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Abstract

Spatial transcriptomics has been emerging as a powerful technique for resolving gene expression profiles while retaining tissue spatial
information. These spatially resolved transcriptomics make it feasible to examine the complex multicellular systems of different
microenvironments. To answer scientific questions with spatial transcriptomics and expand our understanding of how cell types and
states are regulated by microenvironment, the first step is to identify cell clusters by integrating the available spatial information.
Here, we introduce SC-MEB, an empirical Bayes approach for spatial clustering analysis using a hidden Markov random field. We
have also derived an efficient expectation-maximization algorithm based on an iterative conditional mode for SC-MEB. In contrast
to BayesSpace, a recently developed method, SC-MEB is not only computationally efficient and scalable to large sample sizes but is
also capable of choosing the smoothness parameter and the number of clusters. We performed comprehensive simulation studies
to demonstrate the superiority of SC-MEB over some existing methods. We applied SC-MEB to analyze the spatial transcriptome of
human dorsolateral prefrontal cortex tissues and mouse hypothalamic preoptic region. Our analysis results showed that SC-MEB can
achieve a similar or better clustering performance to BayesSpace, which uses the true number of clusters and a fixed smoothness
parameter. Moreover, SC-MEB is scalable to large ‘sample sizes’. We then employed SC-MEB to analyze a colon dataset from a patient
with colorectal cancer (CRC) and COVID-19, and further performed differential expression analysis to identify signature genes related
to the clustering results. The heatmap of identified signature genes showed that the clusters identified using SC-MEB were more
separable than those obtained with BayesSpace. Using pathway analysis, we identified three immune-related clusters, and in a
further comparison, found the mean expression of COVID-19 signature genes was greater in immune than non-immune regions
of colon tissue. SC-MEB provides a valuable computational tool for investigating the structural organizations of tissues from spatial
transcriptomic data.

Keywords: spatial transcriptomics, cell phenotype, empirical Bayes, hidden Markov random field, expectation-maximization
algorithm.

Introduction
Recent advances in spatial transcriptomics (ST) have
allowed researchers to simultaneously measure
transcriptome-wide gene expression at near single-
cell resolution, whereas the spatial information for
each measurement is retained [5]. These spatially
resolved transcriptomics have deepened our under-
standing of how cell types and states are regulated
by tissues microenvironment, e.g. of the human brain

[20], mouse brain [1, 30] and mouse embryo [17], among
others. The technologies used for resolving spatial gene
expression can largely be classified as either imaging-
based or next-generation-sequencing-based methods
[37]. Imaging-based methods, which were developed to
study spatial complexity, are based on fluorescent in situ
hybridization (FISH) and include smFISH [19], seqFISH
[11] and MERFISH [38]. Although FISH-based methods
are capable of capturing both RNA quantity and position,
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they are limited by their throughput scalability and
accuracy in measuring gene expression levels. However,
multiple next-generation-sequencing-based methods
have been developed to facilitate high-throughput
analysis, including Geo-seq [6], Slide-seq [28] and, more
recently, the commercial 10x Genomics Visium system
[31]. Emerging ST technologies offer new opportunities
to investigate the spatial patterns of gene expression for
many applications, such as cell type identification, tissue
exploration and differential expression (DE) analysis.
Among these applications, cell-type clustering is the first
problem that needs to be addressed.

Similar to single-cell RNA-seq data, ST data contains
excessive amounts of zeros or ‘drop-outs’ [26]. Recently,
many academics have argued that drop-outs are mostly
due to biological variation, such as cell-type heterogene-
ity, rather than technical shortcomings [32]. Kim et al. [14]
suggested that clustering analysis should be performed
before imputing or normalizing the data. To overcome
the curse of dimensionality due to high-throughput
spatial gene expression, clustering is often preceded by
standard dimension reduction procedures, e.g.
principal component analysis (PCA), t-distributed stochas-
tic neighbor embedding [34] and uniform manifold
approximation and projection [22].

In ST datasets, the majority of existing clustering
methods, e.g. k-means [15] and Gaussian mixture
models (GMM) [4], do not consider the available spatial
information. To allow additional spatial information
to be incorporated into ST datasets, several methods
have been recently developed, including the hidden
Markov random field (HMRF) model implemented in the
Giotto package [10, 40] and a fully Bayesian model with
a MRF, BayesSpace [39]. Given the spatial coordinates
for each transcriptome-profiled spot, spatial clustering
methods achieve better classification accuracy. For
example, [39] showed that BayesSpace improved the
resolution and achieved better classification accuracy
for manually annotated human brain samples. However,
these methods have certain limitations. First, BayesSpace
is a fully Bayesian method based on Markov chain Monte
Carlo; therefore, it is not computationally scalable for
ST data with high resolution. Second, smoothness is an
essential parameter of MRF-based methods and largely
determines the proximity of the neighboring spots [33].
BayesSpace takes this smoothness parameter as fixed
and, thus, cannot choose the optimal value that best fits
a given dataset. Third, without optimizing the smooth-
ness parameter, one cannot apply any model selection
methods to obtain the optimal number of clusters.
In practice, the number of clusters in ST datasets is
usually unknown before the follow-up analysis, and the
preferred method would be to automatically choose the
number of clusters.

To address these limitations, we propose a method
of Spatial Clustering using the hidden Markov random
field based on Empirical Bayes (SC-MEB) to model a
low-dimensional representation of a gene expression

matrix that incorporates the spatial coordinates for each
measurement. In contrast to existing methods [10, 39],
SC-MEB is not only computationally efficient and
scalable to larger sample sizes but also accommodates
adjustments to the smoothness parameter and the
number of clusters. We derived an efficient expectation-
maximization (EM) algorithm based on an iterative
conditional mode (ICM) and further selected the number
of clusters for SC-MEB based on the modified Bayesian
information criterion (MBIC) [36]. We demonstrated the
effectiveness of SC-MEB over existing methods through
comprehensive simulation studies. We then applied SC-
MEB to the clustering analysis of three ST datasets. Using
a 10x Genomics Visium dataset from human dorsolateral
prefrontal cortex (DLPFC) tissues that were manually
annotated, we showed that the performance of SC-MEB
was comparable or better than that of BayesSpace, even
though the latter uses the ‘true’ number of clusters and a
prespecified, fine-tuned smoothness parameter. Using a
large MERFISH dataset from mouse hypothalamic preop-
tic region (MHPR), we demonstrated the better clustering
performance as well as the scalability of SC-MEB. We
further applied SC-MEB and alternative methods to
analyze ST data of a colon tissue from a patient with
colorectal cancer (CRC) and COVID-19. We performed
follow-up DEs analysis using the clustering results from
SC-MEB and BayesSpace, and the heatmap of identified
signature genes showed that SC-MEB clustering results
were more reasonable and interpretable. Using pathway
analysis, we identified three immune-related clusters,
and the mean expressions of COVID-19 signature genes
were further compared between immune and non-
immune regions of a colon sample.

Materials and Methods
Problem formulation
The SC-MEB consists of three major stages (Figure 1A).
First, PCA is conducted on the log-transformed expres-
sion of the highly variable genes to obtain the top princi-
pal components (PCs) (Figure 1B). Next, spatial clustering
is performed using PCs for each spot. Finally, downstream
analyses, such as DE analysis, can be performed to obtain
signature genes for each cluster (Figure 1D).

Our spatial clustering method builds on a two-level
hierarchical probabilistic model (Figure 1C). Briefly, for
spot i, the first level specifies the conditional probability
of the low-dimensional representation (e.g. top PCs) of its
gene expression yi given an unknown label xi ∈ {1, . . . , K},
where K is the number of clusters. In SC-MEB, we assume
that given the labels for each spot, a d-dimensional
representation yi is mutually independent among all
spots, and its distribution within a given cluster k can be
written as

p(y | x, θ) =
∏
i∈S

N (yi|xi = k, μk, �k), (1)

where θ = {μk, �k : k = 1, . . . , K}, and μk and �k denote the
mean and covariance matrix for cluster k, respectively.
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Figure 1. SC-MEB workflow. A. The SC-MEB workflow mainly comprises the following steps, data preprocessing, spatial clustering using the hidden MRF
model, a series of downstream analyses. B. Data preprocessing: log-transformation, dimension reduction. C. The hidden MRF model. For the Visium
dataset, we used six neighborhoods for each spot. D. The SC-MEB outputs: a scatter plot of MBIC for all K, a tissue plot with spots colored by clustering,
a heatmap of DEGs.

The second level of SC-MEB depicts the prior probabil-
ity of the hidden labels, and an MRF prior is implemented
to encourage smoothness among spots. In other words,
spots of the same cluster can be in close proximity. As
spots in Visium are primarily arranged on hexagonal
lattices, the neighborhood of each spot is defined by
applying a proximity threshold. To promote smoothness
within spot neighborhoods, we use the Potts model [25]
for the hidden labels. The Potts model is well known as
a statistical model for use with complex systems with
nearest neighbor interactions. Essentially, it views the
total energies U(x) as a summation of pairwise interac-
tion energies with neighbors, where a positive parameter
β represents the strength of interactions. Specifically, the
Potts model promotes spatial smoothness by penalizing
cases in which neighboring spots are assigned to differ-
ent cluster labels. The hidden random field x is assumed
to be

P(x; β) = 1
Zβ

exp{−U(x)}, (2)

where U(x) = ∑
i,i′∈Ni

β[1−δ(xi, x′
i)], δ is the delta function,

and Zβ is a normalization constant that does not have a
closed form. When all labels on a neighborhood take the
same value, meaning that the hidden x is locally smooth,
it incurs no neighborhood cost; otherwise, if they are not
all the same, a positive cost is incurred, and the amount
of cost is controlled by parameter β. Thus, parameter β

controls the smoothness in latent labels; the larger the β,
the spatially smoother the latent labels. When β is zero,
SC-MEB reverts to the method that does not consider
spatial information, i.e. GMM. Combining two levels of
SC-MEB, (1) and (2), we denote φ = (θ , β) the parameter
space.

As the smoothing parameter β does not have an
explicit updated form, SC-MEB adaptively selects β via a
grid search strategy. That is, the SC-MEB model is trained
with a prefixed β using an efficient iterative-conditional-
mode-based expectation-maximization (ICM-EM) scheme
[9] that incorporates a pseudo-likelihood maximization
step, as in the ICM method of [2]. The optimal β is the
value that maximizes the marginal log-likelihood. In a
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similar way, the marginal log-likelihood can be evaluated
for a sequence of K. Then, MBIC [36] is applied to choose
the optimal number of clusters in a data-driven manner
(Figure 1D). We also tried BIC and found that in general
MBIC has similar or better numerical performance.
Please refer to Supplementary for more details about
the MBIC used in this case.

ICM-EM algorithm
The parameter is estimated through an ICM-EM algo-
rithm [9]. Here, we assume K is known.

In the ICM step, the estimate of x is obtained by maxi-
mizing its posterior with respect to xi coordinately:

P(x | y) = P(xi, xS−{i} | y) = P(xi | y, xS−{i})P(xS−{i} | y),

where i = 1, . . . , n, until converge [3]. Given initial values
of x, φ and observed y, we have the updated equation:

x̂i = min
xi

V(x̂1, . . . , xi, . . . , x̂n), (3)

where

V(x) = {1
2

(yi − μxi
)��−1

xi
(yi − μxi

) + 1
2

log |�xi
|

+ β
∑

i′∈Ni

[1 − δ(xi, xi′)]
}
.

In the expectation (E) step, instead of using the original
complete likelihood, which is difficult to evaluate, the
following pseudo-likelihood is used:

p̃(y, x; φ) = p(y|x; φ)p̃(x; φ)

=
∏

i

p(yi | xi; φ)
∏

p(xi|xNi
; β)

=
∏

i

[
p(yi | xi; φ)p(xi|xNi

; φ)
]

=
∏

i

p(yi, xi | xNi
; φ).

With the optimal conditional distribution of x (details in
Supplementary), we have

Q(φ) =
∑

i

∑
k

γik

[
log p(yi | xi = k; φ) + log p(xi = k | xNi

; φ)
]

,

where γik is the responsibility that component k has for
explaining the observation yi, which is defined as follows:

γik = P(yi | xi = k)P(xi = k | XNi
= x̂Ni

)∑
k′ P(yi | xi = k′)P(Xi = k′ | XNi

= x̂Ni
)
. (4)

By taking partial derivatives of Q(φ) with respect to
the parameter θ and setting them to zero, we obtain the

updated equations in the maximization (M) step:

μk = 1
Nk

n∑
i=1

γikyi, (5)

�k = 1
Nk

n∑
i=1

γik(yi − μk)(yi − μk)
�, (6)

where Nk = ∑n
i=1 γik. Since there is no closed-form solu-

tion for β, we optimize the smoothness parameter β via
a grid search strategy:

β = arg max
l∈{1,...,R}

Q(θ , βl), (7)

where the sequence (β1, . . . , βR) is a vector of 20 evenly
spaced points in the interval [0, 4].

The ICM-EM algorithm iterates the ICM step and M
step until convergence. Further details on the ICM-EM
algorithm are provided in the Supplementary Material.

Methods for comparison
We conducted comprehensive simulations and real data
analysis to gauge the performance of different methods
for clustering a low-dimensional representation of a gene
expression matrix, including both non-spatial and spa-
tial clustering methods.

In detail, we considered the following non-spatial clus-
tering methods: (i) k-means implemented in the R pack-
age stats, available at CRAN; (ii) GMM implemented in the
R package mclust, available at CRAN; (iii) Louvain imple-
mented in the R package igraph, available at https://igra
ph.org/r/. In addition, we compared the clustering per-
formance of spatial methods: (i) SC-MEB implemented in
the R package SC.MEB, available at https://github.com/
Shufeyangyi2015310117/SC.MEB; (ii) BayesSpace imple-
mented in the R package BayesSpace, available at Bio-
conductor; (iii) HMRF implemented in the Giotto package,
available at http://spatialgiotto.rc.fas.harvard.edu/.

Preprocessing of ST datasets
The Visium ST [39] data were aligned and quantified
using Space Ranger downloaded from 10x Genomics
official website against the GRCh38 human reference
genome also from 10x Genomics official website. For all
datasets, we applied log-transformation of the raw count
matrix using library size [18, 21]. Then, we performed PCA
on the 2000 most highly variable genes. In the clustering
analysis, we chose the top 15 PCs from the study datasets
as the input for SC-MEB as well as for the alternative
methods.

ST datasets
Human dorsolateral prefrontal cortex

Maynard et al [20] used recently released ST technology,
the 10x Genomics Visium platform, to generate spatial
maps of gene expression matrices for the six-layered
DLPFC of the adult human brain that are provided in the

https://igraph.org/r/
https://igraph.org/r/
https://github.com/Shufeyangyi2015310117/SC.MEB
https://github.com/Shufeyangyi2015310117/SC.MEB
http://spatialgiotto.rc.fas.harvard.edu/
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spatialLIBD package. They also provided manual annota-
tions of the layers based on the cytoarchitecture. In their
study, they profiled the ST of human postmortem DLPFC
tissue sections from 12 samples, with a median depth of
291 M reads for each sample, corresponding to a mean
3462 unique molecular indices and a mean 1734 genes
per spot.

Mouse hypothalamic preoptic region

Moffitt et al. [24] used the combination of MERFISH with
scRNA-seq to profile the gene expression of 1 million
cells in situ that reveals neuronal populations in the
preoptic region of 36 mouses, each with distinct molecu-
lar signatures and spatial organizations. Specifically, the
MHPR dataset contains expression values of 161 genes
in 1 027 848 cells. To demonstrate the scalability, we per-
form joint clustering for all cells of the 36 samples. The
spatial locations for each sample are offset so that cells of
different samples are not neighbors. Here we add 10 000
to row and column coordinates to achieve this. Sample 1
further contains six slices, we refer them as Sample 1-1
to Sample 1-6. We further analyze all cells in Sample 1
as well as each of these six slices. The number of cells
for each dataset are summarized in Table 4. On average,
there are six neighbors for every cells determined by their
Euclidean distance orders.

Human colon tissue adjacent to CRC

The colon tissue was from a 45-year-old South Asian
male who was diagnosed with COVID-19 on 16 April
2020. As previously described [7], the patient had
experienced mild upper respiratory tract symptoms
throughout the course of the disease. He was confirmed
COVID-19-negative after two consecutive nasopharyn-
geal swabs on and 9 and 10 May 2020 and was discharged
from the isolation facility on 10 May 2020. During hospi-
tal admission, further investigation involving computed
tomography scanning and colonoscopy revealed the
presence of a large circumferential malignant mass in
the cecum. Histology of the biopsies confirmed that the
patient had invasive CRC stage II T3N0. He underwent
laparoscopic right hemicolectomy on 18 May 2020, 9
days after testing negative for COVID-19. He recovered
uneventfully and was discharged on 21 May 2020. Using
this sample, we profiled the ST using the 10x Genomics
Visium platform. In summary, it has a depth of 143
million reads for a total of 2988 spots within the tissue
and a median 492 genes per spot.

Evaluation metrics
We evaluated the clustering performance by adjusted
Rand index (ARI) [29]. The general formula for ARI is as
follows

ARI = [RI − expected(RI)]
[max(RI) − expected(RI)]

(8)

where RI is the Rand index [27], and max (RI) and
expected (RI) are the maximum value and the expected
value of RI, respectively. Assuming that n is the number
of spots in an ST dataset. U = {u1, . . . , ui, . . . , uR} ∈ R

n

and V = {
v1, . . . , vj, . . . , vC

} ∈ R
n represent two clustering

labels for n spots, where R and C are the corresponding
numbers of clusters in U and V, respectively. Denoting nij

as the number of spots belonging to both classes ui and
vj, and ni· and n·j as the number of spots in classes ui and
vj, respectively; then ARI (8) is defined as

ARI(U, V) =
∑

i,j

(nij
2

) − ∑
i

(ni·
2

)∑
j

(n·j
2

)
/

(n
2

)
1
2 [

∑
i

(ni·
2

) + ∑
j

(n·j
2

)
] − [

∑
i

(ni·
2

) ∑
j

(n·j
2

)
] /

(n
2

) .

(9)

As the expected value of RI for two random partitions
does not take a constant value and is concentrated
within a small interval, ARI is a corrected version of RI to
avoid these drawbacks [13]. Note that ARI lies between −1
and 1 and takes a value of 1 when the two partitions are
equal up to a permutation. Obviously, a larger ARI value
indicates a higher similarity between two partitions. In
the simulation, ARI was used to measure the similarity
between the estimated partition and the true one.
In the analysis of the DLPFC and MHPR dataset [20],
manual annotations based on additional experiments
and computational results were available. ARI was
used to measure the similarity between labels from
the estimated partition and the manually annotated
clusters.

Results
Simulation settings
Using simulations, we compared the clustering perfor-
mance of SC-MEB and with five other methods, including
k-means, GMM, Louvain, BayesSpace and Giotto. For k-
means, BayesSpace and Giotto, we considered the true
number of clusters K, and its two nearest numbers, K − 1
and K + 1, as the number of clusters had to be manually
specified for these two methods. For all other methods,
the number of clusters was selected automatically. The
smoothness parameter β of BayesSpace was fixed at 3
for Visium dataset and 2 for ST dataset, respectively,
whereas β of SC-MEB was optimized with a grid search.
We compared the clustering performances using ARI
for all methods, in which we ran 50 replicates in each
setting.

In Example I, the labels for spots were randomly gen-
erated. In detail, for a 70 × 70 squared lattice with 4900
spatial spots, we generated cluster labels for each spot
from the K-states Potts model [as shown in Equation.
(2)] with β ∈ [1, 1.3] using the R package GiRaF. The
number of neighbors was set to be 4, and the number
of true clusters K was set to 3, 5 or 7. We then considered
two distributions for low-dimensional PCs: a mixture of
Gaussian and a mixture of Student’s t distributions. The
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number of PCs was set to either 10 or 15. The mean μk

and the covariance matrix �k for each component k are
listed in Supplementary Tables S1–S4.

In Example II, labels for spots were obtained from
real data analysis. In detail, we used the inferred cluster
labels from SC-MEB (K = 8) of colon data as the true
labels for all 2988 spots. PCs were randomly generated
in the same way as in Example I. The mean μk and the
covariance matrix �k for each component k are provided
in Supplementary Tables S5 and S6.

In the above examples, all K components had different
covariance matrices. Because BayesSpace adopts a strat-
egy in which all components have a shared covariance,
we further conducted additional simulations with equal
covariance matrices.

Performance of SC-MEB in comparison with
other methods in simulation studies
In Example I, when PCs were from a mixture of Gaussian
distributions, SC-MEB was more powerful than all other
methods (Figure 2A). BayesSpace had a smaller ARI,
i.e. poorer concordance between predicted and true
clustering assignment, than SC-MEB, even when the
true number of clusters was used as input. The inferior
performance of BayesSpace was due to its lack of
adaptation to the smoothness parameter β. The other
methods, Giotto, GMM, k-means and Louvain, achieved
lower ARIs. When PCs were from a mixture of Stu-
dent’s t-distributions, assumptions of BayesSpace were
satisfied. As shown in Figure 2B, using BayesSpace
with the correct number of clusters showed the best
performance. Even though SC-MEB was miss-specified
in this setting, it still achieved a high ARI that was
larger than that of BayesSpace with miss-specificed
K and other methods. Note that most components
in the mixture of Student’s t-distributions simulated
here are t(5) and t(6), which are reasonably close to
Gaussian. This demonstrates the robust performance
of SC-MEB when there is moderate miss-specification
of distributions. We note that if the data are far from
the Gaussian component, the performance of SC-
MEB will degenerate. The results from other settings
(Supplementary Figure S1 and S2) prompted similar
conclusions.

In Example II, the comparative results (Figure 2C and
D) were largely consistent with the results obtained in
Example I. Specifically, SC-MEB was more powerful than
all the other methods. The performance of BayesSpace
was the next most powerful, and k-means had the worst
performance. The results obtained from other settings
(Supplementary Figures S5A and B, and S6A and B) led
to similar conclusions.

Finally, we considered the above two examples under
BayesSpace’s assumption that all K components share a
common covariance. The results are shown in (Supple-
mentary Figures S3, S4, S5C and D, and S6C and D). As is
shown, the ARI of SC-MEB was comparable with that of

BayesSpace, and both demonstrated better performance
than the other methods.

All simulations were conducted on a computer with a
2.1 GHz Intel Xeon Gold 6230 CPU and 16 GB memory. SC-
MEB was computationally more efficient than BayesS-
pace. In all simulations, SC-MEB toke approximately 8
min to complete the analysis for 10 combinatorial values
in K, whereas BayesSpace required about 25 min for
prefixed K and β and up to 600 times more computa-
tion time than SC-MEB for fixed combinatorial values
of K and β. To better demonstrate the computational
efficiency and scalability of SC-MEB, we conducted addi-
tional simulations with an increasing sample size n. In
Figure 3, we can see that the computation time of SC-
MEB for a fixed number of iterations increased almost
linearly with increasing sample size, taking about 0.5 h
to run 50 iterations for a dataset with 200K spots. Thus,
SC-MEB can be used to perform clustering analysis for
ST datasets with a higher resolution than other meth-
ods.

Benchmark clustering performance with real
datasets
To evaluate the clustering performance of SC-MEB with
real datasets, it was applied to the DLPFC and MHPR
datasets and its clustering performance was compared
with that of alternative methods. Specifically, we first
obtained the top 15 PCs from the 2000 most highly vari-
able genes in DLPFC dataset and all 161 genes in MHPR
dataset, respectively. Then we performed clustering anal-
ysis with all methods, except k-means. As BayesSpace
and Giotto cannot choose the number of clusters K,
the K was set to the number of clusters in the manual
annotations. All other methods selected the number of
clusters automatically.

Table 1 shows the ARI values for 12 DLPFC samples,
where the manually annotated layers were taken as the
‘ground truth’. SC-MEB clearly outperformed BayesSpace
in the analysis of six samples, and vice versa for the
other five samples. In the analysis, BayesSpace took both
the ‘true’ number of clusters (from the manual anno-
tations) and the prefixed fine-tuned β as input. In this
case, the proposed SC-MEB achieved the similar perfor-
mance without the prior information. Additionally, SC-
MEB achieved the best clustering performance among
the methods that can select (K) automatically. Table 2
compares the computational times required for all meth-
ods. The speed of SC-MEB was almost 200 times faster
than that of BayesSpace, and comparable to GMM and
Giotto. Louvain was the fastest method, but its clustering
accuracy was inferior.

The ARI and computation times of the five methods for
MHPR dataset are provided in Tables 3 and 4. Obviously,
SC-MEB has the best clustering performance. The ARI of
BayesSpace for each dataset is lower than SC-MEB. And
for large datasets such as all cells and cells in Sample 1,
it cannot work. The Giotto and Louvain can work well for
each dataset, but their ARI is smaller than SC-MEB.
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Figure 2. Summary of clustering accuracy of the six methods in the analysis of simulated data. A. Example 1, Gaussian: PCs were sampled from a GMM.
B. Example 1, t: PCs were sampled from a Student’s-t mixture model. C. Example 2, Gaussian: PCs were sampled from a GMM. D. Example 2, t: PCs were
sampled from a Student’s-t mixture model.

Table 1. Clustering accuracy for DLPFC dataset. ARI values were evaluated by comparing manual annotations against cluster labels
from SC-MEB and alternative methods for all 12 samples

ID SC-MEB BayesSpace GMM Giotto Louvain

151507 0.42 0.33 0.33 0.33 0.32
151508 0.44 0.36 0.35 0.34 0.25
151509 0.52 0.44 0.40 0.35 0.30
151510 0.39 0.43 0.44 0.33 0.28
151669 0.32 0.41 0.29 0.25 0.20
151670 0.43 0.43 0.35 0.21 0.26
151571 0.42 0.38 0.27 0.40 0.36
151672 0.44 0.77 0.14 0.38 0.27
151673 0.49 0.55 0.40 0.37 0.29
151674 0.43 0.33 0.36 0.29 0.33
151675 0.31 0.41 0.28 0.32 0.24
151676 0.39 0.32 0.21 0.26 0.25

The values of the best performance are in bold type.
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Figure 3. The computation time of SC-MEB increases linearly with sample size. The number of iterations was set to 50 for the different sample sizes.

Table 2. Comparison of computation times (s) of five methods in the analysis of DLPFC. Note, that for SC-MEB, we used a K sequence
from 2 to 10 and a sequence of β from 0 to 4

ID SC-MEB BayesSpace GMM Giotto Louvain

151507 23.00 7015.95 46.16 33.10 2.86
151508 23.55 5471.57 36.26 20.48 6.97
151509 23.56 4660.43 53.22 27.05 6.00
151510 26.62 4288.56 39.50 24.27 7.57
151669 23.79 5840.10 20.96 20.81 3.49
151670 18.96 4917.43 37.94 16.35 5.26
151571 24.54 3889.07 31.01 20.28 8.82
151672 27.91 3793.58 22.44 21.92 5.49
151673 18.92 5984.89 40.20 35.30 1.49
151674 19.80 5344.68 36.82 23.57 3.34
151675 18.93 3863.19 27.90 26.01 4.22
151676 18.93 3609.71 37.44 28.07 3.24

Table 3. Clustering accuracy for MHPR dataset. ARI values were evaluated by comparing molecularly annotations against cluster
labels from SC-MEB and alternative methods for all eight samples

ID SC-MEB BayesSpace GMM Giotto Louvain

All 0.47 - 0.25 0.19 0.36
1 0.51 - 0.20 0.21 0.37
1-1 0.44 0.24 0.23 0.22 0.46
1-2 0.46 0.41 0.20 0.25 0.41
1-3 0.49 0.31 0.20 0.26 0.41
1-4 0.52 0.35 0.22 0.23 0.42
1-5 0.39 0.31 0.22 0.24 0.40
1-6 0.49 0.31 0.21 0.25 0.41

The values of the best performance are in bold type.

Spatial clustering of in-house CRC sample
To apply SC-MEB in the analysis of an in-house colon
sample from a patient suffered from CRC and COVID-
19, we first obtained the top 15 PCs, as described for
the DLPFC dataset. The spatial clustering performed
by SC-MEB was compared with that of other methods.

Because SC-MEB and Louvain selected eight clusters as
the optimal number (K), we also ran BayesSpace and
Giotto with eight clusters. The computational times
for SC-MEB, BayesSpace, GMM, Giotto and Louvain
were 24.66, 5324.48, 46.26, 49.88 and 0.69 seconds,
respectively.
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Table 4. Comparison of computation times (s) of five methods in the analysis of MHPR. Note that for SC-MEB, we used a sequence of K
from 8 to 27 and a sequence of β from 0 to 4

ID n SC-MEB BayesSpace GMM Giotto Louvain

All 1 027 848 16 647 - 107 914 11 940 45 884
1 73 665 1390 - 14 288 744 287
1-1 1 1738 318 16 152 2192 153 10
1-2 12 672 349 17 238 2267 172 13
1-3 12 556 357 19 071 2332 170 17
1-4 11 763 326 15 459 2293 150 10
1-5 12 306 383 16 818 2130 160 10
1-6 12 620 332 18 366 2234 164 14

The clustering results obtained using the different
methods are shown in Figure 4. In general, the pattern
of clustering assigned by SC-MEB was similar to that
of GMM, but the latter retained more noisy spots. In
addition, the results from SC-MEB and BayesSpace
had stronger spatial patterns than those of the other
methods.

By checking PanglaoDB [12] for signature genes
identified via DE analysis and with the help of the H&E
staining shown in Figure 4A, we were able to identify
regions of muscle, stroma, epithelial and immune
cells. As shown in Figure 4B–F, all methods except
BayesSpace returned good partitions for the muscle
region, which were visually verified with the H&E
staining (Figure 4A). The epithelial regions identified by
BayesSpace were much smaller than those identified
by SC-MEB, in which a large proportion of the epithelial
regions in Figure 4B and C were classified as stromal
regions (stroma 2) by BayesSpace. The immune regions
identified by BayesSpace were larger at the 9 and 12
o’clock positions but smaller at the 6 o’clock position
in Figure 4C than those identified by SC-MEB (Figure 4B)
and GMM (Figure 4F). Strikingly, a large proportion of
the regions identified as stroma 1 by both SC-MEB and
GMM were classified as stroma 2 by BayesSpace. Even
though stroma 1 and stroma 2 are both stromal regions,
one can observe clear differences in the normalized
expression of signature genes for these two clusters
(Figure 5). These observations illustrate the possible over-
smoothing behavior of BayesSpace, whereas SC-MEB was
able to recover the fine structure of tissues.

DE analysis of the identified clusters

As true labels for all spots were not available for the
colon dataset, we could not quantitatively evaluate the
clustering performance. For the clustering results of SC-
MEB and BayesSpace, we further performed DE analysis
comparing an identified cluster with all others using the
BPSC package [35] for log-normalized expression. Using
the partition results from SC-MEB, we identified 180, 158,
128, 94, 145, 95, 137 and 84 genes that were differentially
expressed for stroma 1 and 2; muscle; epithelial 1 and
2; and immune 1, 2 and 3, respectively, with a false
discovery rate of < 0.05. The details of all differentially
expressed genes identified by SC-MEB and BayesSpace

are provided in Supplementary Tables S7 and S8. We fur-
ther restricted the number of signature genes by choos-
ing those with log-fold changes larger than 0.5. Finally, we
obtained a total of 62 and 57 signature genes for SC-MEB
and BayesSpace, respectively.

Figure 5 shows the heatmap of normalized expression
for the signature genes identified in the DE analysis by
SC-MEB (Figure 5A) and BayesSpace (Figure 5B), respec-
tively. Clearly, with BayesSpace, the normalized expres-
sion of signature genes in stroma 2 could be further
divided into two sub-clusters, and the expression pattern
in the second sub-cluster was very similar to that of
stroma 1. This misclassification is also apparent when
comparing Figure 4B and C, as a large proportion of the
regions identified as stroma 1 by SC-MEB were identi-
fied as stroma 2 by BayesSpace. The findings obtained
using SC-MEB demonstrated that stroma 1 and stroma
2 clusters, epithelial clusters and immune clusters were
arranged in layers that are morphologically supported by
the anatomical architecture of colonic tissue [23]: (from
lumen to serosa) mucosal epithelium; lamina propria
(in which immune cells are abundant, and the isolated
lymphoid nodules present in this tissue extend into the
submucosal layer); submucosal layer, the stromal layer
with abundant connective tissue; and lastly muscularis
externa, which is represented by the muscle layer.

Pathway analysis of the signature genes identified in the
DE analysis

We further conducted pathway analysis using gene
ontology [8] for the signature genes from each cluster
identified by SC-MEB. Supplementary Table S9 shows
the top four pathways in each cluster. For the regions
identified as muscle, muscle contraction was among
the top four significant pathways. For the three iden-
tified immune clusters, the most significant pathways
included humoral immune response and antimicrobial
humoral response. For stroma 2 clusters, extracellular
structure organization and external encapsulating
structure organization were among the most significant
pathways. We also found similar patterns in the heatmap
for the normalized expression of signature genes
(Figure 5) between stroma 1 and 2 clusters, among the
three immune clusters, and between epithelial clusters 1
and 2. There was high cosine similarity between the two
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Figure 4. Clustering results for a colon sample. (A) Original H&E-stained tissue image for the colon sample. (B–F) Heatmaps for clustering assignments
in the colon sample using the proposed SC-MEB, BayesSpace, Giotto, Louvain and GMM, respectively. The eight clusters identified included two stromal
regions, a muscle region, two epithelial-cell regions and three immune-cell regions.

Figure 5. Heatmaps of normalized expression of signature genes identified in the DE analysis based on two clustering analysis methods: (A) SC-MEB
and (B) BayesSpace. In both subfigures, S1 and S2 represent Stroma 1 and 2, respectively; M is Muscle; E1 and E2 are Epithelial 1 and 2, respectively; and
I1, I2 and I3 are Immune 1, 2 and 3, respectively.

stromal clusters (0.97), as well as among the immune
clusters (see Supplementary Table S10). We ultimately
compared the mean expression of COVID-19 signature
genes [16] in the immune and non-immune regions

identified by SC-MEB (Figure 6), and it was clear that
COVID-19 signature genes were more highly expressed
in the immune regions than the non-immune regions of
the colorectal tumor sample.
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Figure 6. Boxplots of mean expression of COVID-19 signature genes in immune and non-immune regions.

Discussion
We propose a new computational tool, SC-MEB, for iden-
tifying cell types in ST data analysis. Our method builds
on a two-level hierarchical probabilistic model that is
computationally efficient and can be easily used to ana-
lyze the high-resolution data generated by ST technol-
ogy. Compared with existing approaches, SC-MEB is both
more computationally efficient, and is more powerful
when no prior knowledge regarding the number of clus-
ters is available. Specifically, the performance of SC-MEB
is determined by its ability to select optimal K and β,
which is not possessed by BayesSpace and Giotto. Both
SC-MEB and Giotto use the EM algorithm, but they are
quite different in using MRF. SC-MEB takes the step of ICM
to get the maximum a posteriori probability estimates
for the hidden labels. However, there is no such step
in Giotto. It directly assigns a label to the one with the
largest posterior probability. We have illustrated the ben-
efits of SC-MEB through extensive simulations, as well as
in-depth analysis of four real data sets.

We benchmarked the clustering performance of SC-
MEB as well as its computational efficiency using two ST
datasets, DLPFC from 10x Genomics Visium and MHPR
from MERFISH, respectively. In the DLPFC dataset, the
ARI values for SC-MEB and BayesSpace were comparable,
but SC-MEB was 200 times faster at running the analysis
than BayesSpace. More importantly, SC-MEB optimized
the smoothness parameter β and selected the number
of clusters in a data-driven manner. SC-MEB could also
be applied to perform spatial clustering in other types
of ST datasets. Our analysis of the MHPR dataset from
MERFISH showed that SC-MEB not only outperformed
other methods but was also scalable to larger sample
sizes. It took less than 5 h to complete the analysis for
all cells (> 1 million). By applying SC-MEB and other

methods, we performed spatial clustering for a colon
dataset from a patient with CRC and COVID-19 and
further performed DE analysis to identify signature
genes related to the clustering results. We compared
the heatmaps of signature genes identified using SC-
MEB and BayesSpace and observed that the clusters
identified using SC-MEB were more separable. Using
pathway analysis, we identified three immune-related
clusters and in a further comparison, we found the mean
expression of COVID-19 signature genes was greater in
immune than non-immune regions.

There are some caveats associated with SC-MEB
that may require further explorations. First, although
clustering using low-dimensional features ensures
computational efficiency, it is not certain that the
features obtained are relevant to class labels that could
improve the spatial clustering performance. Thus, an
optimal strategy might be to perform joint dimension
reduction and spatial clustering for high-dimensional
ST datasets. Second, problems with bulk and single-
cell RNA-seq remain in the analysis of ST datasets. For
example, without removing batch effects from different
experiments, findings from DE analysis under different
conditions could be confounded.

Key Points

• We propose an empirical Bayes approach for spa-
tial clustering analysis using a hidden MRF.

• We extensively benchmark SC-MEB against exist-
ing methods using both simulated and real ST
datasets.

• We further employed SC-MEB to analyze a colon
dataset and the follow-up DE analysis showed
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that clusters obtained from SC-MEB are more
separable.

• The implemented R package for SC-MEB is
available at https://github.com/Shufeyangyi
2015310117/SC.MEB including all codes for both
experiments and real data analysis to promote
reproducibility.

Supplementary Data
Supplementary data are available online at https://acade
mic.oup.com/bib.
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