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Abstract: Brain–computer interface (BCI) remains an emerging tool that seeks to improve the patient
interaction with the therapeutic mechanisms and to generate neuroplasticity progressively through
neuromotor abilities. Motor imagery (MI) analysis is the most used paradigm based on the motor
cortex’s electrical activity to detect movement intention. It has been shown that motor imagery
mental practice with movement-associated stimuli may offer an effective strategy to facilitate motor
recovery in brain injury patients. In this sense, this study aims to present the BCI associated with
visual and haptic stimuli to facilitate MI generation and control the T-FLEX ankle exoskeleton.
To achieve this, five post-stroke patients (55–63 years) were subjected to three different strategies
using T-FLEX: stationary therapy (ST) without motor imagination, motor imagination with visual
stimulation (MIV), and motor imagination with visual-haptic inducement (MIVH). The quantitative
characterization of both BCI stimuli strategies was made through the motor imagery accuracy rate,
the electroencephalographic (EEG) analysis during the MI active periods, the statistical analysis,
and a subjective patient’s perception. The preliminary results demonstrated the viability of the
BCI-controlled ankle exoskeleton system with the beta rebound, in terms of patient’s performance
during MI active periods and satisfaction outcomes. Accuracy differences employing haptic stimulus
were detected with an average of 68% compared with the 50.7% over only visual stimulus. However,
the power spectral density (PSD) did not present changes in prominent activation of the MI band
but presented significant variations in terms of laterality. In this way, visual and haptic stimuli
improved the subject’s MI accuracy but did not generate differential brain activity over the affected
hemisphere. Hence, long-term sessions with a more extensive sample and a more robust algorithm
should be carried out to evaluate the impact of the proposed system on neuronal and motor evolution
after stroke.

Keywords: brain–computer interface (BCI); beta rebound; central nervous system (CNS); electroen-
cephalography (EEG); ankle exoskeleton; motor imagery (MI); visual stimulus; haptic stimulus

1. Introduction

Stroke is one of the leading causes of physical disability seriously affecting 5 million
people’s quality of life out of the 15 million who suffer from stroke around the world [1].
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About 80% of stroke survivors have residual mobility limitations usually associated with a
foot-drop. That means a lower limb impairment that combines a weak dorsiflexor and an
increased plantar flexor stiffness reducing the capacity to maintain balance and posture
while walking [2–4]. Post-stroke rehabilitation therapy aims to restore the patient’s physi-
cal, neurological, and psychological capacities to achieve the highest level of functional
independence [5]. In fact, robotic devices like lower-limb exoskeletons in motor rehabilita-
tion programs have been shown to improve automatic repetitive training and promote new
motor skill acquisition after stroke [6,7]. User’s intention in this field is usually detected
and predicted through control approaches based on the sensing of human biomechanics
(i.e., through inertial sensors, direct contact operation, or external transducers) [7,8]. There-
fore, conventional robotic control systems generally do not include efficient and natural
interaction methods between users and exoskeletons [9]. In this way, the possibility of
enhancing and involve the patient increasingly is a clear objective to improve the user skills
in a short-term period with better results.

Brain–computer interfaces (BCI), mostly based on the acquisition of electroencephalog-
raphy (EEG) biological signals, provides a promising communication and control channel
to improve the patient’s involvement with the system. It has been shown to generate
neuroplasticity progressively throughout the development of neuromotor abilities and the
mental practice of movements [10,11]. Besides, this technology has emerged as a potential
tool to command robotic exoskeletons (e.g., lower-body powered exoskeletons) in the
assistance and rehabilitation fields [9]. One of the few clinical studies exploring the BCI-
based rehabilitation systems showed the viability of this tool based on motor-related events
when a user is commanding a lower-limb exoskeleton [12]. Other research, also focused
exclusively on the ankle-foot orthosis, showed a fast and effective approach for inducing
cortical plasticity through BCI having a huge prospective in motor function rehabilitation
after stroke [13].

In the case of the control of robotic exoskeletons by means of a BCI, several paradigms
exists based on rhythms related to the brain activity [12]. One of the most used strategies to
decode brain activity is the motor imagery (MI) study [14]. Motor imagery is a technique
that requires a dynamic mental image of the desired motor output [15]. Its use in the BCI
field has been relevant to detect neurological patients’ movement intention. Specifically
throughout the Event-Related Desynchronization/Synchronization (ERD/ERS) modality,
it is possible to recognize the beta band’s variations in power after performing a real or
an imagined movement [16–18]. Generally, the alpha and beta power decrease in the
resting state and keeps a reduced power during the motor imagination or planning (ERD).
However, about 300 or 500 ms after the end of the motor imagery, the beta rebound emerges
through one second approximately (ERS). This last event occurs particularly in motor areas
representing a simple idle activity and/or an active inhibition of the motor network [19,20].
ERD/ERS pattern has been widely studied in MI-BCI modalities as a potentially effective strat-
egy for detecting and measuring commands to control a system [21,22]. For instance, the beta
cortical oscillations control signals were effective to actuate an upper-limb exoskeleton
with motor execution and motor imagination [23], and to trigger a robot-assisted action
during lower limb motor imagery tasks [24,25]. In particular, one of the inspirational de-
velopments in the BCI-based beta rebound system was used to control a virtual spaceship
takeoff using real or imaginary foot movements. The design of this strategy resulted in
effective commands that easily interpret neural signals as motor intentions to activate the
animation in the virtual reality (VR) environment without MI training [26–28].

In general, motor imagery-based BCIs are commonly related to low performance and
reliability due to imperfect signal processing algorithms and most users’ complexity to
display a vivid picture of the movement [8,29]. According to Lotte et al. [30], the user,
beyond the processing techniques, is one of the most critical components of the BCI loop.
The subject’s inability to correctly perform the desired mental commands hinders the
capacity of any algorithm to properly detect them [30]. In this sense, the user must be
properly guided to be able to effectively use and control the BCI system [30–32]. Several
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sources agree the proper induction of MI is a suitable and beneficial alternative for patients
in their rehabilitation process [33,34]. Precisely, MI-BCI strategies induce neural activity
and increase motor and cognitive performance by generating a change in brain cortical
activity [33,35]. In addition, the specific modulation of the brain for planning and control
voluntary exoskeleton movements triggers neuroplasticity in post-stroke patients [36,37].
These neurofeedback mechanisms generate brain reorganization to restore the lost function
and consequently prompt a motor recovery [36,38]. Some studies reinforce this idea by
including other signals, cues, feedback systems, and even other modalities within the
therapy protocol [39].

Motor imagery-associated stimuli has been considered as an effective strategy to
proficiently regulating motor imagery [15]. Motivation and compatibility with the therapy
have been increasingly involved in the BCI systems protocols making users possible to
learn to regulate electrocortical activity in the sensorimotor cortex. Usually, visual stimulus
is most applied in this field to support users’ motor imagery task [30]. Neuper et al. [40]
have shown the control of an MI-based BCI system can develop a better precision in
its performance through visual developments. Nevertheless, haptic stimulus has been
reported to be more engaging and functional than the visual in MI-BCI systems [41,42].
According to Kauhanen et al. [43], haptic stimulus has emerged as complement to regulate
motor imagery generation. In this way, MI-based BCI with a haptic stimulus can be an
effective alternative when the visual channel is overloaded or when it is needed for the
performance of additional tasks beyond the BCI system [41,43].

Following this line of research, this preliminary study seeks to develop a BCI-controlled
ankle exoskeleton system based on motor imagery to activate neuronal and motor pat-
terns in post-stroke recovery. Furthermore, this report looks to evaluate the best strategy
to induce MI through a comparison of visual and visual with haptic stimuli modalities.
From this, it is expected to introduce a complete and portable system to actively involve
stroke survivors in robotic therapies. To do that, BCI motor imagination accuracy, offline
EEG signal analysis, and user level of satisfaction are presented.

2. Materials and Methods
2.1. BCI-Exoskeleton System

This section presents the proposed main elements and procedures developed to control
the T-FLEX ankle exoskeleton actuation by the BCI system implementation with visual and
haptic stimulations. In this sense, the system integrated BCI wearable system with an EEG
signal treatment for MI detection, followed by the T-FLEX robotic device assistance and the
integrated protocols to communicate both the systems. Additionally, the system contained
stimuli strategies with their respective operation technique and user presentation modes.

2.1.1. BCI Interface

The interface included the flexible and wireless EEG Headset Enobio 20 (Neuro-
electrics, Barcelona, Spain) which contained 20 channels, a 500 Hz frequency rate, and high
dynamic resolution (24 bits, 0.05 uV). The Enobio Hardware linked with the NIC 2.0 Soft-
ware (Neuroelectrics, Spain) operated the EEG signal acquisition system to allow the motor
cortex recording [44]. Particularly, this study worked through a laplacian montage with
4 solidgel electrodes positioned according to the international 10/20 system distribution
(C1, C2, FCz, and CPz with the Cz reference electrode).

Meanwhile, OpenVibe Software (Inria Rennes, France) processed the real-time EEG
signal through a pre-processing and a feature extraction stage, based on [16,26]. The pre-
processing phase consisted of a Laplacian Spatial Filter and a 4th-order Butterworth band-
pass filter (pass band ripple of 0.5 dB) with a lower and upper cutoff frequency of 16 and
24 Hz (the beta band), respectively [45,46]. Denoising and cleaning the signal eliminates ar-
tifacts product of the environment and the user’s physical conditions (e.g., skin impedance
fluctuations, compensatory movements, muscle activity, eye movements, etc). Besides,
combining filtering strategies create, as far as possible, an ideal signal with less noise where
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the data utility is maximized. In this case, the methodological development of the study
focuses on performing a continuous measurement of the power of the beta rhythm in a
Laplacian montage around Cz to detect lower-limb MI. The above is to assess the reliability
of the robotic strategy combined with an MI-based control without beta laterality consider-
ations [16,47]. Although the ERS beta rhythm is generally dominant over the contralateral
primary sensorimotor area [20], discrepancies still exist related to its lateralization. Accord-
ing to Nam et al. [48], the MI of a limb movement can be accompanied by an ipsilateral or a
contralateral ERS under the movement duration. Thus, brief movement imagery generates
ipsilateral ERS while continuous movement imagery yields contralateral ERS [48].

That said, the beta power rebound identification considered an initial signal epoching
into 1 s long epochs and 100 ms overlapping. Then, the signal passed through a square
operation and average calculation over a 1 s interval. A 5-min calibration process defined
a threshold (Th), computed as the average plus three times the standard deviation as
indicated in Equation (1), where x is the average of the signal and σ is the standard
deviation of the signal over the specified interval. Lastly, the online scenario compares
the computed Th value to the real-time beta power signal to establish the beta rebound
detection [16].

Th = x + 3
√

σ2 (1)

2.1.2. T-FLEX Ankle Exoskeleton

T-FLEX is a wearable and portable exoskeleton capable of assisting the ankle during
stationary and gait assistance scenarios through a variable stiffness principle [49]. The de-
vice comprises two servomotors Dynamixel MX106T (Dynamixel, Seoul, Korea), placed on
the user’s shank that emulate the human muscles (see Figure 1). These actuators employ
elastic elements to transmit the torque to the ankle, whose mechanical behavior under
stress tests is similar to the human Achilles tendon [50]. The T-FLEX’s operating principle
consists of an agonist-antagonist configuration to assist the ankle motions in the sagittal
plane. In this sense, the anterior actuator contributes to the dorsiflexion, and the posterior
actuator provides the plantarflexion, as Figure 1 shows.

Processing Unit 
Power Supply

Anterior MX106TPosterior MX106T

Inertial Sensor

Figure 1. The actuation system of the T-FLEX exoskeleton implemented on a passive orthotic device.
The left and right parts show the movements assisted by the device and the involved elements
and actuators.

The exoskeleton integrates a low-cost small single-board computer (SBC-Raspberry
Pi 3, Raspberry, UK) as the processing unit to control the actuators and acquire the device’s
sensors, i.e., an inertial sensor BNO055 (Bosch, Stuttgart, Germany) to estimate the user’s
ankle kinematics and motor data to measure user-device interaction. The controllers and
algorithms run on the Robot Operating System framework under a Unix-based distribution
and are available in a public repository at https://github.com/GummiExo/t_flex (accessed
on 4 May 2020). The device includes a LiPo battery of 14.8 V and 4800 mAh that enables
each actuator to turn to 55 rpm (no-load condition) and provide a stall torque of 10 Nm.

https://github.com/GummiExo/t_flex
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T-FLEX has shown promising results in (1) gait assistance and (2) stationary scenarios
in terms of real applications involving stroke survivors [51,52]. Specifically, a study evi-
denced significant changes in motor recovery (i.e., improvement in dorsiflexion during the
swing phase, spasticity reduction, and increase in walking speed and cadence) after 18 ses-
sions of T-FLEX in a stationary therapy [51]. On the other hand, the device’s multimodality
has allowed integrating different high-level strategies, as the methodology proposed in
this paper, aiming at improving the (1) interaction, (2) motivation, (3) effort, and (4) active
engagement [53].

2.1.3. BCI—T-FLEX System Integration

The communication bridge between the designed BCI and the T-FLEX device used
different data sending protocols across a Python local server. Firstly, OpenVibe connected
the local server with a Lab Streaming Layer (LSL) protocol at 256 Hz sending an array of
EEG signals variables with a configured duration of 300 s (150,000 samples). The sent data
included the sample number, time in seconds, channel (FCz, C1, Cz, C2, CPz), encoding
type, and magnitude in terms of microvolts (uV). Subsequently, the local server processed
this data to compare it with the individual threshold from the calibration stage and to remit
it to the Raspberry Pi 3 employing a User Datagram Protocol (UDP). In this case, the server
sent a logical ‘1’ when the threshold was exceeded and a ‘0’ when not. The above triggered
or not a dorsi-plantarflexion movement assisted by the exoskeleton (see Figure 2).

Enobio 20 / NIC 2.0
EEG Signal Acquistion 

System

OpenVibe 
Software

LSL 
Protocol

Local Sever with Python

Raspberry Pi 3

MI Detection Digital Command

UDP 
Protocol

Beta Power Signal Processing
T-FLEX 

Dorsi-Plantarflexion 
Movements

Figure 2. Communication protocols diagram for BCI—T-FLEX integration through a Local Server
in python.

2.1.4. Stimuli Strategies

In addition to the previous system presented, the proposal also involved two induce-
ment systems (i.e., visual and haptic stimulation) to generate brain incentives and facilitate
the MI process.

• Visual Stimulus System: The local server configured three types of instruction texts
showed in a full-screen: (1) “Wait”, (2) “Idle”, and (3) “Move your feet”. On one hand,
the main objective of the “Wait” text was to provide an initial 30 s waiting period to
prepare the system. On the other hand, “Idle” and “Move your feet” texts, gave an
explicit indication to the user to stay in a state of relaxation or a state of MI generation,
with 10 s duration respectively (see Figure 3). In this way, only in the “Move your
feet” stage, the local server received MI commands to activate T-FLEX.

• Haptic Stimulus System: The visual system worked with haptic one in sync with the
“Move your Feet” periods to assist the patient in the MI generation (Figure 3). This
haptic system, manually controlled by the supervisor, implemented the SunniMix
rumble vibration motor (SM SunniMix, USA) with a vibration frequency in a range
between 36 and 40 Hz (2200 to 2500 r/min). This motor attached the system through a
structure made of Ethylene Vinyl Acetate (EVA), a box made of Acrylonitrile Butadiene
Styrene (ABS) coated it, and finally, velcro material allowed the adhesion to the
anterior tibialis muscle area.
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−30 0 10 20 300
30 s 10 s 10 s

. . .

. . .

Start End
Haptic 

Stimulus

30
10 s

Haptic 
Stimulus

Wait State MI StateIdle State

Time (s)

. . .

Idle State

Figure 3. Timeline strategy applied in MI experimental conditions with visual and haptic stimulus.
The Idle and MI states repeated alternately until fulfilling the 5-min test.

2.2. Experimental Validation

This section exposes the experimental evaluation with the description, procedures,
and methods performed to systematically compare both visual and haptic stimuli strategies.

2.2.1. Participants

The development of this preliminary study considered the following inclusion and
exclusion criteria for the participants’ selection:

• Inclusion Criteria: Patients between the ages range of 18 to 70 years with a pathology
associated with the foot-ankle complex due to a neurological injury and with partial
independence to mobilize.

• Exclusion Criteria: Candidates with hypertension, uncontrolled epilepsy, pain in the
lower limbs, and severe spasticity (level 4 of the Ashworth Scale) were excluded from
the study, as well as patients with the presence of wound or pressure ulcers that could
have made nonfeasible the use of the device.

2.2.2. Experimental Setup

Participants sat comfortably in a chair with a 90° knee flexion while looking at a screen.
As previously mentioned, the wireless and portable electrophysiology sensor system
Enobio 20 with the NIC2 software interface established the signal acquisition system.
Moreover, the T-FLEX device assisted subjects’ paretic lower limb dorsi-plantarflexion
movements, and an additional motor, located in the anterior tibialis muscle area, delivered
haptic stimulus during the active instants of the experimental procedure (see Figure 4).

Enobio 20 
Signal Acquisition 

System

T-FLEX
Exoskeleton

SunniMix
Vibration Motor

Figure 4. Experimental system setup for BCI-based control using T-FLEX with visual and haptic stimuli.
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2.2.3. Experimental Procedure

Five captures (i.e., a calibration and four experimental conditions) guided this study
with 5 min duration each one. Unlike the calibration period, the four experimental condi-
tions considered 10 s-period alternation between active and rest intervals until reaching
the 5-minute test. The first capture, Idle, referred to a calibration period that established
the threshold while the user remains static. The second and third captures belonged to an
experimentation period that allowed the user to become familiar with the system. In this
case, while one of the tests consisted of active dorsi-plantar movements without T-FLEX
assistance, the other one implied the stationary therapy (ST) assisted with the robotic
device and configured to perform dorsi-plantarflexion every 3 s during the active intervals
(see Figure 5).

Idle Period
(Calibration)

Real
Movement

Stationary 
Therapy

MI Detection with
Visual Stimulation

MI Detection with
Visual and Haptic Stimulation

Figure 5. Experimental BCI T-FLEX system procedure in post-stroke patients with lowerlimb impairment.

The fourth and fifth last two captures belonged to the MI stage. Throughout the MI
active intervals, subjects imagined continuous flexions and extensions movements of the
ankle to command T-FLEX. In these captures, visual or visual with haptic inducement
stimulated patients. That said, each participant carried out a single session to perform the
test, lasting approximately 30 to 40 min.

Incidentally, physiological tonic activity in experimental settings can increase the
tension of the facial muscles, generating noise in the EEG signals, especially in activities
where the cognitive demand may imply a state of stress. Hence, before the beginning of the
study, participants performed a training session based on Jacobson’s progressive relaxation
technique for ocular, facial, jaw, and neck muscles [54]. The technique allows treating the
control of reactivity to reduce anxiety and achieve a state of cognitive stability through the
progressive elimination of muscular tensions [55].

In the same way, patients were instructed about the activity to perform, the eye-
ball fixed position to maintain on the screen during the execution of the task, and the
movements to avoid (eye and body movements and contraction of facial and mandibular
muscles). These strategies sought to minimize artifacts and ensure the best possible EEG
signal quality.

Both training and experimental procedures were implemented by members from the
Movement Analysis Laboratory of the Rehabilitation Corporation Club de Leones Cruz del
Sur (Punta Arenas, Chile).

2.2.4. Experimental Analysis

Both captures that employed MI (i.e., MIV and MIVH tests) evaluated the BCI system
accuracy in terms of the beta rebound acquired signal. In this way, the number of active
intervals in which the patient had to imagine movement was related to the MI attempts
correctly detected by the BCI, following Equation (2). As soon as the 10 s active period
started, with the visual interface “Move your feet”, the system detected a successful
attempt once the beta rebound power exceeded the threshold. In this way, it was expected
to measure the first successful attempt per each active window (total of 14 active periods).
Statistical analyses verified significant differences between visual stimulation and visual
and haptic stimulation.
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Accuracy(%) =
Successfull Attempts

Total Attempts
× 100 (2)

In terms of the brain-motor activity, the power spectral density (PSD) estimated the
variation of energy inside the Event-Related Potential (ERP), which measured the electrical
response after integrating the BCI system with both inducement strategies. Firstly, each
continuous offline signal passed through a high-pass filter of 0.16 Hz to remove slow drifts
and through a 4th-order Butterworth band-pass filter to segment the MI frequency band
(8–30 Hz). Then, the signal was segmented into the 10-second active periods and squared
to obtain power samples. The total segments of each task were averaged and adjusted
through a baseline correction by subtracting the mean activity 500 ms before the stimuli.
Equation (3) demonstrates the procedure, where P(t) is the average power signal of the
active periods and PBaseline is the average power number during the last 500 ms of the rest
periods [19,20,56,57].

ERPchannel = P(t)− PBaseline (3)

Afterward, the Welch method used a window of 0.5 s and 50% overlapping to obtain
the PSD in the frequency band associated with the MI of each channel. Statistical analysis
checked whether there were significant differences in the PSDs associated with each
patients’ channel ERP for the ST, MIV and MIVH states.

At least the Quebec User Evaluation of Satisfaction with Assistive Technology (QUEST)
survey tests determined patients’ satisfaction level with the device. This information func-
tioned as feedback from the user, regarding the operation and structure of the proposed system.

3. Results
3.1. Participants

The study included five patients (56.24 ± 3.26 years old) who presented a lower limb
hemiparesis due to a cerebrovascular accident (see Table 1). All subjects successfully
performed the tasks without reporting fatigue, stress or anxiety during the experiment.

Table 1. Subjects’ clinical information.

Subject Age (Years) Weight (Kg) Height (cm) BMI Paretic Side

1 55 84 173 28.1 Right
2 62 96 168 34 Left
3 63 79 161 30.5 Right
4 56 94 164 34.9 Right
5 61 69 166 25 Left

3.2. Accuracy Results

As previously mentioned, the accuracy results were based on quantifying the number
of times the beta wave rebound power exceeded the threshold throughout the session.
Figure 6 displays the signal processing result to take the beta rebound power as a command
to trigger the T-FLEX dorsiflexion and plantarflexion movements.

In this case, two events occurred where the signal power increased for approximately
1 s. However, the system only detected the command when the amplitude exceeded the
threshold, which happened 2 s after the command “Move your feet” was visually and
haptically given to the patient. It is important to emphasize only the first beta power that
exceeded the threshold was relevant to control the robotic device.
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Figure 6. Processing results over 10 s of an MIVH active period to detect the beta rebound signal.
First, the raw signal over channel Cz appears. The second signal refers to the filtered wave in the beta
frequency band (16–24 Hz). The last signal shows the beta signal squared and averaged compared
with the threshold (horizontal orange line). The dotted and vertical green line refers to the moment
in which the stimulus was given.

Now, from the beta power and the threshold, it was possible to establish the successful
attempts in the motor imagination of flexion and extension movements of the ankle.
Table 2 displays the result of the threshold value and average detection time after the
active MI periods stimuli. There, subject 4 had the highest threshold level and also one
of the best results in the time detection average for both paradigms. In general, MI
detection based on the beta rebound occurred between 986 ms and 3326 ms after the stimuli
strategies. Furthermore, most patients performed better in time during the MIVH than for
the MIV test.

Table 2. Subjects’ threshold results with the average detection time in MIV and MIVH strategies.

Subject Threshold MIV Detection Time MIVH Detection Time

1 8 uV 1798 ms 2116 ms
2 8 uV 1272 ms 1173 ms
3 4 uV 3326 ms 1646 ms
4 20 uV 1226 ms 1010 ms
5 12 uV 2418 ms 986 ms

In terms of accurate results for both MI detection with visual stimulation (MIV) and
visual and haptic stimulation (MIVH), Figure 7 shows the compiled results in a bar graph
grouped by the patient. In green the accuracy calculated for the MIVH test and, in yellow,
the accuracy calculated for the MIV test can be seen. According to all subjects’ results,
the BCI performance on motor imagery was better based on visual and haptic stimulation.
The performance average accuracy in the case of the visual stimulus was ranging 50.7% with
a mean of 8 attempts, while the visual and haptic strategy was around 68% with 10 over
15 opportunities. Moreover, as shown in Figure 7, the highest accuracy was present in both
paradigms for subject 4 while the worst was performed by subject 5. Overall, although MI
detection was efficient for active periods, abrupt increases in the beta power were also
found during a total average of 5 rest events for both paradigms where the robotic device
was previously conditioned for a non-activation, according to the stimulation protocol.
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Figure 7. Accuracy results of Motor Imagery (MI) detection for each patient in the Motor Imagery
with Visual and Haptic (MIVH) stimuli test in green and the Motor Imagery with Visual (MIV)
stimulus test in yellow. Each bar graph presents in its upper side the number of MI attempts achieved
over the 15 opportunities presented throughout each of the two stages. The last two bars to the right
side are the average of the five subjects’ accuracy.

Shapiro–Wilk normality results test showed a normal distribution of the data for
the MIV test and a non-normal distribution for MIVH (p > 0.05). Therefore, the non-
parametric Wilcoxon test used to compare two related samples indicated a 0.038 p-value
over a 0.05 significance level (p < 0.05). In this case, the null hypothesis was rejected.
Accordingly, there were significant differences in the accuracies medians of the patients’
MIV and MIVH tests.

3.3. Power Spectral Density Results

In terms of the EEG offline analysis, Table 3 presents the PSD mean and standard
deviation for the MI frequency band (8–30 Hz). The Cpz channel of patient 4 was discarded
due to its low data quality that prevented the extraction of functional characteristics.

Table 3. Descriptive PSD statistics associated with each patient channel for the ST, MIV, and MIVH
test. * Not Applied: The Cpz channel of subject 4 did not have the necessary signal quality to be
included in the studies.

PSD (dB/Hz) Mean
Test Subject Fcz C1 Cz C2 Cpz

ST

1 9.14 26.00 9.41 18.70 4.74
2 17.38 9.99 17.85 26.03 15.98
3 0.86 1.12 0.97 4.20 0.86
4 1.51 2.06 2.76 93.78 NA *
5 0.52 0.57 0.56 0.52 0.36

MIV

1 18.30 53.39 20.89 36.79 10.03
2 8.26 4.10 7.67 15.25 6.36
3 0.17 0.24 0.15 0.16 0.13
4 2.19 20.03 4.25 172.11 NA *
5 6.07 6.55 7.78 6.47 5.42

MIVH

1 8.98 13.30 10.17 24.89 6.19
2 24.45 12.35 24.89 55.95 21.41
3 3.43 0.96 3.52 28.29 1.69
4 7.95 2.99 16.55 85.16 NA *
5 4.52 4.04 4.04 5.00 4.03
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Table 3. Cont.

PSD (dB/Hz) Standard Deviation
Test Subject Fcz C1 Cz C2 Cpz

ST

1 9.67 27.83 10.57 19.63 5.07
2 19.65 11.95 20.28 31.00 18.51
3 1.05 1.15 1.11 4.29 1.05
4 1.73 2.49 3.11 121.08 NA *
5 0.79 0.80 0.90 0.81 0.51

MIV

1 19.56 55.74 23.22 38.74 11.23
2 9.85 4.86 9.04 19.86 7.34
3 0.18 0.29 0.17 0.19 0.15
4 2.56 25.21 5.24 185.08 NA *
5 8.86 10.06 11.75 9.84 8.02

MIVH

1 9.91 13.26 10.96 26.81 7.31
2 21.93 13.43 21.76 65.34 24.11
3 4.13 1.24 4.77 33.19 2.24
4 7.62 2.92 18.40 110.69 NA *
5 4.30 4.38 3.97 4.78 3.63

Topographies better illustrated PSD characteristics associated with the event-related
potential of each user channel (see Figure 8). Visually, topographic maps revealed in
most patients similar brain activity for the three paradigms with a remarkable activity
over the left and right sides. Subjects 1, 3, and 4 had a right paretic side, of which all
of them presented not persistent laterality changes in all the paradigms. Only subject
2 demonstrated cerebral activity associated with the contralateral MI in all stages. In this
way, this patient easily performed movement imagination over his left paretic limb [20,48].
In contrast, subject 4 evidenced an ipsilateral performance to his right paretic side. These
results were not expected according to the patients’ motor imagery accuracy execution
(Figure 7), where subject 4 presented significantly better performance results.

The Shapiro–Wilk test analyzed the normality for each channel used in this study.
Specifically, channels C2 and Cpz did not present a normal distribution (p > 0.05) for MIV
and MIVH tests, respectively. The other trials followed a normal distribution. Subsequently,
the statistical test determined significant changes between the assessed modalities, i.e., ST,
MIV, and MIVH. In this way, a Wilcox and t-student test analyzed the three groups in terms
of the user’s channel PSD mean, considering the data normality. These trials exhibited
no statistical changes between the assessed groups (p < 0.05). Therefore, the groups were
compared through the ANOVA and Friedman tests as follows: (1) the ST and MIV tests,
(2) the ST and MIVH tests, and (3) the MIV and MIVH tests. As seen in Table 4, only the
channel Fcz had significant differences for the ST compared to MIVH tests (p < 0.05).

Table 4. p-Values along the comparison of ST, MIV and MIVH paradigms. The green values indicate
significant statistical results.

Test Comparison Fcz C1 Cz C2 Cpz

ST vs. MIV vs. MIVH 0.704 0.498 0.562 0.549 0.368
ST vs. MIV 0.737 0.218 0.645 0.437 0.999

ST vs. MIVH 0.039 0.699 0.074 0.184 0.100
MI vs. MIVH 0.532 0.300 0.509 0.999 0.530
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Figure 8. Electroencephalography (EEG) topographies of Power Spectral Density (PSD) associated
with the Event-Related Potentials (ERPs) of all patients tests.

3.4. User Perception Results

Lastly, as mentioned in the methodological section, a survey evaluated the user
perception of the designed BCI system. Table 5 summarizes the results obtained for each
of the users. The final results were averaged to know the general results, where the
satisfaction level was between satisfied and strongly satisfied. The total average QUEST
score of all patients was 4.76 and for the extending QUEST version (i.e., including reliability,
speed, learning, and aesthetic design) the score was 4.55. From the users’ perspective,
adjustment, ease of use, and reliability criteria were the relevant aspects selected through
the QUEST survey.
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Table 5. Collecting QUEST survey results with extending additional criteria. The highlighted values
with green refer to the better outcomes.

QUEST Survey Responses
Criteria S1 S2 S3 S4 S5 Average

Dimensions 4.00 5.00 3.00 4.00 5.00 4.20
Weight 5.00 5.00 5.00 5.00 5.00 5.00

Adjustment 5.00 5.00 4.00 5.00 5.00 4.75
Safety 5.00 5.00 4.00 5.00 5.00 4.75

Ease of use 5.00 5.00 5.00 4.00 5.00 4.75
Effectiveness 5.00 5.00 5.00 4.00 5.00 4.75

Information/Instuctions 5.00 5.00 5.00 5.00 5.00 5.00
QUEST Total Score 4.85 5.00 4.42 4.57 5.00 4.76

Extended QUEST Survey Responses

Reliability 5.00 5.00 4.00 5.00 5.00 4.75
Speed 4.00 4.00 4.00 4.00 4.00 4.00

Learning 4.00 5.00 5.00 5.00 5.00 4.75
Aesthetic design 4.00 5.00 4.00 5.00 5.00 4.25

Added Items Total Score 4.25 4.75 4.25 4.75 4.75 4.55

4. Discussion

The results of the proposed system demonstrated the viability of acquiring the beta re-
bound signal to command the exoskeleton. Subjects successfully performed all tasks where
mental ability was required with a good performance accuracy in visual or visual with
haptic stimulation. However, neither generated differential electrical activity throughout
the session stages.

As an initial approach, the algorithm for real-time detection of MI was ideal as a proof
of concept in the BCI-based device control. The calibration strategy made it possible to
individually adapt and define the user’s basal level of brain activity at which changes
in beta rebound were detected. Moreover, the thresholding technique further limited MI
detection for random events resulting from even haptic stimulation. Nevertheless, analysis
of the offline signals demonstrated imagery activity during passive or non-imagery events.
This behavior is related as a consequence of the user’s lack of concentration or as a leftover
effect from the active state. In any case, the results suggest the need to establish longer
intermediate times to pass from one state to another, and a much more robust machine-
learning algorithm to guarantee the beta rebound detection in more complex contexts.

On the other hand, the most relevant MI accuracy results of this study showed an
average difference of 17.3% of the MIVH test over MIV active periods. All patients had
a greater number of successful attempts at motor imagery when haptic stimulation was
present. These results were related to the proprioceptive delivery, to the CNS, of a neural
representation or mimic of the natural body mechanics to facilitate the creation of the
movement mental image [39,58,59]. In contrast, both topographically and statistically in
PSD results revealed no significant differences between the stationary therapy without
MI, and the MI with the visual and visual-haptic stimulus strategies. The above data
suggest visual and haptic stimuli improve the subject’s accuracy in performing motor
imagery but do not generate differential brain activity. Similar results were reported by
Kauhanen et al. [43], who did not report differences between haptic or visual stimuli with
upper limb exoskeleton. In the case of the present study, only the Cpz channel in the ST
and MIVH tests presented significant differences, indicating the neural variations during
cognitive tasks and the activation of the somatic sensory association area as a result of the
haptic stimulation [60,61].

Furthermore, within these results, it was also possible to identify data variability in
terms of detection time, accuracy, and PSD power. As could be observed, the comparison
performance between subjects 4 and 5 was the opposite, and in general, each participant
revelated variable results. Initially, it could be associated with environmental or clinical
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variables that vary between patients (e.g., age, stroke year, and even the type of treatment).
However, it is mostly related to intersubject variability in the motor imagery performing,
where not all participants have the same facility to create a visual image of a movement.
Emami et al. [31], have made findings of the significant role of the distractor factors affecting
the MI-BCI performance results.

In the same way, topographical maps showed potential changes over the contralateral
and the ipsilateral hemisphere. Although the proposed BCI-controlled exoskeleton system
did not contemplate the beta rebound laterality for the device control, the offline analysis
over alfa and beta signals (8–32 Hz) exhibited a significant impact on the C1 and C2 chan-
nels during the active periods of MI (Figure 8). In this case, the movement imagery-related
lateralization had a higher discriminative power over the imagery of left foot movement
(i.e., C2 channel). However, only two of the five patients had left hemisphere involvement.
This way, the remaining participants presented, in some cases, a compensatory effect of the
healthy side on the loss of functions of the paretic side. This behavior could have the oppo-
site consequences to those expected with the BCI system, whose emphasis should be on
the recovery of the paretic hemisphere at the neuronal and motor level. Therefore, training
approaches should be considered involving the cerebral-affected side in BCI strategies.

Now, according to the results presented in Table 5, a favorable result was concluded
regarding user perception. Besides, no patient exhibited affectations in the locomotor
system, pressure points, fatigue, stress, or anxiety during the experimental procedure.
Within the assessment, the rehabilitation technology weight and the instructions at the
time of use were remarkable for patients. Moreover, the reliability and the easiness of the
learning process were optimal according to the patients’ perception in the extended test
due to the simple versions of the task. This last criterion was beneficial since one of the
most encountered problems in current BCI systems with neurological patients was the task
learning system [8]. According to Zickler et al. [62], this result was helpful for the study in
general, since this designed technology is aimed at rehabilitation. Therefore, it is conclusive
that the technology complied with a sufficient design for the use of patients. This survey
did not eliminate some of the shortcomings previously presented, but it did contribute to
subjective patient satisfaction, which may benefit possible long-term studies with T-FLEX.

One of the strengths of this preliminary study is the system integrated strategy to
command the portable and low-cost T-FLEX exoskeleton with inter-device connection
strategies, relaxation tactics before the experimental session, and straightforward stimulus
strategies. However, it was limited in terms of the number of patients, the number of
sessions, and the number of mapped channels for offline EEG analysis, from which it was
not possible to find statistically significant differences between the stimuli approach.

5. Conclusions

This study presents the BCI integration system to the T-FLEX lower-limb exoskeleton
combining two different stimulus modes for post-stroke patients. The experimental results
demonstrated the proposed system’s ability to detect MI with an increase on average from
50.7% to 68% when the stimulus was not only visual. Nevertheless, no significant differ-
ences were found in the PSD mean of active periods between the ST, MIV, and MIVH tests.
Only the Cpz channel appeared to represent differences in ST and MIVH tests related to
the sensorial cue and the higher neural activity required during the MI process. In addition,
PSD topographic maps showed the contralateral MI activity, which was indispensable to
demonstrate the intrasubject variability and the healthy hemisphere response.

In terms of the user’s subjective perception, the BCI system implementation is viable
since has a good acceptance. However, deeper and long-term assessments monitoring
correlations between muscle and brain activity are required to allow evidence about
neuroplasticity induction. Future works should focus on additional data processing and
classification procedures to better quantify beta rebound power activity in more complex
contexts and considering the MI laterality over the affected side. Likewise, the assessment
of the BCI-controlled ankle exoskeleton system in long-term sessions with a more extensive
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sample of post-stroke patients is indispensable to evaluate the efficiency and effect of the
system in a broad spectrum. Moreover, in a larger scope, stimuli with informational and
additional feedback strategies should be implemented to improve the MI performance
sought by BCI systems.
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