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Graft-versus-host disease (GVHD) remains a major clinical drawback of allogeneic
hematopoietic stem cell transplantation (HSCT). Here, we investigated how the stress
responsive heme catabolizing enzyme heme oxygenase-1 (HO-1, encoded by HMOX1)
regulates GVHD in response to allogeneic hematopoietic stem cell transplantation in mice
and humans. We found that deletion of the Hmox1 allele, specifically in the myeloid
compartment of mouse donor bone marrow, promotes the development of aggressive
GVHD after allogeneic transplantation. The mechanism driving GVHD in mice transplanted
with allogeneic bone marrow lacking HO-1 expression in the myeloid compartment
involves enhanced T cell alloreactivity. The clinical relevance of these observations was
validated in two independent cohorts of HSCT patients. Individuals transplanted with
hematopoietic stem cells from donors carrying a long homozygous (GT)n repeat
polymorphism (L/L) in the HMOX1 promoter, which is associated with lower HO-1
expression, were at higher risk of developing severe acute GVHD as compared to
donors carrying a short (GT)n repeat (S/L or S/S) polymorphism associated with higher
HO-1 expression. In this study, we showed the unique importance of donor-derived
myeloid HO-1 in the prevention of lethal experimental GVHD and we corroborated this
observation by demonstrating the association between human HMOX1 (GT)n
microsatellite polymorphisms and the incidence of severe acute GVHD in two
independent HSCT patient cohorts. Donor-derived myeloid HO-1 constitutes a
potential therapeutic target for HSCT patients and large-scale prospective studies in
org January 2021 | Volume 11 | Article 5791511
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HSCT patients are necessary to validate the HO-1 L/L genotype as an independent risk
factor for developing severe acute GVHD.
Keywords: Heme oxygenase-1, graft-versus-host disease, transplantation, hematopoeietic stem cell
transplantation, polymorphism, myeloid-derived suppressor cells
INTRODUCTION

Acute graft-versus-host disease (GVHD) remains a major cause
of mortality after allogeneic HSCT (1, 2). This pathologic process
is counter-regulated by regulatory T cells (TREGS) (3, 4) as well as
by myeloid-derived suppressor cells (MDSCs) (5, 6). The latter
are a heterogeneous population of immature myeloid cells
harboring monocytic or polymorphonuclear markers (7–10),
that suppress T cell responses via diverse and not fully
understood mechanisms. In an experimental mouse model,
MDSCs suppress acute GVHD via an IL-13- and arginase-1-
dependent mechanism that regulates graft-versus-host
alloreactivity (11). In other experimental settings, MDSCs have
also been show to exert T cell suppression through indoleamine
2,3-dioxygenase (IDO) production or through nitric oxide
synthase (NOS)-dependent mechanisms which are associated
or not with the expression of heme oxygenase-1 (HO-1) (12–14).
Of note, IDO and iNOS are heme proteins that are tightly
regulated by mechanisms that control heme-iron metabolism
in monocyte cells (15). Moreover, heme catabolism by HO-1
counter-regulates the rejection of transplanted cells, tissues, or
organs in a variety of experimental conditions (16). In keeping
with this notion, we have previously shown that MDSCs block T
cell-mediated allograft rejection via a mechanism that is
dependent on the expression of HO-1 (17). It has also been
reported that non-specific pharmacologic HO-1 overexpression
regulates T cell alloreactivity in a manner that prevents the onset
of experimental GVHD (18–21). However, whether natural
endogenous levels of HO-1 limit GVHD and its sources, and
the contribution of donor versus recipient HO-1 remain critical
open questions.

The human HMOX1 promoter has a microsatellite
polymorphism in which the number of (GT) repeats (GT)n is
inversely correlated with HMOX1 transcriptional activity and,
ultimately, HO-1 expression (22). This (GT)n polymorphism has
been associated with the clinical outcome of a variety of
inflammatory diseases (23, 24). Specifically, longer (GT)n
repeats are associated with low levels of HO-1 expression (21)
and correlate with higher disease susceptibility, while shorter
(GT)n repeats are associated with higher levels of HO-1
expression and correlate with lower disease susceptibility. This
has been illustrated for cardiovascular disease (25–28), chronic
kidney disease (29, 30), HIV-induced central nervous system
neuroinflammation (31, 32), rheumatoid arthritis (33), chronic
obstructive pulmonary disease (34), and organ transplantation
(35, 36). In sharp contrast, however, shorter (GT)n repeats are
associated with higher levels of HO-1 expression and promote
metaflammation associated with the onset of experimental
metabolic disease (37).
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Herein, we demonstrated the unique importance of donor-
derived myeloid HO-1 in the prevention of lethal experimental
GVHD and we corroborated this observation with the
association between the human HMOX1 (GT)n microsatellite
polymorphisms and the incidence of severe acute GVHD in two
independent HSCT patient cohorts.
METHODS

Mice
Hmox1−/− mice (38) were generated by Hmox1+/− mating
and genotyped, as previously described (38, 39). C57BL/6
LysMCre/wtHmox1D/D mice were generated by mating of
C57BL/6 Hmox1lox/lox mice (40) with C57BL/6 LysMCre/wt

mice (kind gift from S.A. Nedospasov) (41). Mice received
humane care in compliance with the Principles of Laboratory
Animal Care formulated by the National Institutes of Health
(Bethesda, MA), and protocols were approved by the local
committee for animal welfare (agreement # LA2500519).

Graft-Versus-Host Disease and Ex Vivo
Assays
Recipients were lethally irradiated with 750cGy (BALB/c) or
980cGy (C57BL/6) from a 137Cs source, one day before bone
marrow (BM) and whole spleen cell infusions (2.5 × 106 BM and
2 × 106 spleen C57BL/6 cells into BALB/c recipients and 5 × 106

BM with 15 × 106 spleen BALB/c cells into C57BL/6 recipients
into the tail vein in 0.2 ml of RPMI solution). GVHD was
monitored as previously described (42). For both CD8+ and
CD4+ T cell depletion, 1 mg of a pair of monoclonal antibodies
(mAbs) were injected i.p. at day 1 posttransplant (clone YTS 169
plus YTS 156 for CD8+ T cells and clones YTS191 plus YTA
3.1.2 for CD4+ T cells (43)) or YCATE mAb (control isotype), all
kindly provided by Dr. S. Cobbold, Dunn School of Pathology,
Oxford University, UK.

Mixed Lymphocyte Reaction, Cytokine and
HO-1 Quantification
For MLR, responder cells (2.5 × 106 cells/ml) isolated from host
spleens were stimulated with irradiated adequate splenocytes
(2000 Rad; 2.5 × 106 cells/ml), in 48-well, flat-bottom plates.
IFN-g, IL-17A, and IL-10 production was measured in the culture
supernatants after 48 or 72 h using commercially available ELISA
kits (Duoset, R&D Systems, Minneapolis, MN). The detection
threshold was 10 pg/ml for IFN-g, IL-17A, and IL-10. For HO-1
plasma quantification, the HO-1 ELISA kit (ADI-960-0F1, Enzo
Life Sciences) was used following manufacturer instructions.
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RNA Extraction and Real-Time Reverse
Transcription-PCR
Total RNA was extracted from liver and spleen using the
MagNaPure LC RNA Isolation Kit III for tissue (Roche
Diagnostics 03330591001) or from bone marrow-derived
macrophages (BMDMs) with the MagNaPure LC RNA
Isolation Kit-High Performance (Roche Diagnostics
03542394001). Reverse transcription and real-time PCR were
performed using LightCycler-RNA Master Hybridization Probes
(one-step procedure) on a LightCycler apparatus (Roche
Diagnostics). The number of mRNA copies was evaluated
using a standard curve for each gene of interest and was
normalized to b-actin as a housekeeping gene. Primer and
probe sequences are detailed in Table S1.

Flow Cytometry and Other Ex Vivo
Analyses
Commercially available fluorescent antibodies were used
following manufacturer’s instructions. FITC-conjugated anti-
mouse F4/80 (clone BM8), APC-conjugated anti-mouse H2kb
(clone AF6-88.5.5.3), eFluor450-conjugated anti-mouse Ly-6G
(clone RC57BL/6-8C5), eFluor450-conjugated anti-mouse
H2kd (clone SF1-1.1.1), PerCP-Cy5.5-conjugated anti-mouse
Ly-6C (clone HK1.4), and anti-mouse CD16/CD32 (Fc block,
clone 93) were purchased from eBioscience. FITC-conjugated
anti-mouse IA/IE (clone 2G9), PE-conjugated anti-mouse
CD11c (cloneHL3), PE-conjugated anti-mouse CD49d (clone
9C10), PB-conjugated anti-mouse CD3 (clone 500A2), APC-
conjugated anti-mouse CD8 (clone 53–6.7), and APC-
conjugated anti-mouse CD11b (clone M1/70) were purchased
from BD Biosciences.

HO-1 intracytoplasmic staining was performed using the
Intracellular Fixation and Permeabilization Buffer Set (88–
8824, eBioscience) and unconjugated anti-mouse HO-1 (clone
HO-1-1, Abcam), followed by FITC-conjugated anti-mouse
IgG1 or V450-conjugated anti-mouse IgG1(clone A85-1, BD
Biosciences). The isotype clone NCG01 was used as a control
antibody. Flow cytometry analysis was performed on a BD
LSRFortessa cell analyzer using BD FACSDiva software
(BD Biosciences).

Hemoglobin levels, blood leukocyte and platelet counts were
performed using the automated system ADVIA 120 (Siemens,
Munich, Germany).

Serum aspartate aminotransferase (AST) levels were measured
by specific absorbance (Cobas 501, Roche Diagnostics).

Generation of Bone Marrow-Derived
Macrophages
1 × 106 BM cells/ml isolated from femurs and tibias were
cultured in DMEM medium supplemented with L-Glutamine,
4.5 g/L glucose (BE12-604F, Lonza), 10% heat-inactivated fetal
calf serum (FCS), amino acids, sodium pyruvate, penicillin/
streptomycin, b-mercaptoethanol, and 20% supernatant from
an M-CSF-transfected L929 cell culture. Three days later, 5 ml of
complete medium containing 60% of L929 cell supernatant was
added. At day 7, BM-derived macrophages (BMDMs) were
Frontiers in Immunology | www.frontiersin.org 3
stimulated with 100 ng/ml of LPS (L2630, Sigma-Aldrich) for
24 h in fresh medium with 2% L929 supernatant.

CFSE-Based Cytotoxicity Assay
After a wash with phosphate-buffered saline (PBS), target
spleen cells were resuspended at 1 × 106 cells/ml and labeled
with 0.2 (BALB/C) or 2 µM (C57BL/6) of CFSE (Cell trace
CFSE Cell Proliferation Kit) in pre-warmed PBS-BSA 0.1% for
10 min at 37°C. The reaction was stopped by the addition of an
equal volume of cold PBS, followed by 5 min of incubation on
ice. Then, 100 µl of CFSE-labeled cell solution (200 × 106 cells/
ml of BALB/C and C57BL/6 mice) was injected IV into mice
with GVHD. Two hours later, spleen cells were analyzed
by FACS.

Study Population
Data were collected from two independent cohorts of 120 and
160 patients. The first cohort included 120 patients at the Henri
Mondor hospital in Paris (France) who underwent HSCT
between January 2007 and December 2012. The second cohort
included 160 patients who underwent HSCT at the Jules Bordet
Institute (Brussels, Belgium) between January 2001 and
December 2011. In each cohort, all HSCT patients were
retrospectively included during the fixed period without
exclusion criteria. All grafts were from HLA-matched related
donors (MRD) or HLA-matched unrelated donors (MUD).
Patient and donor characteristics at the time of transplantation
are shown in Tables 1 and 2. Patient characteristics in the two
cohorts were compared using Pearson’s chi-square test for
categorical data and Student’s t test for continuous variables
distributed normally. Myeloablative regimens are detailed in the
supplementary data. Early disease stage was defined as being
either the first complete remission (CR) of acute leukemia or a
chronic phase of chronic myeloid leukemia, whereas late disease
stage included patients who did not achieve CR or were beyond
the first CR.

Acute GVHD was defined according to the National
Institutes of Health consensus criteria based upon the timing
of presentation, the typical clinical features, and the absence of
diagnostic or distinctive features of chronic GVHD (44) and was
graded according to the Glucksberg criteria (45). DNA samples
from healthy volunteers were used for the control group.

DNA Sample Collection
DNA samples were obtained from residual material. In controls,
DNA samples were prepared from peripheral blood stem cells
(PBSCs) using standard procedures and commercially available
kits. Genetic analyses were retrospectively performed with the
approval of the Ethics Committees of Erasme Hospital and the
Jules Bordet Institute (numbers P2011/255 and 2012/193,
respectively). The Henri Mondor University Hospital (Créteil,
France) has been accredited according to the international
JACIE program since 2005. All patients and donors signed
informed consent for (1) registration into the Promise database,
and (2) cryopreservation of their biological material for
research purposes.
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HO-1 (GT)n Polymorphisms and Genotypes
The 5′-flanking region containing a poly (GT)n repeat of the
HO-1 gene was amplified by PCR. A FAM-labelled sense primer,
5′-AGA-GCC-TGC-AGC-TTC-TCA-GA-3′, and an antisense
primer, 5′-ACA AAG-TCT-GGC-CAT-AGG-ACC-3′, were
used to amplify 50 ng of genomic DNA. Primers were
purchased from Eurogentec. PCR was performed over 20
touchdown cycles of denaturation at 94°C for 20 s, annealing
at 62°C to 52°C (temperature decreasing by 0.5°C at each cycle)
and extension at 72°C for 30 s. To determine fragment lengths,
Frontiers in Immunology | www.frontiersin.org 4
the PCR product was loaded onto a POP-6 matrix (Applied
BioSystems), and calculations of fragment lengths were laser
based through an automated fragment analyzer (model 3130XL,
Applied BioSystems) and comparisons with sequenced alleles of
different lengths (GS-500 ROX Applied BioSystems).

In relation to functional data on GT repeats described by
others (22, 27), alleles were classified into two groups: short (S)
alleles with less than 30 GT repeats, and long (L) alleles with
more than 30 GT repeats. This classification entails three
possible genotypes within the donor and host populations: S/S,
S/L, and L/L.

Statistical Analyses
To compare categorical data for allelic distribution, genotype
distribution, Hardy-Weinberg equilibrium, and GVHD frequency,
either Fisher’s exact test or Pearson’s chi-square test was used, as
appropriate. The association between GVHD and risk factors was
determined by univariate and multivariate analyses. When
estimating cumulative incidence of GVHD, we took into account
death without GVHD as a competing risk and used the Fine and
Graymodel to estimate its subdistribution hazard ratio (SHR). Since
graft rejection was an exclusion criterion for the study, it was not
considered as a competing event for GVHD occurrence.
Multivariate analysis included variables significantly associated
with GVHD severity, if shown by univariate analysis. Due to the
number of cases and the collinearity between the donor and the
recipient genotypes, only three variables were included in our
model: graft, radiotherapy, and donor genotype. The adjusted
SHRs (aSHRs) are reported. All statistical analyses were
performed using STATA 12.0 software. A p-value <0.05 was
considered statistically significant. For mouse experiments,
differences between groups were estimated using the two-tailed
Mann-Whitney nonparametric test. Mouse survival curves were
compared using the log-rank test. A p-value <0.05 was considered
statistically significant.
RESULTS

Donor Myeloid HO-1 Prevents the
Development of Experimental Graft-
Versus-Host Disease
We asked whether the expression of HO-1 was induced after
experimental allogeneic HSCT and tested this hypothesis initially
in BALB/c to C57BL/6 HSCT. Expression of HO-1 was induced
in CD11b+Ly6ChighCD49d+MHC-IIhigh monocytic MDSCs
and in CD11b+Ly6ClowMHC-IIlow monocytes (Figure 1A).
Both monocytic cell populations were F4/80+, CD11c- and
expressed intermediate levels of Ly6G (Figure 1A). This
demonstrates that HSCT is associated with the induction of
HO-1 in donor-derived hematopoietic cells.

Survival of C57BL/6 recipients transplanted with allogeneic BM
and spleen cells from BALB/c mice was compromised when the
donor cells lacked HO-1 expression (BALB/c Hmox1−/− donors), as
compared to C57BL/6 recipients transplanted with donor cells
expressing HO-1 (BALB/c Hmox1+/+ donors) (Figure 1B).
TABLE 2 | HSC donor characteristics.

Cohort 1 (n = 124) Cohort 2 (n = 160)

Age (mean ± SD) 41 ± 14.0 40.1 ± 14.4
Sex mismatch (%)
Female/Male 29 (23.4) 32 (21.8)
Others 95 (76.6) 115 (78.2)
CMV n (%)
Positive 67 (54.0) 85 (53.1)
Negative
Unknown

57 (46.0)
0

55 (33.4)
20 (12.5)
TABLE 1 | Patient characteristics.

Patient characteristics

Cohort 1 (n = 124) Cohort 2 (n = 160)

Age (mean ± SD) 46.4 ± 13.5 40.8 ± 13.6
Sex n (%)
Male 77 (62.7) 106 (66.25)
Female 47 (37.9) 54 (33.75)
CMV n (%)
Positive 83 (66.9) 103 (64.4)
Negative
Unknown

41 (33.1)
0

45 (28.1)
12 (7.5)

Disease stage n (%)
CR1 or CML 64 (51.6) 72 (45.0)
>CR1 58 (46.7) 88 (55.0)
Not applicable 2 (1.6) 0
Conditioning n (%)
MAC 44 (35.5) 92 (57.5)
RIC 80 (64.5) 68 (42.5)
Graft n (%)
MRD 60 (48.4) 86 (53.8)
MUD 64 (51.6) 39 (24.4)
URD 0 35 (21.9)
ATG n (%)
No 93 (75.0) 38 (23.8)
Yes 31 (25.0) 122 (76.2)
Disease n (%)
AML/MDS/MF/ALL 85 (68.6) 98 (61.3)
Lymphoma 16 (12.9) 21 (13.1)
Multiple Myeloma 11 (8.9) 12 (7.5)
CML/CLL 8 (6.5) 20 (12.5)
Aplasia 2 (1.6) 5 (3.1)
Choriocarcinoma 0 1 (0.5)
Hemoglobinopathy 2 (1.6) 3 (2.0)
CMV indicates cytomegalovirus; CR1, first complete remission; CML, chronic myeloid
leukemia; MAC, myeloablative conditioning; RIC, reduced intensity conditioning; MRD,
matched related donor; MUD, matched unrelated donor; URD, unmatched related donor;
ATG anti-thymocyte globulin; AML, acute myeloid leukemia; ALL, acute lymphoid
leukemia; MDS, myelodysplastic syndrome; MPS, myeloproliferative syndrome; CLL,
chronic lymphoid leukemia.
January 2021 | Volume 11 | Article 579151

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Spilleboudt et al. HO-1 in Graft-Versus-Host Disease
Survival in C57BL/6 recipients transplanted with allogeneic BALB/c
Hmox1−/− BM and spleen cells was correlated with progressive body
weight loss (Figure 1C) and clinical signs of GVHD (Figure 1D).
This was not associated, however, with overall changes in
hematopoietic chimerism (Figure 1E). Expression of HO-1 had
no impact on the survival of syngeneic BALB/C recipients
transplanted with BM and spleen cells from BALB/c Hmox1−/− or
Hmox1+/+ mice (Figures 1B, D). This demonstrates that donor-
derived HO-1 expression is essential to prevent the development of
allogeneic GVHD after HSCT.
Frontiers in Immunology | www.frontiersin.org 5
We then assessed whether the protective effect exerted by HO-1
depends on the myeloid BM cells or the alloreactive spleen cells
within the HSCT. Survival of C57BL/6 recipients was compromised
only when the transplanted BM, but not spleen cells, were isolated
from allogeneic BALB/c Hmox1−/− mice, as compared to control
C57BL/6 recipients transplanted with allogeneic BM and/or spleen
cells from BALB/c Hmox1+/+ mice (Figures 2A, C). This suggests
that expression of HO-1 by donor myeloid cells is required to
suppress GVHD and all further experiments were performed using
wild type Hmox1+/+ spleen cells.
A

B

D E

C

FIGURE 1 | Donor-derived HO-1 regulates GVHD and survival. (A) BM cells from HSCT recipients were harvested on day 7 posttransplantation and characterized
by FACS analysis. Two cell populations (B, C) expressing intracytoplasmic HO-1 were identified, based on CD11b, Ly6C, Ly6G, CD49d, F4/80, and MHC-II
expression. Results are representative of five mice, seven days after transplantation. (B–D) GVHD characteristics were compared after syngeneic (BALB/c to BALB/
c) and allogeneic (BALB/c to C57BL/6) BM transplantation. In lethally irradiated hosts, 5 × 106 BM cells and 15 × 106 spleen cells from either wild type (WT) or
Hmox1−/− donors were injected. Survival (B), % weight loss (C) and GVHD scores (D) were compared between groups. (E) Host reconstitutions by allogeneic
(H2kd) BM and spleen cells are shown in peripheral blood monocytes (PBMCs). Three or four independent experiments involving 5–6 animals per group were
pooled. n.s., no significant difference; *P <.05; **P <.01; ***P <.001.
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To prove unequivocally that expression of HO-1 by donor
myeloid cells is required to suppress GVHD, we used C57BL/6
LysMCre/wtHmox1D/D mice in which the Hmox1 allele is deleted
specifically in the myeloid compartment, as confirmed in LPS-
stimulated BM-derived monocytic cells by qRT-PCR (Figure
2D). Incidence of lethality (Figure 2E) and GVHD severity (data
not shown) were higher in BALB/c recipients transplanted with
BM from C57BL/6 LysMCre/wtHmox1D/D mice, as compared to
control BALB/c recipients transplanted with BM from wild type
C57BL/6 Hmox1+/+ or with C57BL/6 Hmox1flox/flox mice (Figure
2E). This was not the case for syngeneic C57BL/6 recipients
Frontiers in Immunology | www.frontiersin.org 6
transplanted with BM from C57BL/6 LysMCre/wtHmox1D/D mice,
as compared to control C57BL/6 recipients receiving wild type
Hmox1+/+ or Hmox1flox/flox BM (Figure 2E).

Donor Myeloid HO-1 Suppresses T Cell
Alloreactivity After Experimental
Hematopoietic Stem Cell Transplantation
We then investigated the mechanism by which the expression of
HO-1 in donor myeloid cells suppresses the development of
GVHD. The number of donor-derived CD4+ and CD8+ T cells
did not differ between recipients of either Hmox1−/− or Hmox1+/+
A B

D

E

C

FIGURE 2 | Myeloid HO-1 but not T cell-derived HO-1 regulates GVHD. Survival (A), weight change (B) and GVHD score (C) were compared between C57BL/6
irradiated hosts transplanted with a mix of BM and T cells from wild type (Hmox1+/+) BALB/c donors, with a mix of Hmox1−/− BM and Hmox1+/+ BALB/c T cells, or
with a mix of Hmox1+/+ BM and Hmox1−/− BALB/c T cells, respectively. Results were pooled from three independent experiments including 6–7 mice per group.
Donor chimerism (H-2Kd positive cells) was similar in both groups (data not shown). (D–E) A conditional HO-1 ablation in myeloid cells mimics the picture we
observed with Hmox1−/− BM donors. The specific myeloid HO-1 deficiency was confirmed by comparing HO-1 transcription by lipopolysaccharide (LPS)-stimulated
bone marrow-derived macrophages (BMDM) from control littermates Hmox1lox/lox or LysMCre/wtHmox1D/D mice (D). BMDM were generated as described in
supplementary methods. Lethally-irradiated BALB/c mice were grafted with 2 × 106 spleen cells from Hmox1lox/lox littermates and 2.5 × 106 BM cells from either
Hmox1lox/lox or LysMCre/wtHmox1D/D donors. Three experiments each including 8–10 mice were pooled. (E) Transplantation of Hmox1lox/lox or LysMCre/wtHmox1D/D

BM cells into syngeneic C57BL/6 hosts did not trigger GVHD, in two separate experiments each with 7–8 mice. n.s. indicates no significant difference, *P <.05,
**P <.01, ***P <.001.
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BM donors (Figure 3A). To address whether HO-1 expression
modulates T cell alloreactive responses underlying GVHD, we
performed standard mixed lymphocyte reactions (MLR) using
spleen cells harvested seven days after HSCT and syngeneic,
allogeneic, or third-party stimulatory cells. Leukocytes isolated
from C57BL/6 recipients transplanted with BM from BALB/c
Hmox1−/− mice produced higher levels of IL-17 and IFN-g while
the production of IL-10 was reduced, as compared to leukocytes
isolated from C57BL/6 recipients transplanted with BM from
BALB/c Hmox1+/+ mice (Figures 3B, D). Surprisingly, in the
syngeneic cultures (left columns), IFN-g production by leukocytes
isolated from C57BL/6 recipients transplanted with BM from
BALB/c Hmox1−/− mice was higher than that in leukocytes
isolated from C57BL/6 recipients transplanted with BM from
Frontiers in Immunology | www.frontiersin.org 7
BALB/c Hmox1+/+ mice (Figure 3B). It is possible that spleen
cells that have been seeded in culture still contain allogeneic and
alloreactive cells, allowing ex-vivo IFN-g production independently
of the MLR stimulatory condition. In line with this, the highest
amounts of IFN-g are produced by B6 hosts transplanted with
Hmox1−/− donors. This effect is observed with IFN-g but not IL-17
or IL-10 due to the larger amounts of cytokine production.

Finally, the onset of acute GVHD aggravation in C57BL/6
recipients transplanted with BM from BALB/c Hmox1−/− mice
was also reflected by the increase in IFN-g serum levels, IL-17A
or IFN-g mRNA in the liver, serum aspartate aminotransferase
(AST) levels, and oxidative stress-induced molecules (Figures
S1A, G). Of note, this was not observed in the syngeneic
conditions (data not shown).
A B

D

E F

G

C

FIGURE 3 | Donor-derived myeloid HO-1 controls T cell alloreactivity. (A) The number of donor-derived CD4+ and CD8+ T cells was quantified by flow cytometry at
day 7 post-transplantation in C57BL/6 hosts grafted with Hmox1−/− BM and WT BALB/c T cells (Hmox1−/− GVHD) and compared with controls (WT GVHD).
(B–D) Spleen cells from Hmox1−/− versus Hmox1+/+ BM reconstituted hosts were cultured with donor type (SYNG: syngeneic BALB/c), host type (ALLO: allogeneic
C57BL/6), or third party (TP) (CBA/Ca) irradiated stimulatory cells. IFN-g, IL-17A, and IL-10 were measured in MLR supernatants. Two independent experiments
involving 8 animals per group were pooled. (E, F) The effects of either CD4+ or CD8+ T cell depletion (see materials and methods) on host survival and GVHD score
are shown in the BALB/c (Hmox1−/− versus Hmox1+/+ BM) to C57BL/6 graft versus host combination. (G) The effect of CD4+ depletion on host survival in the
BALB/c recipients transplanted with BM from C57BL/6 LysMCre/wtHmox1D/D mice. n.s., no significant difference; *P <.05; **P <.01; ***P <.001.
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The enhanced mortality in C57BL/6 hosts transplanted with
BM from BALB/cHmox1−/−mice was T cell-mediated since CD4+
T cell depletion dramatically prevented GVHD and mortality
(Figures 3E, F). CD8+ T cell depletion also modulated GVHD,
but to a lesser extent (Figure 3E). However, in the CD8+ T cell
depletion experiments, the results should be interpreted cautiously
due to the small number of animals included. A comparable effect
of CD4 T cell depletion was observed in the BALB/c recipients
transplanted with BM from C57BL/6 LysMCre/wtHmox1D/D

mice (Figure 3G).
We then asked whether expression of HO-1 could modulate

alloreactive cytotoxic CD8+ T cell (CTL) responses, a critical
component in the pathogenesis of GVHD. CTL activity was
compared in vivo in BALB/c recipients transplanted with BM
from C57BL/6 LysMCre/wtHmox1D/D versus BM from wild type
C57BL/6 Hmox1+/+ or C57BL/6 Hmox1flox/flox mice. CTL activity
was similar in all allogeneic BM transplant combinations, as
assessed in vivo by using CFSE-labeled splenocytes corresponding
to the transplanted BM genotype (Figure S2).

Donor HMOX1 (GT)n Polymorphism Is
Associated With the Incidence and
Severity of Acute Graft-Versus-Host
Disease
In order to investigate the clinical relevance of the previous
experimental data, we assessed the impact of donor and recipient
HO-1 polymorphisms in the outcome of HSCT in patients.

A total of 120 and 160 HSCT procedures in two independent
cohorts were investigated. The minimum follow-up was 1 year.
Tables 1 and 2 summarize patient and donor characteristics and
Frontiers in Immunology | www.frontiersin.org 8
treatments. In both cohorts, underlying diseases are listed
according to their frequency. Types of transplantation have
been divided into three categories: matched related donor
(MRD), matched unrelated donor (MUD), and unmatched
related donor (URD). Conditioning treatments were separated
in two categories: myeloablative conditioning (MAC) and
reduced intensity conditioning (RIC). The two cohorts differed
in the following characteristics: (1) there was no transplantation
from URD in the first cohort, versus 22% in the second one; (2)
there was a higher proportion of RIC in the first cohort; (3) there
was a lower rate of radiotherapy used in the first cohort; (4)
GVHD prophylaxis with ATG was used in 25% of patients in the
first cohort versus 76.2% in the second.

The bimodal distribution of (GT)n polymorphisms in the
HMOX1 promoter in donor and recipients from cohorts 1 and 2
and healthy controls (Figures 4A, B), ranged from 12 to 42 and
peaked at 23 and 30 (GT)n, similar to that observed in previous
studies (27–29, 35, 46, 47). The (GT)n alleles were segregated into
short (S), i.e. (GT)n < 30, and long (L), i.e. (GT)n > 30, and
individuals were classified as L/L, L/S, or S/S genotypes, as
described before (23). The distributions of S or L alleles and
genotype frequencies were similar in recipients and donors, in
both cohorts and in the control group (Table 3): Hardy-
Weinberg equilibrium was met.

As shown in Table 4, the proportion of L alleles in the
recipient was not associated with GVHD severity, whereas a
trend for a higher proportion of L alleles in the donor was
observed in patients with grade III/IV acute GVHD (S vs L allele:
28.6% vs 71.4%, p=0.05 and 33.8 vs 66.2%, p=ns in cohorts 1 and
2, respectively). The L/L genotype in the donor was associated
A

B

FIGURE 4 | Distribution of the number of (GT)n repeats in the microsatellite region of the HO-1 gene promoter. Numbers of (GT) repeats are shown in HSC donors
(gray bars) and recipients (black bars) of cohorts 1 (A) and 2 (B) and in healthy volunteers (white bars).
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with a higher proportion of grade III/IV acute GVHD in both
cohorts (S/S or S/L vs L/L: 46.4% vs 53.5%, p<0.05 and 47.0% vs
52.9% p<0.05 in cohorts 1 and 2, respectively), whereas an L/L
genotype in the recipient did not influence GVHD severity
(Table 5).

The association between GVHD and risk factors was analyzed
by univariate and multivariate analyses, considering L/L donor
genotype, age, cytomegalovirus (CMV) status, gender (donor
and recipient), type of transplantation, intensity of conditioning,
and use of radiotherapy (Tables 6 and 7). Subdistribution hazard
ratio (SHR) for grade III/IV acute GVHD was significantly
higher in cases involving an L/L genotype in the donor (SHR:
2.3; CI: 1.2–4.4, p=0.01 and SHR: 2.0; CI: 1.1–3.6, p=0.02, in
cohorts 1 and 2, respectively) and of an L/L genotype in the
recipient only in cohort 2 (SHR: 2.0; CI: 1.1–3.6; p=0.02). Other
Frontiers in Immunology | www.frontiersin.org 9
acknowledged risk factors for developing GVHD (48) remained
significant after multivariate analysis, such as radiotherapy or the
type of transplantation (Table 7). Radiotherapy was a risk factor
for GVHD in cohort 2 but not in cohort 1, in which radiotherapy
was much less frequently used. Graft origin (MUD) was
identified as a risk factor for GVHD in cohort 1 but not in
cohort 2, probably related to the systematic use of ATG (Tables 6
and 7). Regarding ATG use, multivariate analysis was not
performed because univariate analysis did not find statistical
correlation when performed in the cohort with the most
abundant use of ATG (data not shown). Importantly,
multivariate analysis revealed that the donor’s L/L genotype
remained a significant risk factor for GVHD, independently of
radiotherapy and of the graft source (aSHR: 2.6; CI: 1.3–4.9,
p=0.005 and aSHR: 1.9; CI: 1.0–3.5, p=0.04 for cohorts 1 and 2,
TABLE 3 | Allele and genotype frequencies in the two cohorts and the control group.

Cohort 1 Cohort 2 Control Group

Recipient Donor Recipient Donor

Allele Type
Short, n (%) 99/240 (41.3) 102/240 (42.5) 135/320 (42.1) 130/316 (41.1) 170/406 (41.9)
Long, n (%) 141/240 (58.7) 138/240 (57.5) 185/320 (57.9) 186/316 (58.9) 236/406 (58.1)
Genotype
Short/Short, n (%) 18/120 (15.0) 23/120 (19.2) 34/160 (21.2) 31/158 (19.6) 32/203 (15.7)
Long/Short, n (%) 63/120 (52.5) 56/120 (46,7) 71/160 (44.3) 71/158 (44.9) 105/203 (51.7)
Long/Long, n (%) 39/120 (32.5) 41/120 (34.2) 55/160 (34.3) 56/158 (35.4) 66/203 (32.5)
January 2021 | Volume 11
Distribution of short (S) or long (L) alleles and genotype frequency in recipients, donors in cohorts 1 and 2 and in the control group.
*Allele and genotype are missing in two donors in cohort 2 due to technical reason.
TABLE 4 | Allele distribution according to GVHD severity.

Allele type Cohort 1 Cohort 2
GVHD severity GVHD severity

Recipient No GVHD Grade 1–2 Grade 3–4 No GVHD Grade 1–2 Grade 3–4
Short, n (%) 48 (41.4) 28 (46.7) 23 (35.9) 68 (43.0) 39 (52.7) 25 (34.7)
Long, n (%) 68 (58.6) 32 (53.3) 41 (64.1) 90 (57.0) 35 (47.3) 47 (65.3)
Donor
Short, n (%) 54 (45.8) 32 (48.5) 16 (28.6) 70 (44.3) 36 (46.1) 23 (33.8)
Long, n (%) 64 (54.2) 34 (51.5) 40 (71.4)# 88 (55.7) 42 (53.8) 45 (66.2)
| Arti
Number of short (S) and long (L) alleles and frequency in donors and recipients according to the grade of GVHD. L for (GT)n longer than 30 repeats and S for (GT)n shorter than 30 repeats.
#p = 0.05 compared to moderate or no GVHD. GVHD, graft-versus-host disease.
*Clinical data for GVHD severity are incomplete for eight patients in cohort 2.
TABLE 5 | Genotype distribution according to GVHD severity.

Genotype Cohort 1 Cohort 2
GVHD severity GVHD severity

Recipient No GVHD Grade 1–2 Grade 3–4 No GVHD Grade 1–2 Grade 3–4
S/S or S/L, n (%) 40 (69) 22 (73.3) 19 (59.4) 54 (68.4) 27 (73) 18 (50)
L/L, n (%) 18 (31) 8 (26.7) 13 (40.6) 25 (31.6) 10 (27) 18 (50)
Donor
S/S or S/L, n (%) 42 (71.1) 24 (72.7) 13 (46.4) 55 (69.6) 28 (71.7) 16 (47.0)
L/L, n (%) 17 (28.8) 9 (27.7) 15 (53.5)* 24 (30.3) 11 (28.2) 18 (52.9)*
Proportion of L/L genotype in hematopoietic stem cell in donors and recipients according to the grade of GVHD in cohorts 1 and 2; *p <0.05 compared to moderate or no GVHD. GVHD,
graft-versus-host disease. For the L/L genotype in the recipient, p value is not statistically significant: p=0.48 in cohort 1, p=0.08 in cohort 2.
*Clinical data for GVHD severity are incomplete for eight patients in cohort 2.
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respectively). In summary, HSCT from a donor harboring the L/
L genotype increases the risk for developing severe acute GVHD.
This corroborates our experimental data in mice, strongly
suggesting that the relative level of HO-1 expression in donor
BM plays a critical role in the onset of GVHD.
Frontiers in Immunology | www.frontiersin.org 10
DISCUSSION

In this study, we provide evidence that donor-derived myeloid
HO-1 prevents the onset of acute GVHD after HSCT.
Importantly, the protective effect against GVHD associated
TABLE 6 | Univariate analysis of GVHD risk factors.

Cohort 1 Cohort 2

SHR (95%) p-value SHR (95%) p-value

Sex
Male 1.05 (0.55–1.98) 0.88 1.09 (0.57–2.06) 0.80
Female 1.0 1.0
Recipient Age < 40 1.63 (0.88–3.02) 0.12 1.32 (0.74–2.38) 0.35
≥ 40 1.0 1.0
Donor age < 40 1.15 (0.60–2.20) 0.67 1.26 (0.63–2.53) 0.51
≥ 40 1.0 1.0
Sex mismatch
Donor fem/male 0.78 (0.35–1.77) 0.56 0.79 (0.36–1.74) 0.56
Others 1.0 1.0
CMV mismatch
D-/R+ 1.04 (0.42–2.58) 0.94 1.32 (0.66–2.63) 0.44
Others 1.0 1.0
Disease stage
CR1 or chr. ph. CML 1.0 0.27 1.0 0.90
>CR1 or ac. ph. CML 1.43 (0.76–2.67) 0.96 (0.53–1.74)
Graft
MRD 1.0 0.004 1.0 0.99
MUD 2.94 (1.42–6.12) 0.98 (0.46–2.07)
URD NA 1.04 (0.50–2.15)
Conditioning
RIC 1.0 0.77 1.0 0.26
MAC 0.91 (0.48–1.71) 0.70 (0.37–1.31)
Radiotherapy
No 1.0 0.36 1.0 0.01
Yes 1.42 (0.67–3.00) 2.20 (1.88–4.06)
Donor genotype
SS and SL 1.0 0.015 1.0 0.02
LL 2.28 (1.18–4.41) 2.00 (1.10–3.65)
Recipient genotype
SS and SL 1.0 0.30 1.0 0.02
LL 1.39 (0.75–2.56) 2.00 (1.12–3.56)
January 2021 | Volume 11 | Article
SubHazard Ratio (SHR) of association of severe GVHD (grade III-IV) according to risk factors, NA: not applicable; CMV, cytomegalovirus; GVHD, graft-versus-host disease; MRD, matched
related donor; MUD, matched unrelated donor; URD, unmatched related donor; MAC, myeloablative conditioning; RIC, reduced intensity conditioning.
TABLE 7 | Multivariate analysis of GVHD risk factors.

Cohort 1 Cohort 2

(cases = 28/n = 120) (cases = 33/n = 151)
aSHR (95%) p-value aSHR (95%) p-value

Graft
MRD 1.0 0.006 1.0 0.81
MUD 2.72 (1.33–5.58) 0.81 (0.35–1.88)
URD NA 0.59 (0.37–1.76)
Radiotherapy
Yes 1.0 0.18 1.0 0.02
No 1.82 (0.76–4.38) 2.15 (1.11–4.18)
Donor genotype
SS and SL 1 0.005 1.0 0.04
LL 2.57 (1.34–4.94) 1.90 (1.04–3.5)
Adjusted SubHazard Ratio (aSHR) of the association of severe GVHD (grade III-IV) according to risk factors. GVHD, graft-versus-host disease; MRD, matched related donor; MUD,
matched unrelated donor; URD, unmatched related donor.
*Clinical and/or genetic data are incomplete for nine patients in cohort 2.
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with the expression of HO-1 was determined via a genetic loss-
of-function approach, as compared to previous studies in which
non-specific pharmacological induction of HO-1 was shown to
be associated with suppression of GHVD (18–20). It should be
noted, however, that these studies have not provided irrefutable
evidence that the beneficial effects associated with these
pharmacological approaches are indeed driven by the
upregulation of HO-1 expression (18–20).

HO-1 can be stress-induced in almost all cell types, including
epithelial or endothelial cells (49). In our mouse models, host
animals are always in a wild type background and can upregulate
HO-1 normally in response to many stress types, including
GVHD. We have measured plasma HO-1 levels by ELISA and
detected large amounts of plasma HO-1, whether the BMT
donor was HO-1 sufficient or deficient (data not shown).
Nevertheless, that HO-1 production did not afford any
protection against GVHD, in contrast to the HO-1 from the
BM donor.

Another study that enhanced expression of HO-1 in
mesenchymal stem cells (MSC) by lentiviral gene transfer in a
mouse GVHDmodel, showed a significant diminution of clinical
and pathological GVHD scores in mice, but not on survival (50).
As such, the current study is the first demonstration that
expression of HO-1 in myeloid cells suppresses GVHD after
HSCT in mice, and likely in humans as well, as suggested by the
association between a (GT)n L/L genotype associated with low
HO-1 expression and GVHD severity.

Another study in HSCT patients that investigated the
association between HMOX1 (GT)n promoter polymorphisms
and transplantation-related mortality reported results that are in
apparent contrast to ours (51). Gerbitz et al. (2008) investigated
92 patient-donor pairs that were classified as either high or low
HO-1 expressors based on the presence or the absence of a single
long allele (≥ 30 GT repeats). This “dominant” approach differs
from the “recessive” approach we adopted (to be considered a
low expressor requires the L/L genotype). In their study, Gerbitz
et al. (2008) showed that HSCT from matched unrelated donors
defined as high HO-1 expressors negatively influenced overall
survival and transplantation-related mortality. Regarding the
risk of acute GVHD, there was only a trend but no statistical
difference, with a higher rate of grade III/IV acute GVHD when
the unrelated donor was a low HO-1 expressor. This apparent
discrepancy may result from cohort characteristics (only
matched donor/recipient pairs), genotype definition (L allele
dominance assumed), and selected outcomes. Indeed,
transplantation-related mortality and overall survival are
composite outcomes and the higher mortality observed by
Gerbitz et al. (2008) might be due to increased susceptibility to
infections and disease relapse rather than GVHD (23, 27–29, 52).
Another study observed a higher incidence of grade III/IV acute
GVHD in the donor L/L genotype group in the non MAC
regimens cohort but not in the MAC regimens cohort (53). In
the MAC cohort, they also found a significantly higher relapse
incidence in the donor S/S genotype group, but no difference in
overall survival. In this study, they did not observe the same effect
of HMOX1 (GT)n promoter polymorphisms in their two cohorts
Frontiers in Immunology | www.frontiersin.org 11
and this may be due to the small size of the cohorts. A recent
study that investigated the influence of the single nucleotide
polymorphism (SNP) rs2071746 (-413A>T) in the HO-1
promoter on HSCT outcomes in 593 patients with
hematological malignancies showed that the donor A/A or A/T
genotype was associated with better 5-year overall survival and
disease-free survival compared to the donor T/T genotype. The A
allele has been associated with higher HO-1 expression levels
than the T allele. The donor HO-1 genotype showed no effects on
GVHD (54). This apparent discrepancy might be explained by
the use of different genotyping methodologies (SNP versus (GT)n
polymorphism) and we did not assess the incidence of overall
survival, non-relapse mortality, and GVHD relapse-free survival.

There are potentially multiple overlapping mechanisms by
which myeloid HO-1 can prevent the onset of severe GVHD
(55). In line with previous observations (17), we demonstrate
that expression of HO-1 by myeloid cells regulates alloreactive T
cell responses in a manner that suppresses the onset of GVHD,
suggesting, therefore, that pharmacological induction of HO-1 in
this cell compartment may be used as a therapeutic approach in
the treatment of GVHD. This finding is also in keeping with
previous observations indicating that HO-1 activity is essential
for and promotes tolerance to transplanted allogeneic organs
(56). In accordance with this notion, we found that when
expressed by myeloid cells, HO-1 suppresses alloreactive Th1
and Th17 cell responses involved in the onset of GVHD.
Notably, when expressed in a non-myeloid compartment,
HO-1 was unable to control these alloreactive responses.

The control of anti-host alloreactive T cells via HO-1 is in
agreement with our previous observation that MDSCs can
suppress alloreactive T cell responses and skin allograft
rejection through an HO-1-dependent mechanism. This
suggests that physiologic processes by which MDSCs control
adaptive immunity can be regulated via HO-1-dependent
mechanisms (17). The exact mechanism by which HO-1 exerts
these effects is not clear and is likely to be multifactorial.

One possibility could be that HO-1 generates one or several
metabolic products that act in MDSCs and/or directly on
alloreactive T cells to suppress their activation and
proliferation. In keeping with this notion, pharmacologic
blockade of HO-1 activity is associated with the accumulation
of reactive oxygen species (ROS) levels in dendritic cells (DCs)
and, through a p38 mitogen-activated protein kinase (p38
MAPK)-dependent pathway, induces DC maturation and
CD8+ T cell activation (57, 58).

Another possibility could be that under stress conditions,
such as those associated with transplantation, HO-1 becomes the
rate-limiting factor in the catabolism of heme, generating
equimolar amounts of biliverdin, carbon monoxide (CO), and
labile iron (59). Heme can be released from hemoproteins, under
stress conditions, such as to generate labile heme (60). Labile
heme is recognized by pattern recognition receptors, including
toll-like receptor 4 and NACHT, LRR, and Pyrin Domain
Containing 3 (NLRP3) (60) acting as a bona fide alarmin that
activates monocyte/macrophages. Whether these effects of labile
heme promote T cell alloreactivity and, hence, the rejection
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mediated by transplanted cells, tissues, or organs has not been
established. What is clear, however, is that heme catabolism by
HO-1 counters the pro-oxidant effects of labile heme in a manner
that inhibits its pro-inflammatory and cytotoxic effects.
Moreover, heme catabolism by HO-1 generates CO, which
limits the production of labile heme while regulating
monocyte/macrophage activation in a manner that inhibits the
production of cytotoxic cytokines, e.g. TNF, while promoting
that of immunoregulatory cytokines, e.g. IL-10 (58, 59).
Macrophages are considered principal regulators of immune
homeostasis and have been categorized into two subtypes: M1,
which are proinflammatory via a Th1 response, and M2, which
harbor an anti-inflammatory phenotype via a Th2 response (61,
62). Upregulation of HO-1 promotes M2 polarization (63–65).
In line with this, Zhang et al. (2018) recently reported that M2
polarization through myeloid HO-1 partially prevents ischemia-
reperfusion injury (66). In our GVHD model, it is not excluded
that donor myeloid HO-1 controls T cell alloreactivity through
M2 polarization. Another group has shown that monocytes co-
cultured with expanded TREGs downregulate costimulatory and
MHC-class II molecules and upregulate M2 markers, including
HO-1 and IL-10 (67).

We very recently observed in a mouse tumor model that the
deletion of HO-1 in the myeloid compartment enhances the
beneficial effects of a therapeutic antitumor vaccine by boosting
CD8 T cell proliferation and cytotoxicity (68). This underlines
the possible modulation of adaptive immune response through
myeloid HO-1. In addition, myeloid HO-1 deficiency induced a
modulation of tumor-associated macrophage transcriptional and
epigenetic programs. Comparable mechanisms might be
involved in our GVHD model.

An intriguing possibility is that MHC class I-restricted
presentation of HO-1-derived peptides exerts immunoregulatory
effects on alloreactive T cells, much like that demonstrated in
cancer patients, where HLA-A2–restricted CD8+ TREGs specific
for HO-1-derived peptides suppress tumor specific T cell
responses (69). Nevertheless, our data suggests that CD8+ T cell
depletion does not protect against GVHD in mice receiving BM
allogeneic transplants in which the expression of HO-1 is deleted
in myeloid cells, which does not fully support that an
immunoregulatory mechanism based on CD8+ TREG to be
operational here.

It is also possible that the protective effect of HO-1 could act
via additional mechanisms such as the CO generated by heme
catabolism which promotes myeloid cell expansion and
differentiation (70). In addition, CO exerts potent
cytoprotective (71) and anti-inflammatory effects (72, 73) that
should restrain the severity of GVHD as well.

Expression of HO-1 in myeloid cells may also play a critical
role in restoring iron metabolism after transplantation. In
support of this notion, Kovtunovych et al. reported that
subablative BMT cured Hmox1−/− mice by repopulating tissue
macrophages in a syngeneic context, restoring iron metabolism
parameters, and by normalizing oxidative stress-induced
molecules in the liver and the kidney (74). Nevertheless, in our
experiments, the lack of HO-1 in syngeneic BMT only marginally
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affected outcomes, which underlines the synergy of alloantigens
in the pathogenicity of myeloid-restricted HO-1 deficiency.
Based on the results presented here and those of others, it
might be reasonable to consider HO-1 induction, either to
prevent GVHD or as adjuvant therapy to treat GVHD. Indeed,
a broad range of HO-1 inducers that have been recently
described (75, 76) might be used in the clinic.

We conclude that donor-derived myeloid HO-1 is a key
regulator of T cell alloreactivity and acute GVHD severity and
constitutes a potential therapeutic target for HSCT patients.
Large-scale prospective studies in HSCT patients are necessary
to validate the HO-1 L/L genotype as an independent risk factor
to developing severe acute GVHD. Additional mechanistic
approaches should allow a better understanding of how HO-1
regulates GVHD and T cell functions. If the role of HO-1 is
confirmed, the HO-1 (GT)n polymorphism of the donor might be
considered as a biomarker before BMT in a personalized medicine
strategy combined or not with therapeutic use of HO-1 inducers.
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