastically facili-
tate a wide range of daily decisions made by caregivers
in oncology but, unfortunately, it often lacks clinical
validation for now. NLP can support physicians in
identifying the most (predicted) effective treatment
options or clinical trials for a patient. It can match or
even surpass caregivers in estimating prognosis, pre-
dicting duration of participation in clinical trials, and
assessing the risk of acute medical events. This makes
NLP a valuable tool for guiding patient monitoring,
among other applications. AI-driven image analysis has
already streamlined numerous diagnostic tasks and is
gradually garnering prospective validation. Nonetheless,
translating AI research into practical applications for
language models mandates a meticulous approach
emphasizing trustworthiness, responsibility, and ethics.
The design of prospective clinical evaluations for med-
ical decision support systems based on NLP must be
carefully tailored to the specific application, as tradi-
tional randomization schemes may not be suitable for
all scenarios. Multidisciplinary teams with dedicated
time are thus required for designing the evaluations that
will shape our future practice. Finally, caregivers should
be well informed about the practical pitfalls of artificial
intelligence to genuinely improve patient care and avoid
potential harm.
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