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Abstract. Esculetin is a natural lactone that is commonly derived 
from coumarins. According to previous experiments using 
human cancer cells, esculetin has potent antitumor activity; it 
also inhibits proliferation and induces the apoptosis of cancer 
cells. In the present study, the anti‑proliferative effect of escu‑
letin on the submandibular salivary gland tumor cell line, A253, 
was evaluated via in vitro and in vivo analyses. Furthermore, 
the anti‑cancer effects of esculetin in A253 cells and a xeno‑
graft model of salivary gland tumors were determined using 
3‑(4,5‑dimethylthiazol)‑2,5‑diphenyltetrazolium bromide and 
TUNEL assay, apoptosis protein array, quantitative polymerase 
chain reaction and western blot analysis. Esculetin (50‑150 µM) 
was demonstrated to have an anti‑proliferative effect in the 
A253 cell line in vitro; this observed effect was dependent on 
the dose and duration of treatment. Esculetin also increased 
the levels of Bax, cleaved caspase‑3, cleaved‑9 and cleaved 
poly (ADP‑ribose) polymerase apoptosis‑related proteins, and 
decreased the expression levels of the Bcl‑2 anti‑apoptotic 
protein. With respect to apoptosis regulation, esculetin signifi‑
cantly decreased the proliferation of tumor cells in a xenograft 
model (100 mg/kg/day) for 18 days. Overall, esculetin could be 
a potential oral anticancer drug against salivary gland cancer.

Introduction

Head and neck squamous cell carcinoma (HNSCC) is the 
sixth most common non‑skin‑related cancer worldwide. Each 
year, 600,000 patients are diagnosed with this cancer, and 
50% succumb (1). Salivary gland carcinoma is a relatively rare 
malignant tumor, accounting for <5% of HNSCC cases (2). 
Patients with high‑grade salivary carcinoma have a 5‑year 

survival rate of ~40%, whereas those with low‑grade salivary 
carcinoma have a 5‑year survival rate of 85‑90% (3,4). The 
standard treatments for major and minor salivary gland tumors 
include surgical excision, radiotherapy and chemotherapy. 
Cisplatin, 5‑fluorouracil and methotrexate are common 
drugs used to treat squamous cell carcinoma of the salivary 
glands (5). However, doxorubicin hydrochloride (Adriamycin), 
cisplatin, cyclophosphamide or cisplatin with 5‑fluorouracil 
can be used for the primary treatment of patients with recur‑
rent, metastatic or unresectable salivary gland tumors (6,7). 
Only a few effective treatment options are available for patients 
with recurrent or unresectable tumors. Despite the effective 
treatment features of cisplatin, various studies have revealed 
only a 10‑month survival period when this drug is used alone 
or combined with other medicines. Chemotherapy causes 
speech/swallowing defects, chronic pain, muscle atrophy and 
other side effects (8). Therefore, novel chemotherapy and treat‑
ment regimens are required for salivary carcinoma (9).

Esculetin, also known as 6,7‑dihydroxy coumarin, is 
derived from coumarin and can be obtained from various 
plants, such as Citrus limonia, Artemisia capillaries and 
Euphorbia lathyris (10,11). Pleiotropic biological activity is 
a well‑known characteristic of esculetin. Moreover, esculetin 
has various advantages, including antioxidant and xanthine 
oxidase inhibitory activities, platelet aggregation and anti‑
cancer behavior (12‑16). Esculetin also induces the apoptosis 
of oral squamous cell carcinoma (OSCC), resulting in the 
suppression of cancer cell proliferation (13,17). To date, no 
study has evaluated the effect of esculetin on human salivary 
gland tumors. Thus, in the present study, in vitro and in vivo 
experiments were performed to assess the induction of apop‑
tosis and the antiproliferative effect of esculetin on the human 
submandibular carcinoma A253 cell line.

Materials and methods

Materials. Esculetin with a purity >98% was obtained 
from Tokyo Chemical Industry. DMSO, cisplatin and 
3‑(4,5‑dimethylthiazol)‑2,5‑diphenyltetrazolium bromide 
(MTT) were purchased from Sigma‑Aldrich; Merck KGaA. 
The apoptosis detection kit for TUNEL‑FITC and the human 
apoptosis proteome profiler kit were supplied by Promega 
Corporation and R&D Systems, Inc., respectively. All the 
required antibodies, including Bax (cat. no. ab53154), Bcl‑2 
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(cat. no. ab196495), poly (ADP‑ribose) polymerase (PARP; 
cat. no. ab32139), caspase‑3 (cat. no. ab184786), caspase‑9 (cat. 
no. ab184786), and β‑actin (cat. no. ab8227), were purchased 
from Abcam. The A253 cells were obtained from the American 
Type Culture Collection.

Cell culture. A253 cells were cultured in modified RPMI 1640 
medium (Welgene, Inc.) supplemented with 10% fetal bovine 
serum (Welgene, Inc.), streptomycin (100 µg/ml), and peni‑
cillin (100 U/ml), and maintained in an incubator containing 
5% CO2 at 37˚C.

Cell viability and apoptosis assay. The MTT assay was used 
to estimate the effect of esculetin on cell viability. The A253 
cells were seeded in a 96‑well cell culture plate at a density of 
5x104 cells per well. Thereafter, the cultured cells were treated 
with different doses of esculetin (0, 50, 100 and 150 µM in 
0.1% DMSO) for 24 and 48 h. MTT (5 mg/ml; 10 µl) was then 
added to the cells, which were further incubated at 37˚C for 
4 h. After MTT removal, the violet formazan crystals were 
dissolved in 1 ml DMSO. A microplate reader (540 nm; Tecan 
Group, Ltd.) was used to obtain the MTT assay results. The 
cells were cultured on autoclaved coverslips to determine escu‑
letin‑treated apoptotic cells. TUNEL staining was conducted 
to detect apoptotic cells, after 24 and 48 h of pre‑incubation 
with esculetin. Cells were then washed with PBS, and fixed 
with 4% paraformaldehyde in PBS at room temperature for 
20 min. Fixed cells were washed with PBS and treated with the 
rTdT reaction mix at 37˚C for 1 h; reactions were terminated 
by immersing in 2X SSC solution for 15 min at room tempera‑
ture. Cells were stained with 0.2 mg/ml of DAPI in PBS at 
room temperature for 15 mi and mounted onto glass slides 
with the mounting medium (Vectashield, Vector Laboratories, 
Inc.) and analyzed under a fluorescent microscope (Olympus 
Corporation). Images of at least five random fluorescent fields 
were captured, and TUNEL‑positive cells were counted. Data 
were expressed as the percentage of apoptotic cells per field.

Western blot analysis. A protein extraction RIPA lysis 
buffer (Elpis Biotech) containing a Halt™ Protease Inhibitor 
Cocktail (Thermo Fisher Scientific, Inc.) was used to lyse 
the treated cells. Thereafter, Protein Assay Dye Reagent 
Concentrate (Bio‑Rad Laboratories, Inc.) was used to quantify 
the extracted protein. Equal amounts of proteins (50 µg/lane) 
were separated by 12.5% SDS‑PAGE gel and transferred to 
a PVDF membrane (MilliporeSigma). The membranes were 
then blocked with 5% skimmed milk in Tris‑buffered saline 
containing 0.05% Tween‑20 (TBST) at room temperature 
for 2 h. The primary antibodies used were anti‑Bax (1:500), 
anti‑Bcl‑2 (1:500), anti‑PARP (1:500), anti‑caspase‑3 (1:500), 
anti‑caspase‑9 (1:500), and β‑actin (1:1,000). The membranes 
were incubated with primary antibodies diluted in TBST over‑
night at 4˚C, washed three times with TBST. Finally, a western 
blotting detection kit (ECL Western blotting substrate kit; 
Abcam) was used to observe the protein bands after treatment 
with a horseradish peroxidase‑linked secondary antibody 
(1:1,000, Advansta) at room temperature for 1 h.

Proteome profiling of human apoptosis array. Different doses 
of esculetin (0, 50, 100, and 150 µM) were used to treat A253 

cells for 48 h. A proteome profiler human apoptosis antibody 
array kit (cat. no. ARY009, R&D systems) was used to analyze 
the lysed cells according to the manufacturer's instructions. 
ImageJ software version 1.52a (National Institutes of Health) 
was used to desensitize the obtained signals, where the average 
pixel density was expressed by normalizing the pixel density 
to untreated samples.

Quantitative polymerase chain reaction (qPCR). TRIzol® 
reagent (Thermo Fisher Scientific, Inc.) was used to extract 
total RNA from the collected cells based on the manufac‑
turer's instructions. Total RNA (1 µg) was reverse transcribed 
in a final volume of 30 µl using the ImProm‑II reverse 
transcriptase system kit (Promega Corporation) according 
to the manufacturer's instructions. cDNAs were used for 
PCR. The primer sequences are summarized in Table I. The 
AniQ5 Continuous Fluorescence Detector System (Bio‑Rad 
Laboratories, Inc.) and a 2X SYBR® Green PCR Master Mix 
(cat. no. RR420A, Takara Bio, Inc.) were used to perform the 
qPCR at 95˚C for 30 sec, followed by 40 cycles of 95˚C for 
3 sec and 60˚C for 30 sec and a single cycle of 95˚C for 15 sec, 
60˚C for 60 sec, and 95˚C for 15 sec to generate dissociation 
curves. All PCR reactions were performed in triplicate, and 
the specificity of the reaction was determined by melting curve 
analysis. Comparative quantification of each target gene was 
performed based on cycle threshold (Ct) normalized to β‑actin 
using the 2‑ΔΔCq method (18).

Tumor xenograft model. A total of 18 male BALB/c nude mice 
(age, 6 weeks old; weight, 15‑20 g) were obtained from Central 
Lab Animal Inc. Mice were housed under a 12‑h light/dark 
cycle at a temperature of 23±1˚C and 55±5% humidity and 
were provided with standard rodent pellets and filtered water 
ad libitum. The protocols approved by the Institutional Animal 
Care and Use Committee of the Jeonbuk National University 
Hospital (Jeonju, South Korea; approval no. JBNUH 2021‑019) 
were used for the assessment. Briefly, A253 cells were 
suspended in RPMI‑1640 culture medium containing 10% 
FBS, and maintained in a humidified atmosphere containing 
5% CO2 at a controlled temperature of 37.6˚C. Before tumor 
inoculation, all mice were anesthetized with ketamine 
(80 mg/kg) and xylazine (10 mg/kg). To obtain a xenograft 
model, mouse shoulders were inoculated with A253 cells at 
a total of 2x106 cells in 50 µl Dulbecco's modified Eagle's 
medium (Welgene, Inc.) mixed with 50 µl Matrigel (Becton, 
Dickinson and Company) for a total volume of 100 µl per injec‑
tion site. After 7 days, mice were randomly divided into three 
groups, each containing six mice. Esculetin and cisplatin were 
dissolved in 0.5% carboxymethylcellulose. Thereafter, escu‑
letin (100 mg/kg per day) or cisplatin (7.5 mg/kg per day), as 
a positive control, was orally administered for 18 days (19,20). 
Mice in the negative control group were orally administered the 
vehicle (0.5% carboxymethylcellulose). The in vivo antitumor 
activity of esculetin was assessed by measuring tumor size at 
3‑day intervals. Esculetin was administered for 18 days until 
the tumor size in the negative control group reached 200 mm3. 
Tumor volume was calculated using the following equation: 
π/6 x (a)2 x (b), where ‘a’ and ‘b’, correspond to the shortest and 
longest tumor diameters, respectively (21). No adverse reac‑
tions or compound‑related side effects were observed in the 
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mice. Body weight was measured and the mice were sacrificed 
with ketamine (500 mg/kg) and xylazine (50 mg/kg) to excise 
the tumor xenografts at necropsy.

H&E and TUNEL staining. For evaluation of the tissue struc‑
tures, the tumor tissues were fixed in formaldehyde solution 

(4%) at room temperature for 24 h, dehydrated using gradient 
ethanol, embedded in paraffin, incised into smaller sections 
(4 µm) and then stained with H&E. The TUNEL assay was 
also performed using the one‑step TUNEL kit, according to 
the defined guidelines. After paraffin removal, the sections 
were incubated in 100 µl Proteinase K (20 µg/ml) for 10 min at 

Table I. List of primer sequences used in this study.

Gene Forward primer Reverse primer

Caspase‑3 5'‑AATGGACCTGTTGACCTGAAA‑3' 5'‑ATAATAACCAGGTGCTGTGGAG‑3'
Bcl‑2 5'‑GGAGGATTGTGGCCTTCTTT‑3' 5'‑GAGACAGCCAGGAGAAATCAA‑3'
Bax 5'‑TTGCTTCAGGGTTTCATCCA‑3' 5'‑AGTTGAAGTTGCCGTCAGAA‑3'
β‑actin 5'‑TGACGATATCGCTGCGCTC‑3' 5'‑CAGTTGGTGACAATGCCGTG‑3'

Figure 1. Effect of esculetin on A253 cells. (A) Effect of various doses of esculetin on A253 cell viability. (B) Fluorescence images of TUNEL staining 
showing the role of esculetin on A253 cell apoptosis (original magnification x100; inset x400). (C) Diagrams showing the apoptotic rate of A253 cells. Data 
are presented as the mean ± standard deviation (n=3; *P<0.05, **P<0.01 and ***P<0.001 vs. untreated control group).
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room temperature, transferred into a TUNEL reaction mixture 
with a volume of 50 µl, and placed in a dark incubator for 
1 h at 37˚C. A solution of Vectashield Mounting Medium with 
4',6‑diamidino‑2‑phenylindole (Vector Laboratories, Inc.) was 
used to stain the prepared sections. Subsequently, a fluores‑
cence microscope was used to capture images of the prepared 
slices. Images of at ≥5 random fluorescent fields were captured. 
In this evaluation, the number of TUNEL‑positive apoptotic 
cells per 100 cells was determined using green fluorescence 
exerted by the cells.

Statistical analysis. The results are presented as the 
mean ± standard deviation. One‑way analysis of variance 
was used to analyze the data, followed by Tukey's multiple 
comparison test. The assessments were conducted using 
GraphPad Prism 6.0 (GraphPad Prism Software, Inc.). P<0.05 
was considered to indicate a statistically significant difference.

Results

Effect of esculetin on the proliferation and apoptosis of 
A253 cells. Several concentrations of esculetin were used to 
treat A253 cells for 24 and 48 h to explore the therapeutic 
potential of esculetin. Further, MTT assays were performed 

to determine the viability of the cells. The proliferation 
of A253 cells was inhibited by esculetin after both 24 and 
47 h of treatment in a concentration‑dependent manner 
(Fig. 1A). The 50% maximal inhibitory concentration (IC50) 
values of esculetin at 24 and 48 h were 157.4±30.0 and 
78.5±5.3 µM, respectively. TUNEL staining was performed 
to determine the effect of esculetin on apoptosis. As shown 
in Fig. 1B and C, the apoptotic cell ratio was enhanced in the 
treated cancer cells compared with that in the control cells 
in a concentration‑dependent manner. Based on the observed 
trend, apoptosis was the main cause of the decrease in cell 
viability of cancer cells treated with esculetin.

Role of esculetin in apoptosis induction via the regulation 
of apoptosis regulatory factors in A253 cells. The role of 
esculetin in apoptosis induction through the regulation of 
apoptosis regulatory proteins in tumor cells has been widely 
reported (22‑24). To determine the expression level of apop‑
tosis‑related proteins, A253 cells were treated with various 
concentrations of esculetin (0, 50, 100 and 150 µM) for 24 or 
48 h. The levels of Bax, cleaved caspase‑3, cleaved caspase‑9 
and cleaved‑PARP apoptosis‑related proteins increased by 
esculetin after both 24 and 47 h of treatment. However, the level 
of the anti‑apoptotic protein, Bcl‑2, decreased in an esculetin 

Figure 2. Esculetin induces the apoptosis of A253 cells by regulating the expression levels of apoptosis‑related proteins. (A) Relative protein levels were 
assessed using western blot analysis. Treatment of A253 cells with different doses of esculetin (0, 50, 100 and 150 µM) for 24 and 48 h. (B) Relative expression 
of apoptotic proteins to β‑actin. Data are presented as the mean ± standard deviation (n=3; *P<0.05 and **P<0.01 vs. untreated control group). PARP, poly 
(ADP‑ribose) polymerase.
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dose‑dependent manner (Fig. 2). These results indicated that 
esculetin induced apoptosis in the A253 cell line. To further 
elucidate the effect of esculetin on the differential expression 
of pro‑ and anti‑apoptotic proteins, 56 proteins were identified 
using a human apoptosis proteome profiler array kit (Fig. 3A). 
As predicted, cleaved caspase‑3 was significantly upregulated 
in cells treated with esculetin compared with untreated control 
cells. Further, HSP60 expression was found to be raised, 
whereas the expression levels of the anti‑apoptotic proteins, 
including Bcl‑2 and Bcl‑x, was decreased in esculetin‑treated 
cancer cells (Fig. 3A and B). Therefore, esculetin may promote 
A253 cell death through pro‑apoptotic protein induction 
and anti‑apoptotic protein reduction. To confirm the afore‑
mentioned results, the mRNA expression levels of pro‑ and 
anti‑apoptotic genes in esculetin‑treated A253 cells were 
evaluated. Caspase‑3 and Bax mRNA expression levels were 

significantly increased, while those of Bcl‑2 were decreased in 
a dose‑dependent manner (Fig. 4).

Effect of esculetin on the proliferation and apoptosis of A253 
cells. An in vivo examination was performed using a xeno‑
graft nude mouse model of A253 cells to determine the role of 
esculetin in the inhibition of tumor growth. The data revealed 
the inhibitory effect of esculetin on the growth of tumors 
(Fig. 5). Esculetin was found to reduce tumor weight and 
size. In fact, at necropsy, tumor sizes in the vehicle, esculetin 
and cisplatin‑treated groups were 197.9±66.0, 49.8±29.8, and 
140±72.0 mm3, respectively. Thus, esculetin suppressed xeno‑
graft tumor development in mice by 74% relative to that of 
vehicle‑treated mice. Nevertheless, the body weight of xeno‑
graft nude mice was not significantly affected by esculetin. 
Cisplatin did not significantly suppress A253 tumor growth 

Figure 4. Effect of esculetin on the mRNA expression level of apoptosis‑related factors in A253 cells. Relative mRNA levels of Bax, Bcl‑2 and Caspase‑3 were 
assessed using quantitative polymerase chain reaction. Data are presented as the mean ± standard deviation (n=3; *P<0.05 and **P<0.01 vs. untreated control group).

Figure 3. Effect of esculetin on the expression of pro‑ and anti‑apoptotic proteins. (A) Apoptosis proteome profile array of A253 cells with various esculetin 
concentrations (0, 50, 100, and 150 µM) for 48 h. (B) Data are presented as the mean ± standard deviation (n=4; *P<0.05 vs. untreated control group). HSP60, 
heat‑shock protein 60.
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(P>0.05). Thus, esculetin has more potent antitumor activity 
than cisplatin. These findings suggest that the growth of human 

submandibular salivary gland tumors can be suppressed by the 
application of esculetin.

Figure 6. Esculetin‑induced apoptotic changes in A253 xenograft tumors. (A) Histological analysis of esculetin in tumors of the A253 cell xenograft 
model. (B) Images of the TUNEL assay. (C) Quantification of TUNEL‑positive cells. Data are presented as the mean ± standard deviation (n=6; *P<0.05 
vs. vehicle‑treated control group). AU, arbitary units.

Figure 5. Esculetin antitumor effect on a BALB/c nude mouse xenograft model. (A) Tumor images from each group, (B) calculated tumor sizes, (C) average 
tumor weight and (D) changes in body weight. Data are presented as the mean ± standard deviation (n=6; *P<0.05 vs. vehicle‑treated control group).
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Effect of esculetin on apoptosis induction in the A253 cell 
xenograft model. Based on H&E staining, the xenograft tumor 
tissues of the control group showed vigorous growth, irregular 
morphology, nuclear hypertrophy, numerous abnormal 
mitoses, overt dysplasia, giant tumor cells and increased tumor 
angiogenesis (Fig. 6A). However, the esculetin group rarely 
showed necrotic lesions, with small nuclei, decreased dysplasia 
and reduced tumor angiogenesis. Notably, these tumor‑related 
histopathological changes were not suppressed in the cispl‑
atin‑treated group. To detect apoptotic cells in tumor tissues, 
TUNEL analysis was performed, as shown in Fig. 6B and C. 
The treated group exhibited more TUNEL‑positive cells than 
the control group, which aligns with the in vitro results. Hence, 
induction of apoptotic cells and inhibition of cell proliferation 
could occur in an A253 cell xenograft model using esculetin. 
Overall, both in vitro and in vivo analyses suggested that 
esculetin induces apoptosis in submandibular salivary gland 
tumors.

Discussion

The proliferation, migration and survival of carcinoma cells can 
occur through several pathways, such as the RAS/RAF/ERK, 
PI3K and JAK/STAT pathways (25). Some chemotherapy 
drugs, including cisplatin, 5‑fluorouracil, docetaxel, metho‑
trexate, bleomycin and cetuximab, are considered targeted 
agents. In addition, various signals, such as those of VEGFR, 
EGFR, tyrosine protein kinase Met and insulin‑like growth 
factor 1 (IGF‑1) receptor, have been considered as therapeutic 
molecular targets (26). Cetuximab is the only EGFR‑targeting 
agent approved by the Food and Drug Administration in the 
United States, but has insignificant effects due to intrinsic or 
acquired resistance, despite ubiquitous EGFR expression in 
HNSCC tumors (26).

In the present study, the antiproliferative and pro‑apoptotic 
activities of esculetin against an HNSCC tumor cell line were 
investigated using in vitro and in vivo examinations. Based on 
recent studies, esculetin exerts antitumor activity in several 
cancer types. For example, esculetin (20‑100 µM) inhibits the 
proliferation and expression of cyclin D1, cyclin‑dependent 
kinase 4 and matrix metalloproteinase‑2, and prevents the 
production of transforming and vascular endothelial growth 
factors in osteosarcoma LM8 cells (27). Esculetin also induces 
gastric cancer MGC‑803 cell apoptosis by triggering the acti‑
vation of the mitochondrial apoptotic pathway; this is linked 
to the mitochondrial membrane potential reduction, Bax/Bcl‑2 
ratio increase, agitation of the activities of caspase‑3 and 
caspase‑9, and enhancement of released cytochrome c from 
the mitochondria (28). Esculetin prevents cancer cell prolifera‑
tion and induces the apoptosis of gastric cancer cells, which is 
mediated by the mitochondrial apoptosis pathway involving 
IGF‑1/PI3K/Akt (28). Similarly, esculetin enhances the activi‑
ties of caspase‑3 and caspase‑9, and promotes Bax expression, 
Bcl‑2 expression reduction, mitochondrial membrane potential 
collapse, cytochrome c release and IGF‑1/PI3K/Akt inactiva‑
tion in SMMC‑7721 cells (29). Lee et al (30) reported that the 
Wnt pathway could be a versatile therapeutic and suppressive 
target for various human cancer types. The β‑catenin‑T‑cell 
complex factor, a key canonical Wnt signaling mediator, has 
been implicated in the development of human colon cancer. 

Esculetin, with its small molecular structure, is considered an 
effective Wnt/β‑catenin pathway inhibitor. In another study, 
esculetin was reported to act as an effective lead chemotherapy 
agent for human metastatic colorectal cancer management; 
this can be linked to the ability of esculetin to prevent 
E‑cadherin‑mediated Wnt signaling via Axin2 inhibitors (31).

In several cancer cell lines, esculetin is known to inhibit 
cell proliferation and induce apoptosis or cell cycle arrest. 
Several studies have shown that esculetin inhibits lung 
cancer cell growth by adversely affecting c‑Myc, cyclin D1 
and NF‑κB (32). Esculetin also causes Akt phosphoryla‑
tion suppression and enhances protein expression of tumor 
suppressor phosphatase and tensin homologs by arresting the 
G1 phase of the cell cycle (33). Esculetin markedly inhibits 
STAT3 phosphorylation, blocks translocation of STAT3 to the 
nucleus and restricts the G1/S phase of the cell cycle in laryn‑
geal cancer (34). A Bax/Bcl‑2 ratio increase, caspase‑3 and ‑9 
activation, and mitochondria‑mediated apoptosis pathway 
induction have been observed in hepatocellular carcinoma cells 
following the application of this therapy (35). Furthermore, 
2‑aminoethoxydiphenyl borate‑sensitive store‑operated Ca2+ 
entry, Ca2+ release from the endoplasmic reticulum and acti‑
vation of the mitochondrial apoptosis pathway result in Ca2+ 
influx via esculetin, ultimately leading to cell cycle arrest in 
ZR‑75‑1 human breast cancer (36).

Previously, esculetin was revealed to play an anti‑prolif‑
erative role in head and neck cancer (13). The induction of 
apoptosis was caused by the inhibition of the specific protein 1 
transcription factor (Sp1) (22), as well as modulation regulation 
of the p27, p21 and cyclin D1 target genes in OSCC, HSC‑4 and 
HN22, and in human malignant melanoma cell lines (37). Sp1 is 
an essential transcription factor for a number of genes required 
for the regulation of multiple aspects of tumor cell survival, 
growth and angiogenesis (38). Previous studies have demon‑
strated that Sp1 is a drug target, and several antineoplastic 
agents have been shown to inhibit Sp1 expression (39). Sp1 is 
involved in the regulation of apoptosis. In fact, the promoters 
of a number of anti‑apoptotic genes (bcl‑2, bcl‑x and survivin) 
and pro‑apoptotic genes (bax, trail, fas, fas‑ligand, caspase‑9 
and caspase‑3) contain Sp1‑binding sites (40). The inhibition 
of Sp1 expression regulates these genes. Indeed, inhibition of 
Sp1‑DNA binding was shown to induce caspase 9‑dependent 
apoptosis in bone marrow stromal cells (41). The inhibition 
of Sp1 by esculetin may lead to an increase in levels of Bax, 
cleaved caspase‑3, cleaved‑9 and cleaved PARP, and a decrease 
in Bcl‑2 anti‑apoptotic protein levels in A253 cells. Although 
the present study did not provide concrete scientific evidence 
of the effect of esculetin on the tumorigenesis of A263 cells, 
the observed results were consistent with its reported effects 
on various tumors.

The antitumor activity of esculetin was compared with that 
of cisplatin, which is a well‑known anticancer drug. As previ‑
ously reported, cisplatin is a positive control drug that reduces 
tumor size (42). In the present study, esculetin displayed more 
potent antitumor activity than cisplatin. In fact, cisplatin 
did not suppress A253 tumor growth (P>0.05). Similarly, in 
previous studies, the tumor growth of Cal‑27 human head and 
neck squamous cell carcinoma cells did not show any growth 
delay when treated with cisplatin (P>0.05), whereas that of 
FaDu human head and neck squamous cell carcinoma cells 
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showed a slight but significant growth delay when treated with 
cisplatin (P<0.01) (43). These results suggest that the antitumor 
activity of cisplatin varies depending on the head and neck 
carcinoma cell line used. Notably, the clinical use of cisplatin 
is often limited by undesirable side effects, such as severe 
nephrotoxicity and hepatotoxicity (44). Although the precise 
mechanism for this cisplatin‑induced toxicity is not well 
understood, cisplatin is preferentially taken up and accumu‑
lates in the human liver and kidney cells, resulting in enhanced 
production of reactive oxygen species and a decrease in levels 
of antioxidant enzymes (45,46).

In the in vitro system of the present study, the effective 
dose of esculetin to induce apoptosis in A253 cells was as 
low as 50 µM, whereas the maximum dose was 150 µM. In 
several previous reports, esculetin (50 and 100 mg/kg/day) 
dose‑dependently inhibited xenograft tumor growth in laryn‑
geal cancer cells (33). Zhu et al (32) reported that esculetin 
(100 mg/kg/day) suppressed tumor growth in a mouse model 
of lung cancer. Based on these reports, the oral dosage of 
esculetin (100 mg/kg/day) in mice was determined. In the 
in vivo investigation, 150 mg/kg/day of esculetin was identi‑
fied as the most influential dose. In the present study, there was 
no difference in body weight between the esculetin‑treated 
and vehicle‑treated mice. Injecting 700 mg/kg esculetin per 
day was suggested to have no adverse effects on the body 
weight of the mice (34). Esculetin had a median lethal dose 
(LD50) of 1,450 mg/kg via intraperitoneal injection and 
>2,000 mg/kg by oral gavage (47). Based on the guidelines of 
the Organization for Economic Cooperation and Development, 
an LD50 >2,000 mg/kg indicates the safety of the applied 
compound (48). Collectively, these results suggest that escu‑
letin has relatively low toxicity in mice, highlighting the safety 
of esculetin for medical applications.

In the present study, the antiproliferative and pro‑apoptotic 
activities of esculetin against human submandibular salivary 
gland tumor cells were evaluated. However, the antiprolif‑
erative activity of cisplatin was not evaluated in vitro, thereby 
serving as a study limitation. Previously, Lee et al (49) reported 
that the IC50 value of cisplatin on the proliferation of A253 
cells was ~6.7 µM. In the present study, multiple oral doses of 
esculetin were required to determine the effective dose range 
in the animal experiment, which served as another limitation 
of the study. Therefore, the detailed beneficial role of esculetin 
in submandibular salivary gland tumor cells requires further 
study.

Overall, the in vitro and in vivo experiments of the present 
study confirmed the apoptosis and cell proliferation inhibitory 
effects of esculetin on human submandibular salivary gland 
tumors. These findings clearly indicate that esculetin may be a 
promising treatment option for HSNCC.
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