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Extensive clinical and biomedical studies have shown that microbiome plays a prominent
role in human health. Identifying potential microbe–disease associations (MDAs) can
help reveal the pathological mechanism of human diseases and be useful for the
prevention, diagnosis, and treatment of human diseases. Therefore, it is necessary to
develop effective computational models and reduce the cost and time of biological
experiments. Here, we developed a novel machine learning-based joint framework
called CWNMF-GLapRLS for human MDA prediction using the proposed collaborative
weighted non-negative matrix factorization (CWNMF) technique and graph Laplacian
regularized least squares. Especially, to fuse more similarity information, we calculated
the functional similarity of microbes. To deal with missing values and effectively
overcome the data sparsity problem, we proposed a collaborative weighted NMF
technique to reconstruct the original association matrix. In addition, we developed
a graph Laplacian regularized least-squares method for prediction. The experimental
results of fivefold and leave-one-out cross-validation demonstrated that our method
achieved the best performance by comparing it with 5 state-of-the-art methods on
the benchmark dataset. Case studies further showed that the proposed method
is an effective tool to predict potential MDAs and can provide more help for
biomedical researchers.

Keywords: microbe, disease, association prediction, collaborative weighted non-negative matrix factorization,
graph Laplacian regularized least squares

INTRODUCTION

Extensive clinical and biomedical studies have shown that microbiome has a prominent role in
human health and disease. More than 100 trillion (1014) microbes inhabit the human gut and
constitute a nutrient-rich environment where symbiotic relationships are of benefit to the host
(Ley et al., 2006; Lozupone et al., 2012). Therefore, gut flora is often referred to as the “forgotten
organ” (O’Hara and Shanahan, 2006). Once the balance is broken or the symbiotic relationship
is disturbed, this close relationship will carry risks for the development of the disease, including
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cardiovascular disease (Wang et al., 2011), neurological disease
(Tremlett et al., 2017), cancer (Schwabe and Jobin, 2013),
inflammatory bowel disease (IBD) (Hossen et al., 2020), and so
on. To better understand the medical and biological significance
of the human microbiome, some large projects have been
launched and made substantial progress, such as the project of
metagenomics of the human intestinal tract (Ehrlich, 2011; Cho
and Blaser, 2012) and the Human Microbiome Project (HMP)
(Turnbaugh et al., 2007).

Studies investigating microbiomes demonstrated a critical
role for microbes in the disease and health of humans.
Considering the complexity and diversity of the microbial
community, it is still a challenge to fully understand the
interaction mechanism between microorganisms and human
diseases, healthy composition, and functional states of the
human microbiome. Because of the known disease-related
microbes being insufficient, developing effective computational
methods is necessary for reducing the cost and time of
biological experiments. Recently, with the deepening of studies
on computational biology, many computation-based methods
have been proposed and achieved successful applications in the
bioinformatics field, such as miRNA–disease (Peng et al., 2018a;
Chen et al., 2019) or drug–target (Chen et al., 2016) association
prediction, and lncRNA–miRNA (Zhang et al., 2021), protein–
protein (Xu et al., 2020a), or lncRNA–protein (Peng et al., 2021;
Zhou et al., 2021) interaction prediction.

Fortunately, in 2016, a human microbe–disease association
database was constructed by Ma et al. (2017). It provided
a foundation for identifying potential MDAs through
computational methods. A basic assumption is mainly used
in the developed methods that microbes will share similar
interaction patterns with phenotype diseases if they have similar
functions (Zhao et al., 2020). Chen et al. (2017) proposed the first
computational model called KATZHMAD for MDA prediction
using the KATZ measure. With the rapid development of
artificial intelligence and machine learning (Camacho et al.,
2018; Xu et al., 2020b), some machine learning-based models
were proposed. For instance, Wang et al. (2017) developed
the LRLSHMDA method using the Laplacian regularized least
squares. In 2021, Xu et al. (2021b) developed a novel prediction
model named MDAKRLS using multisimilarity and Kronecker
regularized least squares for prediction and achieved better
performance. Shi et al. (2018) designed a prediction model by
binary matrix completion.

In addition, there are some network-based computational
methods. For example, Zou et al. (2017) and Luo and Long
(2020) developed BiRWHMDA and NTSHMDA by random
walk for prediction only using the Gaussian interaction profile
(GIP) kernel similarity, respectively. Recently, several integrated
model methods have also been proposed. For example, Huang
et al. (2017) built a computational model by combining two
single computational methods (graph-based and neighbor-
based models). Qu et al. (2019) constructed an integrated
model based on label propagation and matrix decomposition.
Peng et al. (2020) developed a reliable negative sample
selection method based on the random walk with restart
and positive unlabeled learning, then used the logistic matrix

factorization with neighborhood regularization for prediction.
Yin et al. (2020) also designed an integrated method using label
propagation and network consistency projection. Some matrix
factorization-based computational methods have been proposed
to solve microbe–disease association prediction tasks or similar
questions. For example, He et al. (2018) designed a graph
regularized non-negative matrix factorization (NMF) framework
for prediction. In 2020, Gao et al. (2021) developed multilabel
fusion collaborative matrix factorization to solve lncRNA–
disease association prediction task. In 2021, Xu et al. (2021a)
developed regularized NMF and obtained better prediction
results in the lncRNA–protein interaction prediction. However,
these models may not achieve better prediction results if the
dataset is very sparse.

Some existing methods inevitably have certain limitations. For
example, some methods used a single similarity that may cause
these methods to be biased toward the fully studied diseases
or microbes. Besides, constructions of some algorithms contain
many artificial parameters, and it is not easy to select the best
parameters for a new dataset, which may reduce the robustness
of the model. The imbalance problem of the contribution of
microbes and diseases needs to be considered since their numbers
are different. The benchmark microbe–disease dataset is very
sparse; it is essential to weaken the effect caused by the sparse
dataset and let known observed data provide more effective
information. Effective methods are still scarce since most MDAs
remain unknown (Fan et al., 2019; Long et al., 2021). It is
necessary to overcome or weaken these limitations and develop
new computational methods to improve prediction performance.

In general, from the algebraic view, biological problems
of association prediction could be transformed into matrix
completion problems. With the rapid development of machine
learning, matrix factorization is a useful tool that has been widely
used for matrix completion and solving recommendation system
problems. In addition, graph regularization-based methods
have been successfully applied to semisupervised learning.
Considering some limitations of the previous computation-based
methods, to improve the prediction performance, we designed
a novel method called CWNMF-GLapRLS for MDA prediction.
It used the proposed collaborative weighted NMF technique to
recover the sparse association matrix and used the developed
graph Laplacian regularized least squares for prediction. The
experimental results showed our method achieved superior
performance. It is an effective tool to predict potential MDAs and
can provide more help for biomedical researchers.

MATERIALS AND METHODS

Dataset
In this study, a widely used benchmark dataset (HMDAD)
was used in our experiments. It can be downloaded from
http://www.cuilab.cn/hmdad, which was collected by Ma et al.
(2017). It contains 292 human microbes, 39 diseases, and
483 experimentally confirmed associations. After filtering
out repetitive associations, we obtained 450 associations for
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prediction. The summary of the microbe–disease association
dataset is tabulated in Table 1.

Overview of the Proposed Method
To predict potential MDAs, we proposed a novel machine
learning-based joint framework named CWNMF-GLapRLS
based on the collaborative weighted non-negative matrix
factorization (CWNMF) and graph Laplacian regularized least
squares (GlapRLS). Figure 1 illustrates the flowchart of the
prediction method. It can be decomposed into the following main
steps. First, we calculate the functional similarity of microbes
through the microbe–disease association network and symptom-
based disease similarity. Second, we obtain the GIP kernel
similarity based on the topological structure information of
the known association matrix, respectively. Third, we calculate
the integrated similarities by similarity fusion. Fourth, the
proposed CWNMF technique is implemented to reconstruct the
association matrix. Finally, we use the designed GlapRLS to score
the microbe–disease pairs.

Similarity Measures
For convenience, we set two sets D =

{
d1, d2, . . . , di, . . . dnd

}
and M =

{
m1, m2, . . . , mj, . . . , mnm

}
, which represent all

diseases and microbes, where nd represents the number
of diseases and nm denotes the number of microbes. We
constructed a binary matrix XRnd×nm to represent the
microbe–disease association network:

X
(
i, j
)
=

{
1, if disease di is associated with microbe mj
0, otherwise

(1)

For disease di, its interaction profile is represented by
IP
(
di
)
{0, 1}1∗nm, which denotes the ith row of the binary

matrix X. For microbe mp, its interaction profile is denoted
by IP

(
mp
)
{0, 1}nd∗1, which represents the pth column of the

binary matrix X.

Symptom-Based Disease Similarity
Some similarity calculation methods of diseases have been
proposed using different kinds of disease information. Symptom-
based disease similarity has been increasingly demonstrated
that it can provide effective information for MDA prediction
(Peng et al., 2018b; Zou et al., 2018). In this work, we
also introduced symptom-based disease similarity and utilized
SS

dRnd×nd to represent the similarity matrix. SS
d
(
di, dj

)
represents

the similarity between diseases di and dj. More details of the
calculation method could be found in a previous study (Zhou

TABLE 1 | Summary of microbe–disease association dataset.

Types Statistical information

Microbes 292

Diseases 39

Associations 450

Sparsity (%) 96.05

et al., 2014). They used a vector of symptoms to represent
every disease and used the cosine similarity and term frequency-
inverse document frequency (TF-IDF) technique to calculate the
similarity of diseases.

Microbe Functional Similarity
In this section, inspired by previous work (Zhang et al., 2018;
Li et al., 2019) and the basic assumption that microbes will
have similar interaction patterns with phenotype diseases that
have similar symptoms, we proposed a method to calculate the
functional similarity of microbes through the symptom-based
disease similarity and association network.

Firstly, we suppose microbes mi and mj are
associated with M and N diseases, respectively.
Then, set Di =

{
di1, di2, . . . , dip, . . . , diM

}
and Dj ={

dj1, dj2, . . . , djq, . . . , djN
}

represent two subsets of diseases
in the database, in which all diseases are related to the microbe
mi and microbe mj, respectively. Subsequently, we define the
microbe functional similarity as follows:

∑M

p=1

(
max

1≤q≤N
SS

d
(
dip, djq

))
+

SF
m
(
mi, mj

)
=

∑N
q=1

(
max

1≤p≤M
SS

d
(
djq, dip

))
M + N

(2)

where SS
d denotes the symptom-based disease similarity matrix;

max
1≤q≤N

SS
d
(
dip, djq

)
represents the maximum similarity score

between disease dip and all diseases of subset Dj; SF
m is defined

as the microbe functional similarity matrix.

Gaussian Interaction Profile Kernel Similarity
In this work, symptom-based disease similarity matrix SS

d and
microbe functional similarity matrix SF

m are both sparse. To
integrate more effective information and mine the topology
information of known association networks as much as possible,
we further introduced popular GIP kernel similarity to calculate
the similarity of diseases and microbes (van Laarhoven et al.,
2011; Xu et al., 2021b). First, IP

(
di
)

of disease di and IP
(
dj
)

of disease dj were extracted from the training microbe–disease
association matrix. Then, we measure the GIP kernel similarity
between disease pairs as follows:

SG
d
(
di, dj

)
= exp

(
−σd||IP

(
di
)
− IP

(
dj
)
||

2) (3)

σd = σ
′

d/

 1
nd

nd∑
k=1

||IP
(
dk
)
||

2

 (4)

where σd is a normalized kernel bandwidth and updated through
Eq. (4); σ

′

d is an adjustment coefficient and was set to 1; SG
d denotes

the GIP kernel similarity matrix of diseases.
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FIGURE 1 | The flowchart of CWNMF-GLapRLS framework for prediction.

Similarly, we can calculate the GIP kernel similarity of
microbes:

SG
m
(
mp, mq

)
= exp

(
−σm||IP

(
mp
)
− IP

(
mq
)
||

2) (5)

σm = σ
′

m/

(
1

nm

nm∑
k=1

||IP (mk) ||
2

)
(6)

where σ
′

m is an adjustment coefficient and was set to 1; σm is a
normalized kernel bandwidth and updated through Eq. (6); SG

m
represents the microbe GIP kernel similarity matrix.

Integrated Similarities
Multisimilarity fusion is an effective technique that can
fuse different feature information and improve performance.
However, the microbe functional similarity matrix is sparse; not
every microbe has a functional similarity. It may be unreasonable
if the integrated similarity is calculated as a mean of functional
similarity and GIP kernel similarity. This approach will dilute the
GIP kernel similarity of the integrated similarity. To supplement
and integrate more effective biological information for microbes,

we defined an integrated similarity for microbes. The calculation
of similarity between microbes mp and mq is defined as follows:

Sm
(
mp, mq

)
=

{
SF

m(mp,mq)+SG
m(mp,mq)

2 , if SF
m
(
mp, mq

)
6= 0

SG
m
(
mp, mq

)
, otherwise

(7)

where SmRnm×nm denotes the integrated microbe similarity
matrix. Specifically, the final similarity will be calculated
as a mean if the microbe pair has a functional similarity.
Otherwise, the GIP kernel similarity will be assigned to the
integrated similarity.

Similarly, the integrated similarity calculation method of
diseases di and dj is defined as follows:

Sd
(
di, dj

)
=

{
SS

d(di, dj)+SG
d (di, dj)

2 , if SS
d
(
di, dj

)
6= 0

SG
d
(
di, dj

)
, otherwise

(8)

where SdRnd×nd denotes the integrated disease similarity matrix.
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Collaborative Weighted Non-negative
Matrix Factorization
In general, to recover the association matrix, we could transform
this biological problem into a recommendation task. NMF
enforced non-negativity constraints on factor matrixes for a
low-rank approximation of the non-negative matrix (Lee and
Seung, 1999), which could ensure that every element can be
represented as an additive linear combination of canonical
coordinates. Microbe–disease binary association data X is a non-
negative matrix. We could use the NMF for matrix completion or
association prediction.

In this work, microbe–disease association data X is incomplete
and sparse. To deal with missing values and effectively overcome
the data sparsity problem, we introduced weighted non-negative
matrix factorization (WNMF), which slightly changed classical
NMF by introducing a weighting term. WNMF was first proposed
to cope with missing values in large-scale networks for predicting
and representing distances (Mao and Saul, 2004) and has been
used for recommendation systems (Gu et al., 2010) to solve
the incomplete data problem. The biological problem can be
translated into minimizing the following objective:

J =
nd∑

i=1

nm∑
j=1

Yij

(
Xij −

(
WHT

)
ij

)2
(9)

s.t. W ≥ 0, H ≥ 0

where XRnd×nm are the training association data; the product
of non-negative matrices WRnd×k and HRnm×k is the best
approximation of X, k� min

{
nd, nm

}
. Microbes and diseases

are mapped into a shared latent space with a low-dimensionality
k. Y is a non-negative weight matrix used to reduce the
influence of missing values on matrix factorization, where Yij =

0 indicates Xij is a missing value and Yij = 1 indicates Xij is an
observed value. The objective function will degenerate into the
standard NMF when all weights of matrix Y are equal to one.

In 2000, Lee and Seung (2001) have shown that the
iterative update algorithm can ensure NMF objective function
convergence and is very easy to use and code. At the same time, an
iterative multiplicative updating algorithm was also used to solve
WNMF (Zhang et al., 2006). The objective function leads to the
following updated formulas:

wik = wik
(Y � XH)ik(

Y �
(
WHT

)
H
)

ik
(10)

hjk = hjk

(
(Y � X)T W

)
jk((

Y �
(
WHT

))T W
)

jk

(11)

where � is the Hadamard product. These updated rules are
computationally efficient.

In 2021, Xu et al. (2021a) developed regularized NMF
and obtained better prediction results in the lncRNA–protein
interaction prediction. This study proved that collaborative
factorization of the similarity matrix can effectively guide

matrix factorization and improve prediction performance. To
introduce more effective similarity information to guide the
matrix factorization, two collaborative regularization terms were
incorporated into the WNMF framework to fuse similarity
information and constrain two low-dimensional representations.
It can be turned into a constrained optimization problem and
formulated a joint matrix factorization framework of association
data and similarity data. Then, we can obtain a novel objective
function as follows:

J =
nd∑

i=1

nm∑
j=1

Yij

(
Xij −

(
WHT

)
ij

)2

+ λ1 ‖ Sd −WWT
‖

2
F +λ2 ‖ Sm −HHT

‖
2
F (12)

s.t. W ≥ 0, H ≥ 0

where || · ||F is the Frobenius norm; λ1 and λ2 are non-
negative regularization parameters balancing two collaborative
regularization terms and the reconstruction error. The
objective function will degenerate into WNMF if λ1 and λ2
are equal to zero.

To prevent overfitting and adjust the smoothness of W
and H, we introduced the Tikhonov (L2) regularization terms
(Xiao et al., 2018) into the objective function and obtained the
final collaborative weighted non-negative matrix factorization
(CWNMF) objective function as follows:

J =
nd∑

i=1

nm∑
j=1

Yij

(
Xij −

(
WHT

)
ij

)2

+ λ1 ‖ Sd −WWT
‖

2
F +λ2 ‖ Sm −HHT

‖
2
F (13)

+ α
(
‖W ‖2

F + ‖ H ‖2
F
)

s.t. W ≥ 0, H ≥ 0

where α is used to adjust the Tikhonov regularization terms,
which is a regularization coefficient. To improve the robustness
of the model, we set the same value for the same Tikhonov
regularization terms, and α was set to 1 for the dataset.

Since the objective function is not convex in both variables
W and H, the iterative update algorithm was used to search the
local minimum. Here, we used the Lagrange multipliers method
and Karush–Kuhn–Tucker (KKT) conditions to optimize the
objective function. Eventually, we obtained the following
multiplicative updates:

wik = wik
(Y � XH + 2λ1SdW)ik(

Y �
(
WHT

)
H + αW + 2λ1WWTW

)
ik

(14)

hjk = hjk

(
(Y � X)T W + 2λ2SmH

)
jk((

Y �
(
WHT

))T W + αH + 2λ2HHTH
)

jk

(15)

Then, we can obtain the reconstructed association matrix
X∗ =WHT. The low-dimensionality representation k was set as
35 in the process of prediction.
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Graph Laplacian Regularized Least
Squares
In this section, to improve the prediction performance, we
developed a semisupervised learning method named graph
Laplacian regularized least squares based on the reconstructed
association matrix X∗. Graph regularization is used to fully
exploit data geometric structure for semisupervised learning.
Specifically, in the prediction space of microbes, with the above
defined integrated microbe similarity matrix Sm, the graph
Laplacian regularization term was incorporated into the least-
squares framework to enhance the learning performance. The
optimization problem can be formularized as follows:

min
Fm
‖ X∗ − FT

m ‖
2
F +βm

1
2

 nm∑
i,j=1

‖ Fmi − Fmj ‖
2 Smij

 (16)

where X∗Rnd×nm is a reconstructed association matrix obtained
by the CWNMF method; βm is the regularization coefficient; Fm
is the prediction score matrix based on the microbes; Fmi denotes
the ith row of Fm ∈ Rnm×nd; and Fmj denotes the jth row of Fm.
The graph Laplacian regularization term (Xiao et al., 2018; Cai
et al., 2020) can be transformed into a matrix form by some
algebraic manipulations:

1
2

 nm∑
i,j=1

‖ Fmi − Fmj ‖
2 Smij

 = Tr
(

FT
mLmFm

)
(17)

where Tr (?) denotes the trace of a matrix; Lm = Dm − Sm is the
graph Laplacian matrix for Sm. Dm is the diagonal matrix whose
entries are calculated as the column sums of Sm. Therefore, Eq.
(16) can be transformed into the following equation:

min
Fm
‖ X∗ − FT

m ‖
2
F +βmTr

(
FT

mLmFm

)
(18)

where Fm = Smαm, αm ∈ Rnm×nd is a matrix (Xia et al., 2010). To
improve the robustness of the model and according to the choice
of previous similar work (van Laarhoven et al., 2011), βm was
set to 1. We can obtain the solution of the optimization problem
by some manipulations, α∗m = (Sm + LmSm)−1 X∗T. Then, in the
microbe prediction space, the prediction score matrix can be
calculated as follows:

Fm = Sm (Sm + LmSm)−1 X∗T (19)

Similarly, for disease prediction space, the optimization
problem can be formularized as the following equation:

min
Fd
‖ X∗ − Fd ‖

2
F +βdTr

(
FT

d LdFd

)
(20)

where βd was also set to 1. We can obtain the prediction score
matrix in the disease prediction space.

Fd = Sd (Sd + LdSd)
−1 X∗ (21)

Finally, the predicted microbe–disease association matrix
is calculated as F∗ = ηFT

m + (1− η) Fd, where η is a tradeoff
parameter describing the importance of microbe and disease
space. The microbe-related diseases can be prioritized by the size
of the prediction scores in matrix F∗. The detailed steps of the
CWNMF-GlapRLS procedure are detailed in Algorithm 1.

Algorithm 1 | CWNMF-GlapRLS Algorithm.
Input: Matrices XRnd×nm, SdRnd×nd and SmRnm×nm; non-negative weight
matrix YRnd×nm; regularization coefficients λ1 and λ2; tradeoff parameter η.
Output: Predicted score matrix F∗.
Randomly initialize two non-negative matrices WRnd×k and HRnm×k .
Repeat
Update W and H by the following rules:
wik = wik

(Y�XH+2λ1SdW)ik
(Y�(WHT)H+αW+2λ1WWTW)ik

hjk = hjk

(
(Y�X)TW+2λ2SmH

)
jk(

(Y�(WHT))TW+αH+2λ2HHTH
)

jk

Until convergence
Reconstruct association matrix X∗ = WHT.
Calculate diagonal matrix Dm;
Lm = Dm − Sm;
Fm = Sm (Sm + LmSm)−1 XT//calculate the score matrix Fm based on the
microbe prediction space.
Calculate diagonal matrix Dd ;
Ld = Dd − Sd ;
Fd = Sd (Sd + LdSd)−1 X//calculate the score matrix Fd based on the disease
prediction space.
Return F∗ = ηFT

m + (1− η) Fd .

RESULTS

Evaluation Metrics
To ensure the reliability of experimental results, we implemented
the global leave-one-out cross-validation (LOOCV) framework
to validate the performance of models (Bao et al., 2017). In each
round cross-validation of the LOOCV framework, the integrated
similarity of diseases and microbes should be recalculated, which
can guarantee independence between the validation set and the
training set. Specifically, under this framework, every known
microbe–disease pair will be regarded as a test set, the rest of
the known pairs are treated as the training set in the dataset,
and all pairs without observed association are used as candidate
samples. We calculated the predicted microbe–disease score
matrix by running the model. Then, the prediction score is
compared with all candidate samples to get the ranking of
each test sample. This testing sample will be regarded as a
successful prediction if the rank is higher than the threshold.
We used the receiver operating characteristic (ROC) curve to
vividly describe the performance of the model by calculating
sensitivity (true positive rates) and 1-specificity (false positive
rates) with different thresholds. In addition, we calculated the
area under curve (AUC) to intuitively describe the performance.
Similarly, fivefold cross-validation (CV) was also applied to
evaluate the effectiveness of the models. The experiment was
repeatedly performed 10 times to reduce potential bias caused
by random segmentation of the dataset. At the same time, the
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ROC curves and average AUC values were also obtained under
the fivefold CV framework.

Parameter Sensitivity and Model Setting
It is necessary to evaluate the influence of model parameters on
the prediction performance of CWNMF-GLapRLS. We studied
the influence of two regularization parameters λ1 and λ2. The
grid search method was adopted to find better model parameters.
In the experiments, we first tuned the range of two parameters
from 0 to 0.5, and each step is 0.01. Then, the proposed method
was run to find the optimal model parameter values based
on the AUC values on the 50× 50 grid. Figure 2A shows
the relationship between the AUC value and the parameter
pair (λ1, λ2) under the fivefold framework. Finally, we selected
the parameter pair of (0.02, 0.04) as the optimal value of (λ1, λ2)
based on the grid search results under the two evaluation
frameworks. Then, we fixed the parameter pair and adjusted the
parameter η. The effects between parameter η and the AUC value
are shown in Figure 2B. Finally, η was set at 0.15 as the optimal
value for the following analysis.

Iterative update algorithm can ensure objective function
convergence and guarantee to converge to a locally optimal.
Figure 3 shows the objective function convergence curve of
CWNMF. From the figure, we can see that the convergence is fast,
and the objective function value decreases as the iterations. The
number of iterations is usually very small (fewer than 100) before
practical convergence. Thus, the proposed method can scale to
larger datasets. Finally, the number of iterations was set at 300 in
the process of prediction.

Performance Analysis
Here, we compared five different forms (proposed method,
proposed without microbe functional similarity, proposed
method without weight, proposed method without GLapRLS,
and proposed method without CWNMF) of the introduced
method to analyze the proposed method. Especially, to

FIGURE 3 | Convergence behavior of CWNMF objection function.

improve the prediction performance and fuse more similarity
information, we calculated microbe functional similarity. To
deal with missing values and effectively overcome the data
sparsity problem, we introduced WNMF, which slightly changed
classical NMF by introducing a weighting term, and proposed
the technique CWNMF for recovering the association matrix.
The proposed method is a joint framework. The CWNMF
technique was first used to recover the original matrix; then,
the GLapRLS method was used for prediction. Figure 4 shows
the performance comparison of methods with different forms
on the HMDAD dataset. The proposed method performs
better than the other four methods. From the figure, we
can obtain that the combination of CWNMF and GLapRLS
can significantly improve the prediction performance. The
comparison results indicate that microbe functional similarity

FIGURE 2 | (A) The illustration of determining the optimal values of parameter pair (λ1, λ2) under grid search. (B) The effects between parameter η and AUC value.
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FIGURE 4 | The performance comparison of different methods.

and weighting term are also effective in improving the
performance of prediction.

Comparison With State-of-the-Art
Prediction Methods
In this section, to evaluate the effectiveness of the
proposed method, we compared it with 5 state-of-the-art
methods, including graph regularized non-negative matrix
factorization (GRNMFHMDA) (He et al., 2018), KATZ
measure (KATZHMDA) (Chen et al., 2017), bi-random walk
(BiRWHMDA) (Zou et al., 2017), Laplacian regularized least
squares (LRLSHMDA) (Wang et al., 2017), and network
topological similarity (NTSHMDA) (Luo and Long, 2020)
for human MDA prediction methods. Optimal parameter
combinations for 5 comparison methods are listed in
Supplementary Table 1.

First, under the LOOCV framework, the ROC curves and
AUC values of six methods have been shown in Figure 5.
From the figure, we can see that the proposed method
outperforms other methods with an AUC of 0.9362 under
the LOOCV framework, while GRNMFHMDA, KATZHMDA,
LRLSHMDA, BiRWHMDA, and NTSHMDA obtained AUC
values of 0.8719, 0.8382, 0.8916, 0.8964, and 0.9040, respectively.

In addition, the ROC curves and average AUC values of six
methods under the fivefold CV framework have been shown
in Figure 6. We can see that the proposed method is more
outstanding than other methods with an AUC of 0.9161 under the
fivefold CV framework, while GRNMFHMDA, KATZHMDA,
LRLSHMDA, BiRWHMDA, and NTSHMDA obtained AUC
values of 0.8555, 0.8324, 0.8809, 0.8839, and 0.8918, respectively.
These experimental results proved that our method is effective
and reliable, and may be an effective tool for seeking potential
disease-related microbes.

Case Studies
Accumulating evidence has shown that the development and
occurrence of human disease are closely related to the imbalance
of the microbial community. To infer potential association, in
this section, case studies were implemented on two different
common human diseases (asthma and IBD). In this way, we
used the number of validated predicted microbes of the top 15
prediction results to further measure the predictive capability,
respectively. If the genus of a microbe is related to the disease,
this microbe will be related to the disease. This assumption has
been widely used in related studies (Niu et al., 2019; Wang
et al., 2019). Specifically, for a given disease, all pairs without
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FIGURE 5 | The ROC curves and AUC values of six methods under LOOCV
framework.

FIGURE 6 | The ROC curves and average AUC values of six methods under
fivefold CV framework.

observed association were regarded as candidate samples. We
calculated the association scores for all microbes based on the
joint framework. All candidate microbe samples were prioritized
based on their scores.

Asthma is a common chronic inflammatory disease, which
affects the daily lives of 300 million people worldwide (Lambrecht
and Hammad, 2015). To investigate asthma-causing microbes,
the prediction results have been tabulated in Table 2. There are 13
out of the top 15 candidate microbes that have been successfully
supported to be associated with asthma based on previously
published medical or biological literature. According to the table,
our method has an excellent effect. Increasing evidence has
shown that the development and occurrence of human asthma

TABLE 2 | Prediction results of the top 15 asthma-associated microbes.

Rank Microbe Evidence

1 Firmicutes PMID:23265859

2 Clostridium coccoides PMID:21477358

3 Actinobacteria PMID:26220531

4 Clostridia Unconfirmed

5 Bacteroides PMID:10202341

6 Clostridium difficile PMID:21872915

7 Lactobacillus PMID:30400588

8 Bifidobacterium PMID:24735374

9 Lachnospiraceae PMID:31958431

10 Veillonella PMID:26424567

11 Streptococcus PMID:25865368

12 Staphylococcus aureus PMID:25533526

13 Fusobacterium nucleatum Unconfirmed

14 Faecalibacterium prausnitzii PMID:30208875

15 Fusobacterium PMID:27838347

are closely related to the imbalance of the microbial community.
For example, some clinical evidence has shown that asthmatic
patients have lower Actinobacteria, Firmicutes, and Bacteroides
proportions (Björkstén et al., 1999; Marri et al., 2013). The
colonization by Clostridium coccoides subcluster XIVa species at
age 3 weeks may serve as an early indicator of possible asthma
(Vael et al., 2011). In addition, colonization by Clostridium
difficile at age 1 month was closely associated with asthma at 6–
7 years old (Van Nimwegen et al., 2011). One study showed that
Streptococcus increases the risk of asthma by early asymptomatic
colonization (Teo et al., 2015). Lactobacillus has been shown to
be beneficial to asthmatic children (Huang et al., 2018).

IBD starts with inflammation and is a collective term for a
wide range of intestinal diseases, which is a worldwide healthcare
problem (Hossen et al., 2020). IBD has become one of the
most studied human diseases linked to gut microbiota (Kostic
et al., 2014). We listed the top 15 IBD-associated microbes in
Table 3. As a result, 14 out of the top 15 candidate microbes

TABLE 3 | Prediction results of the top 15 IBD-associated microbes.

Rank Microbe Evidence

1 Bacteroidetes PMID:25307765

2 Prevotella PMID:25307765

3 Firmicutes PMID:25307765

4 Clostridium coccoides PMID:19235886

5 Helicobacter pylori PMID:22221289

6 Bacteroides PMID:25307765

7 Clostridia PMID:31142855

8 Haemophilus PMID:24013298

9 Clostridium difficile PMID:24838421

10 Lactobacillus PMID:24478468

11 Bifidobacterium PMID:24478468

12 Veillonella PMID:24013298

13 Staphylococcus aureus PMID:19809406

14 Staphylococcus Unconfirmed

15 Faecalibacterium prausnitzii PMID:32815163
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have been successfully validated to be associated with the IBD
based on published literature. Emerging evidence showed that
many microbes are closely related to IBD. For example, the
infection of Clostridium difficile is a significant clinical challenge
for IBD patients, which can result in morbidity and mortality
(Hashash and Binion, 2014). Some studies showed Bacteroidetes,
Bacteroides, Firmicutes, and Prevotella are associated with the
development of IBD (Juste et al., 2014; Walters et al., 2014).
In IBD patients, Prevotella, Veillonella, and Haemophilus were
found, which can contribute largely to dysbiosis, which is
associated with inflammatory responses (Said et al., 2014).
The study confirmed that Helicobacter pylori was inversely
associated with IBD (Sonnenberg and Genta, 2012). In addition,
Veillonella and Bifidobacterium decreased, while the proportion
of Lactobacillus increased in the feces of IBD patients (Takaishi
et al., 2008). Case studies indicated that our method has a
practical effect on potential association prediction.

CONCLUSION AND DISCUSSION

Studies investigating microbiomes demonstrated a critical role
for microbes in human health and disease. Identifying potential
disease-related microbes is essential for understanding the
mechanisms of host–microbe interactions and revealing the
pathological mechanism of human diseases. Here, we designed
a joint framework for association prediction based on the
proposed CWNMF and graph Laplacian regularized least
squares. The experimental results showed that our method
achieved the best performance by comparing it with 5 state-
of-the-art models. Case studies of asthma and IBD also further
demonstrated that the proposed method is a useful tool to
infer potential associations. All experimental results adequately
demonstrated that the proposed method has reliable and effective
prediction performance.

There are several key factors that make the proposed
method have effective performance. Firstly, compared with
graph regularized NMF and collaborative matrix factorization,
we introduced a weighting term and changed the NMF for
prediction to deal with missing values and weaken the effect
caused by a sparse dataset. Secondly, we calculated the functional
similarity of microbes and introduced symptom-based disease
similarity for fusing more similarity information. Thirdly, to

restructure the sparse association matrix, two collaborative
regularization terms were incorporated into the framework to
fuse similarity information and constrain two low-dimensional
representations, guiding the matrix factorization process. We
used the iterative update algorithm to solve the matrix
factorization objective function, which is easy to use and code.
Semisupervised learning provides more effective information in
the process of prediction. We hope that the proposed method
can help biomedical researchers conduct follow-up research, and
a growing number of potential disease-related microbes could be
verified through biological or clinical experiments.
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