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patient-derived xenografts

Umberto Perron1,15,17, Elena Grassi 2,3,17, Aikaterini Chatzipli4,5,17,
Marco Viviani 2,3, Emre Karakoc4, Lucia Trastulla1,6, Lorenzo M. Brochier 1,7,
Claudio Isella 2,3, Eugenia R. Zanella2, Hagen Klett8, Ivan Molineris 9,
Julia Schueler 8, Manel Esteller 10,11,12,13, Enzo Medico 2,3, Nathalie Conte14,
Ultan McDermott 4,16, Livio Trusolino 2,3,18 , Andrea Bertotti 2,3,18 &
Francesco Iorio 1,4,18

Patient-derived xenografts (PDXs) are tumour fragments engrafted into mice
for preclinical studies. PDXs offer clear advantages over simpler in vitro cancer
models - such as cancer cell lines (CCLs) and organoids - in terms of structural
complexity, heterogeneity, and stromal interactions. Here, we characterise 231
colorectal cancer PDXs at the genomic, transcriptomic, and epigenetic levels,
along with their response to cetuximab, an EGFR inhibitor used clinically for
metastatic colorectal cancer. After evaluating the PDXs’ quality, stability, and
molecular concordance with publicly available patient cohorts, we present
results from training, interpreting, and validating the integrative ensemble
classifier CeSta. This model takes in input the PDXs’ multi-omic characterisa-
tion and predicts their sensitivity to cetuximab treatment, achieving an area
under the receiver operating characteristics curve > 0.88. Our study demon-
strates that large PDX collections can be leveraged to train accurate, inter-
pretable drug sensitivity models that: (1) better capture patient-derived
therapeutic biomarkers compared to models trained on CCL data, (2) can be
robustly validated across independent PDX cohorts, and (3) could contribute
to the development of future therapeutic biomarkers.

Colorectal cancer (CRC) is a heterogeneous disease with distinctly
variable molecular features and responses to therapy. It is among the
most prevalent causes of cancer mortality worldwide, with more than
1.85million cases and 850,000 annual deaths globally1. Around 20% of
newly diagnosed CRC patients have metastatic disease (mCRC) at
presentation, with 25% later developing metastases2–4.

In recent years, several clinical trials5–7 have suggested that
genome-based treatment selection leads to therapeutic benefits for
patients, reduced exposure to ineffective therapies, and median sur-
vival for mCRC patients exceeding 30 months8. Specifically, ~50% of
mCRC patients have KRAS-NRAS-BRAF wild-type (triple negative)

tumours and are routinely treated with cetuximab and panitumumab,
monoclonal antibody inhibitors of the epithelial growth factor recep-
tor EGFR in combination with chemotherapy as an alternative to sur-
gery. This protocol extends median survival by 2 to 4 months,
comparedwith chemotherapy alone1. Unfortunately, the overallmCRC
clinical trial success rate remains low: 32% of combined phase II and III
clinical trials failed between 2013 and 2015, up from 23% in 20109. This
highlights the need for more robustly predictive markers of drug
response for CRC patients.

Biomarkers of response to cetuximab and cetuximab plus che-
motherapy, such as the triple negative signature mentioned above,
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have been derived from clinical andmolecular analysis of patients and
patient-derived experimental models of CRC, including immortalised
cancer cell lines, organoids, and patient-derived xenografts (PDX)2,10–13.
However, several other systematic therapeutic biomarkers discovery
efforts conducted using in vitromodels have confirmed limited clinical
translatability9,14,15. This is primarily due to the intrinsic limitations of
such models, encompassing genetic, epigenetic, and transcriptomic
changes resulting from their selective adaptation to artificial culture
conditions16,17. Furthermore, cancer cell lines do not maintain the
complex heterogeneity of the tumour of derivation; they often lose or
gain specific subclones and might miss relevant components of the
human tumour stromal microenvironment18,19.

Unlike cancer cell lines, PDXs have been shown to offer good
retention of tumour complexity, mimicking (at least to a certain
extent) stromal interactions. They are relatively easy to screen and
characterise. Further, histopathological characterisation has con-
firmed a high degree of concordance between PDXs and correspond-
ing parental tumours in terms of differentiation, mucus secretion, and
stromal composition, as well as maintenance of primary intratumoral
clonal heterogeneity2,3,20–22.

These factors have contributed to PDXs playing a pivotal role in
translational cancer research, furthering our understanding of
tumour biology and drug response mechanisms in CRC23,24. As a
result, extensive multi-institutional efforts (such as EuroPDX25) are
now ongoing, aiming to establish and characterise extensive col-
lections of PDX models at the molecular and histopathological level
to ensure that they recapitulate the broadest possible diversity of
clinical cases26.

Using data derived from the multi-omics characterisation of CRC
PDXs paired with their pharmacological/phenotypic features is a
profitable strategy for training supervisedmachine learningmodels to
predict drug response in CRC patients. In this case, the extent of
training data availability is a critical determinant of the accuracy of a
model, especially when considering high-dimensional multi-omics
datasets. Machine learning models of drug response trained on large
pooled pan-cancer cell line datasets (N = 329) outperform models
which only used cell lines (N = 28−68) from a specific tissue27. This
suggests that, in some cases, data quantity can outweigh data speci-
ficity. Kurilov and colleagues have also noted that predicting PDXdrug
response using models trained on cell line data results in poor per-
formance across three out of four examined cohorts, except for the
erlotinib lung cancer cohort27.

In summary, most of the pre-clinical studies of cetuximab
response in CRC cohorts performed to date have been characterised
by (1) relatively small sample sizes, (2) single platform profiling often
aimed at characterising the status of few known CRC driver genes, (3)
reliance on biological models which have proved to be suboptimal for
translational purposes, or a combination of these factors. These
aspects negatively influenced the studies’ ability to capture the tumour
ecosystem’s complexity and inter-tumour heterogeneity’s impact on
drug response, ultimately contributing to the increasingly low success
rate of early-stage CRC clinical trials.

Here, we present one of the largest thoroughly characterised CRC
PDX collections to date (N = 231), which closely recapitulates gold-
standard CRC patient cohorts across three ‘omics (genomics, tran-
scriptomics, and methylomics) and results from training an ensemble
classifier predicting the response of these models to cetuximab
treatment, based on an integrative stacked architecture.

Our model outperforms other state-of-the-art (SOTA) predictive
methods and the biomarker of cetuximab response currently used in
the clinic, i.e., the KRAS-NRAS-BRAF mutational status, internally and
when tested on an independent cohort of CRC PDXs.

Finally, we show that ourmodel’s predictions provide an extent of
interpretability, highlighting potential biomarkers of cetuximab
sensitivity.

Results
We selected 231 first-pass CRC PDXs (the IRCC-PDX collection), which
were fully characterised across multiple omics (encompassing geno-
mics, transcriptomics, methylomics), clinical metadata, and were
screened with cetuximab, from a larger cohort of >600 xenografts
(Fig. 1a). These tumour models were uniquely derived from surgical
resections of CRC liver metastases performed at the Candiolo Cancer
Institute (Candiolo, Torino, IT), the Mauriziano Umberto I Hospital
(Torino, IT), the San Giovanni Battista Hospital (Torino, IT) and the
Niguarda Hospital (Milano, IT) between 2008 and 2015.

The initial ‘raw’ multi-omics characterisation of IRCC-PDX con-
sisted of the methylation status of 700,298 Illumina probes, 33,670
gene transcription levels from RNAseq, 1272 copy number (CN)
alteration and driver variant features, and 45 clinical features covering
patient demographics, primary tumour characteristics, and previous
patient treatment for a total of 735,285 features (Fig. 1a). In linewith the
clinical definition of ‘disease control’, which denotes clinical benefit,
we categorised as ‘responders’ those PDXs in which cetuximab
induced tumour shrinkage objective response (OR), more than 50%
tumour volume reduction compared with baseline tumour volumes or
stable disease (SD), less than 50% tumour shrinkage and less than 35%
increase in tumour volume2.

We performed several omic-specific feature engineering steps
(Methods, Fig. 1a) before using this data with our integrative classifier
(Fig. 1a, b). These aggregated some of the dimensions of the original
‘raw’ IRCC-PDX dataset (e.g., non-negative matrix factorisation
clustering28 of methylation features), introduced feature curation via
prior knowledge of gene regulatory pathways, e.g., PROGENy29 (11
features) and MSigDB30 gene set analysis scores (50 features), gener-
ated potentially more informative collective feature-sets, e.g.,
CELLector31 genomic signatures (17 features), and retained 25 suffi-
ciently curated clinical features for a final total number of 113 features
across 231 PDXs (Supplementary Data 1).

Multi-omic characterisation of the IRCC-PDX collection
Previous comprehensive genetic characterisations of CRC models
have shown that the frequency of common genetic mutations
observed in PDXs is similar to that observed in primary
tumours2,3,20,21,32,33. Targeted sequencing of 116 genes inour PDX cohort
identified 6426 driver mutations (Methods), with APC (observed in
90%of the IRCC-PDXs),TP53 (85%),KRAS (29%), PIK3CA (19%), andATM
(16%) being the most frequently affected genes (Fig. 1c and Supple-
mentary Fig. 1). In our PDX collection,mutational frequencies for KRAS
and BRAF were lower than those reported for large CRC patient
cohorts such as TCGACOAD/READ (https://www.cancer.gov/tcga) and
MSK IMPACT34 (https://www.mskcc.org/msk-impact). KRAS’s case is
due to a pre-hoc enrichment of KRASwild-typemodels for subsequent
treatment with cetuximab (as KRAS mutant models were assumed to
be cetuximab resistant a priori). In the case of BRAF, the lower fre-
quency is ascribable to our PDXs being derived from metastatic sam-
ples. BRAF mutant tumours are frequently characterised by
microsatellite instability (MSI). Because MSI CRCs have a better prog-
nosis and rarely progress to metastasis35, they are under-represented
in our dataset. Indeed, after removing MSI samples, the frequency of
BRAF mutated tumours in TCGA is reduced to 5.3%, which is compar-
able to that detected in our collection.

Aside from these exceptions, the mutational landscape of the
IRCC-PDXs closely matched that of the previous CRC patient cohorts
(Supplementary Fig. 2) and recapitulated known top frequently
mutated CRC driver genes36,37.

To further control our PDX models’ ability to recapitulate char-
acteristics of their tumour sample of origin, we investigated PDX
mutational profile stability for a subset ofmore extended PDX lineages
(i.e., those where targeted sequencing data was available beyond the
first-passage; Supplementary Fig. 3). We observed a significant
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agreement between allmodels belonging to a given lineage, regardless
of their distance from their sample of origin in terms of passages, with
few exceptions attributable to sequencing errors or clonal expansion
(Supplementary Fig. 4).

CN alterations, derived from the same 116 genes in the targeted
sequencing panel (Methods), affected some known CRC drivers,

including EGFR and SMAD4, and showed a positive correlation
(Spearman r = 0.87 and 0.93, respectively, for CN losses and gains)
withCNalteration frequencies observed inTCGACOAD/READsamples
(Supplementary Fig. 5 and Supplementary Fig. 6).

As described above, we also assessed CN profile stability along
PDX lineages which extend beyond the first passage. We observed
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solid intra-lineage CN consistency overall (median log2R Pearson
coefficient 0.927, Supplementary Fig. 7) and at the gene level (94% of
driver genes are CN-stable within lineages, Supplementary Fig. 8), in
line with previous reports38.

We characterised our PDX collection’s transcriptional landscape
using two approaches to classify samples into subtypes: CMS39,40 and
CRIS4. Results from these analyses were broadly consistent with TCGA
COAD/READandotherCRCdatasetswhere expressiondata is available
(Fig. 1d and Supplementary Fig. 9).

To concisely represent our PDXs’ epigenomics profiles, we
grouped samples into five clusters obtained through non-negative
matrix factorisation28 (Methods). We observed that the samples
belonging to one of these groups (cluster 1) were remarkably more
hypermethylated over all measured CpG islands (median beta
methylation level = 0.81, Kruskal-Wallis test, chi-squared = 289.47,
df = 4, p value < 2.2 × 10−16, effect size = 0.59, Supplementary Fig. 10).
Consistent with our cluster definition, we also found cluster 1 to be
highly enriched for the CpG island methylator phenotype (CIMP41) in
130 out of 146 PDXs (Supplementary Fig. 10). This heterogeneity of
PDX methylation profiles resembled that observed in CRC patients,
even though the percentage of IRCC-PDX samples classified as CIMP
was slightly lower than that reported in TCGA COAD/READ (44% vs
58%, Supplementary Fig. 11). This is expected considering the low
prevalence of MSI tumours—which are typically enriched for CIMP
cases—within metastatic CRC cohorts such as ours34.

Overall, our multi-omic overview of the PDX collection indicates
that IRCC-PDX closely recapitulates the genomics, transcriptomics,
and methylomics landscape of gold-standard human CRC cohorts,
such as TCGA COAD/READ and MSK-IMPACT.

Exploratory single-omic analysis of the IRCC-PDX collection
To further investigate the molecular profiles of the PDXs in an unsu-
pervised manner we conducted UMAP dimensionality reduction42

across individual omics and a density-based cluster analysis (via
HDBSCAN)43. This was followed by an enrichment analysis of covari-
ates in the resulting clusters, as well as of differential drug response
across them (Methods) to identify, respectively, specific molecular
features and drug responses that discriminate between different sub-
groups (Supplementary Data 2).

By applying this approach to IRCC-PDX binary gene mutation
features, we identify two clusters (Supplementary Fig. 12). The first
cluster (id = 0) was almost entirely made up of TP53 mutated (95%),
and KRAS and PIK3CA wild-type PDXs (96% and 89%). The majority of
models in this cluster belonged toCRIS typeC (51%, chi-square statistic
(chi2) = 8.53, chi-square adjusted p value (cap) = 0.15) and were sensi-
tive to cetuximab treatment (SD, OR, 65%, chi2 = 10.34, cap=0.06).
Almost all PDXs in the second cluster (id = 1) were also TP53 mutant

(67%) but also KRAS mutant, differently from cluster 0 (98%, chi2 =
122.43, cap = 2.85 × 10−26). This cluster was also enriched for CRIS type
A (43%, chi2 = 26.06, cap = 1.49 × 10−5) and non-responder (PD) models
(75%, chi2 = 11.66, cap= 0.03) (Supplementary Data 2).

When applied to binary CNV features, the same approach
identified four clusters (Supplementary Fig. 13 and Supplementary
Data 2). One cluster (id = 3) exhibited a highCNVburden andCN gain
count, with 19 out of 21 associated CNV (at a cap <0.1) being a CN
gain and present in 82% of the samples, among which top significant
genes are NFX1, ESRRA and MARK2. Moreover, this cluster was pre-
dominantly composed of strong cetuximab responders (OR: 44%,
chi2 = 10.17, cap = 0.1). Another cluster (id = 0) displayed instead a
low count of CN events, and it was composed mainly of CRIS type A
PDXs (67%, chi2 = 29.93, cap = 7.49 × 10−5). Finally, cluster 2 was
characterised by losses in FGD5, RAF1, XPC and SATB1 genes (all
present in 79% of the samples, at a cap <0.1), while cluster 1 showed
mild enrichment of losses in BCL2, SMAD4 andMALT1 (30%, at a chi-
square p Value < 0.01).

In addition, we identified 3 UMAP/HDBSCAN clusters from con-
tinuous gene-level RNAseq features (Supplementary Fig. 14). Among
these, one cluster (id = 1) was almost exclusively composed of cetux-
imab non-responders (PD, 88%, chi2 = 8.99, chi-squarep value = 0.002,
cap= 0.16), as well as it was enriched for hypermethylated (NMF
cluster 1, 76%, chi2 = 50.91, cap = 5.81 × 10−11) and CRIS type A PDXs
(96%, chi2 = 89.22, cap= 2.11 ×10−19). Finally, we projected the methy-
lation NMF cluster labels (Methods) onto 2D UMAP embeddings
computed from probe-level methylation features and analysed their
distribution across 5 obtained clusters (Supplementary Fig. 15). The
first one (id = 0, exactly matching NMF cluster 1, chi2 = 189,
cap= 3.94 × 10−41) was the most hypermethylated overall and largely
made up of cetuximab non-responders (83%, chi2 = 12.49, cap =0.03).
Another one (id = 3,mostlymatchingNMFcluster 4, 96%, chi2 = 154.43,
cap= 1.4 ×10−33) was enriched for CRIS type C (72%, chi2 = 22.87,
cap= 0.0001) and OR PDXs (32%, chi2 = 22.41, cap= 0.0001).

Confirmation of established biomarkers of cetuximab
sensitivity
Around half of the tumours in mCRC patients are wild-type for the
KRAS-NRAS-BRAF genes (triple negative). These patients routinely
receive anti-EGFR treatment with cetuximab or panitumumab in
combination with chemotherapy as an alternative to surgery resulting
in a median survival extension of 2 to 4 months, compared with che-
motherapy alone1. Retrospective analysis of triple-negative CRC
patients from the CRYSTAL and FIRE3 trials has also highlighted that
patients with left-sided tumours treatedwith anti-EGFR antibodies had
better survival and treatment response than patients with right-sided
tumours44.

Fig. 1 | Multi-omic Overview of the Colorectal Cancer PDX Cohort and Cetux-
imab Response Modelling Approach. a The left panel presents the IRCC patient
derive xenografs (PDX) collection, from 231 unique colorectal cancer (CRC) liver
metastasis (LMX) resections. This collection was characterised at amulti-omic level
and assessed for cetuximab response. A schematic of the omic-specific feature
engineering is also provided. The right panel outlines the CeSta classifier pipeline.
Input features selected from the training set (Methods) using univariate tests
(Fisher’s exact, Mann-Withney U-test) and multivariate linear models feed into
three independent level 1 classifier pipelines: forward feature selection plus elastic
net, ANOVA feature selection plus extra trees, and ANOVA feature selection plus
support vector classifiers. A fourth classifier, a catBoost model, is pre-trained on
pan-cancer data from the Cell Model Passport repository and fine-tuned using
IRCC-PDX data. The predictions from these level 1 classifiers are stacked and
inputted into a meta-classifier, which produces the final binary classification
(cetuximab-responder/non-responder) using argmax-based soft voting. b CeSta
nested cross-validation approach: 50 train/test splits are generated via stratified

sampling of the IRCC-PDX collection. CeSta is trained and tuned independently
across these 50 splits. In each iteration, the training set is divided into three folds.
Two folds are used in three rounds as the ‘training fold’, while the remaining fold
serves as the ‘validation fold’. Predictions from level-1 classifiers for the validation
fold are stacked and input into the meta-classifier. After validation, first-level clas-
sifiers are fitted to the entire training set, and CeSta’s performance is evaluated on
the test set (pink rectangle, N = 81). CeSta is then trained on the entire IRCC-PDx
dataset and tested on an independent CR-PDX dataset (grey rectangle, N = 50) for
external validation. c Top frequently mutated genes in the IRCC-PDX cohort.
d Selection of multi-omic and clinical features across the IRCC-PDX collection,
including CRIS expression cluster labels, methylation NMF cluster labels, primary
sample anatomical location, and treatment backbone. Source data are provided as
a Source Data file. Fig. 1AB has been Created in BioRender [Iorio, F. (2024) BioR-
ender.com/q01w468] and released under a Creative Commons Attribution-
NonCommercial-NoDerivs 4.0 International license (https://creativecommons.org/
licenses/by-nc-nd/4.0/deed.en).

Article https://doi.org/10.1038/s41467-024-53163-y

Nature Communications |         (2024) 15:9139 4

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
www.nature.com/naturecommunications


Treatment intervention in our PDXs (Methods) closely matched
that of cetuximab human trials such as PEAK7,45 and FIRE35 as well as
current clinical best practices46,47.

Across our IRCC-PDX collection (N = 231), KRAS mutations were
much more frequently observed in PDXs with a cetuximab non-
responder phenotype (Fisher’s exact test’s odds ratio (FETo) = 0.12, p
value (FETp) = 1.2 × 10−10, 95% confidence interval (FETci) = [0.06,0.26],
standardised residuals (FETsres) = 6.37) Fig. 2a and (Supplementary
Data 1). NRAS (FETo =0.06, FETp = 8.49 × 10−4, FETci = [0.002,0.47],
FETsres = 3.35) and BRAF (FETo =0.27, FETp = 0.035, FETci =
[0.06,0.95], FETsres = 2.31) mutations were noticeably more likely to
occur in non-responder PDXs, though only 13 and 16 mutant PDXs
were observed across IRCC-PDXs, respectively. However, overall
mutational and CN alteration burden, defined as the total number of
events per PDX and intended as coarse-grained proxies for tumour
progression and genomic stability, did not appear to correlate with
cetuximab sensitivity (Fig. 2b, c and Supplementary Data 1).

Finally, a right-sided localisation of the original tumour showed a
moderate association with a non-responder phenotype (FETo =0.42,
FETp =0.01, FETci = [0.20,0.84], FETsres = 2.66).

As previously mentioned, the KRAS-NRAS-BRAF triple negative
signature is widely recognised as the best-established biomarker of
cetuximab sensitivity. This association is being used both as a clinical
discriminant for treatment and as an entry criterion for anti-EGFR
trials, and it is clearly visible in our IRCC-PDX collection (FETo = 11.38,
FETp = 4.91 × 10−16, FETci = [5.80,23.40], FETsres = 7.99). These obser-
vations thus indicate that our IRCC-PDX collection recapitulates the
best available marker of cetuximab sensitivity in patients.

To further explore how molecular characteristics of the IRCC-
PDXs distribute with respect to their response to cetuximab, we

performed a differential expression analysis, comparing cetuximab
responder versus non-responder PDXs. This yielded 230 upregulated
and 1534 downregulated genes (at a negative binomial generalised lin-
ear model adjusted p value <0.05 and | log fold change (logFC) | > 0.58,
Supplementary Data 3). A functional enrichment analysis via preranked
GSEA using the Hallmark gene-signature collections from theMolecular
Signature Database (MsigDB)48, unveiled, as expected, many sig-
nificantly down-regulated gene sets (Supplementary Data 3). Among
these, HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION and
HALLMARK_INFLAMMATORY_RESPONSE were the most significantly
enriched (NES=−1.92 and −1.82, respectively, with an adjusted p
value =0.001 for both, Supplementary Data 4 and Supplemen-
tary Fig. 16).

A single sample GSEA extended to Reactome pathways49 con-
firmed Inflammatory processes as among those upregulated in non-
responder samples (positive score in 63out of 121 non-responder PDXs
for REACTOME_INTERFERON_GAMMA_SIGNALING, Supplementary
Data 5 and Supplementary Fig. 17). The other consistent signal for
upregulated genes in resistant PDXs (positive score in 77 out of 121 non
responder PDXs for REACTOME_KERATINIZATION) was related to
keratinisation, which has been previously found associated with a set
of more aggressive tumours in this same cohort50. The only Reactome
pathway significantly upregulated in cetuximab responder PDXs was,
unsurprisingly, REACTOME_SIGNALING_BY_EGFR_IN_CANCER (posi-
tive score in 42 out of 121 non-responder PDXs).

Consistently, a transcription factor binding site enrichment ana-
lyses yielded significant results only for promoters of the genes
downregulated in cetuximab-sensitive PDXs, and involved transcrip-
tion factors with known roles in inflammation, such as STAT1/2 and
KLF15 (Supplementary Fig. 18).

Fig. 2 | Overview of cetuximab response and biomarker candidates. aMutation
patterns of CRC driver genes and mutational signature features among those with
the most significant impact on CeSta predictions (Fig. 4a) b cetuximab non-
responders (‘PD’, volume growth > 35%, in orange) and responders (‘SD-OR’,

volume growth ≤35%, in blue). c Selection of continuous features which best dif-
ferentiate between PD and SD-OR PDX models. Source data are provided as a
Source Data file.
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A stacked classifier modelling cetuximab sensitivity
Results from the single-omic and differential analyses highlighted the
need for a more elaborate integrative modelling approach. To predict
whether a CRC PDX responds to cetuximab treatment in terms of
tumour volume shrinkage2, we considered its multi-omic character-
isation and reduced the task to a binary classification problem. We
selected and integrated multi-omic features into a stacked classifier
pipeline51: the cetuximabStacked classifier (CeSta, Fig. 1a). Stacking is a
supervised ensemble learning technique which combines multiple
weak classification models (level 1 classifiers, lvl1) using a meta-
classifier. This architecture improves upon individual classifiers’ per-
formance. It is well suited for a classification task such as ours, which is
based on tabular data with relatively few examples (231) and a much
larger number of features (35,053, Supplementary Data 1): a scenario
wheremorecomplexmodels anddeepneural networks farepoorly52,53.
A similar architecture has been successfully used to predict drug
response in breast cancer patients from the multi-omic characterisa-
tion of their tumours54.

Our CeSta pipeline implements a late integration approach to
prevent high-dimensional ‘omics (transcriptomics, methylomics) from
overwhelming those with fewer features (typically genomics) by
dominating the feature selection phase (Fig. 1a). We used a nested
cross-validation approach for model tuning, training, and validation,
based on generating 50 train/test split replicates of our IRCC-PDX
dataset (with 150 and81 PDXs, respectively, for the training set and test
set) assembled via stratified sampling (Fig. 1b). On each of these 50
training sets, our classifier pipeline performed a custom single omic
feature selection stepwhich reduced the initial input of 113 engineered
and clinical features plus 34,940 raw transcriptomics and genomics
features (Fig. 1a and Supplementary Data 1) to a smaller subset, with
the size of the latter being amongst the hyperparameters tuned inde-
pendently, across data splits (Fig. 1a and Supplementary Fig. 19,
Methods). We used these pre-selected IRCC-PDX features as the input
to 4 different lvl1 classifier pipelines: (1) model-based forward feature
selection, followed by elastic net logistic regression, (2) ANOVA-based
feature selection, followed by either support vector classifier (SVC) or
(3) extraTrees classifiers, and (4) a catBoost classifier pre-trained on a
set of 55 multi-omic features from a collection of 860 pan-cancer cell
lines from the Cell Model Passports (panCMP55), then refined on the
same set of 55 features from the IRCC-PDX (continual learning,
Methods). The lvl1 predicted probabilities were then stacked and
combined using a soft voting classifier which outputs a binary classi-
fication of cetuximab sensitivity (Fig. 1a, b, Methods).

Candidate biomarkers of cetuximab sensitivity
Our CeSta pipeline selects the most informative biomarkers of
cetuximab sensitivity across training examples sampled from the
IRCC-PDX collection by combining univariate statistical tests (Fish-
er’s exact, Mann-Whitney U test), percent lift, and logit (statsmodels
v0.13.2 logit56) models (Fig. 1a, b and Supplementary Data 6, and
Methods). Here and in Fig. 2a, we provide an overview of some of
CeSta’s top features (i.e., as ranked by their impact on CeSta’s pre-
dictions) and their relationship with cetuximab sensitivity. The latter
represents our binary target variable, with ‘responder’ PDXs defined
as those that grew in volume by 35% or less at three weeks after
treatment (a proxy of disease control, as mentioned above) (Fig. 2b,
Methods).

Among the considered genomics features, beyond the KRAS-
NRAS-BRAF triple negative signature, CLSPN (percent lift: −0.675),
PTEN (percent lift: −0.594), and PIK3CA (percent lift: −0.654)mutations
were also more frequently observed in non-responder PDXs. Addi-
tionally, a few other driver gene mutations (e.g., EGFR (percent lift:
−0.721) and MET (percent lift:−0.702)) were noticeably more likely to
occur in non-responder PDXs, although theywere rareoverall (21 and8
observations in IRCC-PDX, respectively). Onlymutations in KRAS (logit

p-value (logit p) = 0.002), BRAF (logit p = 0.037), PTEN (logit
p =0.049), and NRAS (logit p =0.03) were found to be associated with
cetuximab resistance via single-omicmultivariate logit regression. Our
CeSta approach combines thesemetrics (univariate andmultivariate p
values, percent lift) into an aggregated feature selection score (Meth-
ods) which allows us to detect both well-supported and rare candidate
markers. CELLector subgroups 7 (APC, TP53, KRAS, PIK3CA mutated),
16 (TP53 wild-type; APC, KRAS, PIK3CA mutated), and 5 (APC, TP53,
KRAS mutated; PIK3CA wild-type) were significantly associated with a
non-responder phenotype (FETo = 13.46, 9.51, 4.12, FETp =0.002,
0.014, 0.001, FETci = [1.89,587.67], [1.24,427.84], [1.61,11.98],
FETsres = 3.17, 2.55, respectively).

In contrast, subgroup 12 (APC, TCF7L2, and TP53 mutated; KRAS,
BRCA2, ATM, TPTE, EP400 wild-type) was more likely to contain
responder PDXs (FETo = 9.57, FETp =0.011, FETci = [1.32, 421.45],
FETsres = 2.59). However, this is a rare occurence, with only 8 PDXs
presenting this signature across IRCC-PDX. Subgroups 7,16 and 5 were
also significantly associated with cetuximab resistance after multi-
variate logit regression (logit p = 2 × 10−6, 3 × 10−6 and 3 × 10−4,
respectively).

Finally, FGFR1 CN gains (FETo = 3.19, FETp = 5.98 × 10−5, FETci =
[1.74, 5.98], FETsres = 4.04) were more frequently observed in
responder PDXs. Although ERBB2 andMET amplification events (i.e., >2
copies gained) were rare (5 and 3 examples in IRCC-PDX, respectively),
they were more frequent in non-responders (percent lift: −1 for both).
These genomic signatures agree with previous surveys of CRC poor-
prognosis driver alterations36,57, suggesting at least a partial overlap
between markers of CRC progression and those of cetuximab resis-
tance in PDX.

As transcriptomics features (Fig. 2c), while EGFR (Mann-Whitney
U-test p value (MWU p) = 4) and EGF (MWU p = 17) were not differen-
tially expressed in cetuximab responders versus non-responders PDXs,
REG4 (MWU p = 0.001) and EREG (MWU p = 7 × 10−5) were instead sig-
nificantly upregulated in resistant and sensitive cases, respectively.
REG4 (Regenerating Islet-Derived Protein 4) is a C-type lectin-like
mitogenic protein known to stimulate EGFR signalling and promote
migration and invasion in CRC58. High REG4 expression is associated
with poor prognosis and low recurrence-free survival in CRC patients59

and, more specifically, with cetuximab resistance12 in CRC organoids
and PDX models. A suggested mechanistic explanation points to FZD
and LRP5/6, both upstream components of the Wnt/β-catenin path-
way, which are involved in the REG4-mediated promotion of stemness
induced by KRASmutation in CRCwith APC loss60. EREG (epiregulin) is
a member of the EGF family and an EGFR ligand; it is thus involved in
inflammation, cell proliferation, and cancer progression. EREG activity
has been associated with cetuximab sensitivity in preclinical models
and patients61,62, and it has been suggested that, in an inflammatory
environment, EREG can promote stemness and cancer cell prolifera-
tion by stimulating ERK signalling through EGFR activation in a variety
of cancer types63–65.

We also observed high PROGENy29 EGFR pathway expression
scores associated with a non-responder phenotype (MWU p =0.002,
percent lift: −1.879), whereas, asmentioned above, EGFR expression as
an individual feature was not. We observed a similar pattern for KRAS:
It was not differentially expressed across responders versus non-
responders PDXs (MWU p =0.23) but high MSigDB48,66 HALLMARK_K-
RAS_SIGNALING_UP gene set ssGSEA scores were associated with non-
responder PDXs (MWU p =0.001, percent lift: −10.688). These obser-
vations suggest that engineering aggregated expression features using
ssGSEA and PROGENy scores might be more informative than indivi-
dual gene expression features for cetuximab sensitivity prediction.
However, it is also important to note that feature aggregation might
introduce additional complexity. PROGENy signals for EGFR could be
partly driven by downstream ERK-mediated signals, which are hard to
disentangle from KRAS-triggered inputs. This may explain why both
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EGFR and KRAS signatures are associated with resistance to EGFR
blockage.

Finally, we observed that higher MSigDB gene set ssGSEA scores
for angiogenesis (percent lift: −2.168), inflammatory response (percent
lift: −3.7), UV and DNA damage response (percent lift: −6.63), and
Hedgehog (Hh) signalling (percent lift: −5.44), were all associated with
non-responder PDXs (MWU p≪0.01 for all). The Hh hallmark score is
fascinating as it might corroborate the evidence that Hh pathway
activity correlates with reduced response to cetuximab67.

When considering methylation features (Fig. 2c), NMF cluster 1,
themost hypermethylated, was enriched for non-responders andMSI-
like PDXs (FETp = 2 × 10−4, percent lift: −0.796). Cluster 4, the second-
most hypo methylated, was enriched for responder PDXs
(FETp = 3 × 10−4, percent lift: 2.299).

Across all omics, both categorical (Fig. 2a) and continuous fea-
tures (Fig. 2b) were either too sparse or too noisy to be adequate
predictors of cetuximab response when considered individually. This
highlights the effectiveness of an integrative model which combines
the most informative features across ‘omic boundaries.

Validation of the CeSta classifier
We set out to internally assess CeSta’s performance on our IRCC-PDX
collection using a holdout shuffle approach, followed by testing the
null hypothesis that results generated by different classifiers are
equivalent68.

We started by generating 50 train/test set split (150 and 81
PDXs, respectively) replicates fromour IRCC-PDX dataset.We used a
nested cross-validation approach to tune and train 50 independent
CeSta replicates (Fig. 1b, ‘internal validation’). To provide a realistic
and stringent benchmark, we evaluated many baseline cetuximab
sensitivity classifiers of varying complexity (Fig. 3a, b and Supple-
mentary Fig. 20). Here, we present results from a performance
comparison of our CeSta classifier against three of the best-
performing baseline classifiers. These build on the SOTA clinical
predictor of cetuximab sensitivity: the KRAS-NRAS-BRAF triple
negative marker46,47 and whether the original tumour is located in
the left portion of the patient’s colon44. These features were com-
bined into a cetuximab sensitivity classifier using either (1) a rule-
based approach entirely analogous to the clinical criterion for
cetuximab treatment (i.e., PDXs with the triple negativemarker were
predicted as responders to cetuximab, Fig. 3a, ‘tripleNegRule’ and
‘tripleNegRightRule’) or (2) an elastic net penalised logistic regres-
sion model (Fig. 3a, elNet baseline’) taking in input the four features
above as possible regressors (Methods). As for CeSta, we tuned and
trained 50 independent replicates of this latter baseline classifier
over the 50 split replicates we previously generated.

CeSta outperformed all baseline models (mean F1: 0.941, Mann-
Whitney post-hoc test p value: «0.001) on this internal validation setup
(Fig. 3). Interestingly, the elNet baseline performance, measured via F1
score (i.e., the harmonic mean of precision and recall), fully matched
the triple negative rule-based classifier, indicating that the elNetmodel
can recapitulate the clinical decision criterion. Figure 3b shows that
CeSta outperforms this same elNet baseline classifier for the vast
majority of replicate splits (mean AUROC=0.821 versus 0.780, Mann-
Whitney post-hoc test p value: «0.001), with an average of 0.04
increase in ROC AUC, computed using the ROC AUC variance formula
first proposed by Delong and colleagues69–71.

Based on our finding, we evaluated whether our CeSta classifier
would outperform the clinical SOTA baseline classifier on an inde-
pendent cohort of CRC PDXmodels (Fig. 1b, ‘external validation’). This
external validation cohort (from now on CR-PDX), consisting of 50
CRC xenografts, was collected and characterised at the genomic,
transcriptomic and clinical levels at Charles River Discovery Research
Services and included samples from European patients (Supplemen-
tary Data 7, Methods).

We tuned and trained a single instance of our CeSta pipeline as
well as a single instance of the baseline model over the entire IRCC-
PDX collection (N = 231). We then compared their predictive per-
formance on the never-before-seen CR-PDX set (N = 50) using the
same set of multi-omic engineered features we described previously
for IRCC-PDX (Supplementary Data 7, Methods). Similar to what we
observed in the internal validation phase, our CeSta classifier out-
performed the clinical baseline classifier (AUROC = 0.88 and 0.78,
respectively), with an improvement of 0.1 ROC AUC (Fig. 3c and
Supplementary Data 8). More specifically, our CeSta pipeline cor-
rectly predicted three additional KRAS-NRAS-BRAF triple-negative
PDXs as cetuximab non-responders and one additional non-triple-
negative as a responder; on top of matching biomarkers correctly
predicted by the baseline classifier (Fig. 3d, e and Supplementary
Data 8). The three triple-negative non-responders (relative tumour
volumes at 3 weeks: 125%, 485% and 1380%) have a lower than
average (VST 7.4 vs 9.9) EREG one and higher than average (VST 13.9
vs 9.4) REG4 expression, highlighting how the transcriptional fea-
tures identified by CeSta help its correct predictions, despite the
genetic features, for those samples. Interestingly they are two CRIS-
A and one CRIS-B, subtypes generally refractory to anti-EGFR ther-
apy. The non triple-negative sample has a canonical BRAF mutation
(V600E) that usually determines resistance to cetuximab, but CeSta
correctly identified it as a responder (−18.4% relative tumour volume
at 3 weeks), in this case the relevant feature that steered its pre-
diction in the right direction most probably is the FGFR1 amplifica-
tion (log2 0.18).

Further external validations of CeSta on patients’ data are cur-
rently unfeasible, due to the lack of datasets from the characterisation
of cohorts that are unselected for KRASmutational status, treatedwith
cetuximab monotherapy and with multi-omics data available. How-
ever, we tested whether any of the predictive transcriptional features
identified by CeSta differentiate between cetuximab responder and
non-responder patients. This analysis was conducted using gene
expression data obtained from a limited single-omic CRC patient
dataset, accompanied by cetuximab response data and encompassing
43 non-responder patients and 25 responders patients62. When com-
paring ssGSEA scores (Supplementary Data 4) computed across the
two groups for the three Hallmark pathways identified as predictive by
CeSta and with the highest percent-lift (as previously discussed), the
one related to inflammatory processes showed a statistically sig-
nificant difference (Wilcoxon test p value = 0.02, Supplementary
Fig. 21). While these results confirm the association between higher
inflammationmarker expression and lackof sensitivity to cetuximab in
patients, a larger, multimodal dataset would be ideal for performing a
more rigorous validation of the CeSta predictive features in human
patients in the future.

Explanation of the CeSta classifier
Post hoc explanations approximate the behaviour of a classifier by
modelling relationships between feature values and the classifier’s
predictions.Here, we relied on SHapley Additive exPlanations (SHAP72)
to define local feature importance and their impact on the CeSta
classifier’s predictions. SHAP is a game theoretic approach through
which values representing a feature’s average marginal contributions
over all possible feature coalitions are computed.

Our CeSta classifier leverages additional informative genomic
(e.g., FGFR1 amplification) and transcriptomics (e.g., EREG and REG4
expression; angiogenesis, inflammation, and Hh signalling ssGSEA
scores) features (Fig. 4a) to improve upon the clinical baseline classi-
fier (Fig. 3b,c) while retaining the latter’s top predictive features,
namely the KRAS-NRAS-BRAF signature. As shown in the CeSta SHAP
waterfall plot in Fig. 4b, we observed high Hh signalling, high angio-
genesis ssGSEA scores, and the KRAS, APC, TP53 mutation signatures
being predictive of cetuximab resistance. In the samepanel, high EREG
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expression and, more noisily, low REG4 expression and FGFR1 ampli-
fication appeared to influence the model towards a ‘responsive’ pre-
diction. Further, stacking our four lvl1 classifiers resulted in a slight
performance increase over the best-performing lvl 1 classifier (i.e., the
ANOVA SVC pipeline) taken on its own, albeit with substantial AUROC
confidence interval overlap (Fig. 4e).

To further characterise the outstanding CeSta features, we con-
sidered the 275 genes from the engineered transcriptomic features
with the highest SHAP values and characterised their codedproteins in
terms of physical interaction. To this aim, we performed a protein-
protein interaction network analysis, through String-db73, observing a
larger number of interactions than expected by chance (135 vs 23, p

Fig. 3 | CeSta outperforms the state-of-the-art baseline classifier on IRCC-PDX
andCR-PDX. aClassificationperformancesquantified through F1 scores (harmonic
mean of precision and recall) across 50 train/test IRCC-PDX split replicates (x-axis)
for the stacked classifier (‘CeSta’, in blue), an elastic net penalised logistic model
(‘elNet baseline’, in tan) which uses state-of-the-art clinical features for cetuximab
sensitivity in CRC (KRAS, NRAS, BRAF mutational status, right colon tumour loca-
tion), a rule-based classifier using the KRAS-BRAF-NRAS triple negative clinical
signature (tripleNegRule, in orange) as a binary predictor, and another rule-based
classifier which uses both the aforementioned triple-negative signature and the
‘right colon’ feature (tripleNegRightRule, in green). b Area under the receiver-
operating-characteristic curve (AUROC) values and error bars, obtained via
DeLong’s method, indicating 95% confidence intervals69,70 across 50 IRCC-PDX of
n = 150 and 81 train/test split replicates replicates (x-axis), for CeSta (in blue) and
the elastic net penalised logistic model (‘elNet baseline’, in tan) described in (a).
c AUROC (DeLong’s method) computed over the external validation CR-PDX

dataset for CeSta (in blue) and the elNet baseline classifier (‘elNet baseline’, in tan)
after a single instanceofbothmodels is trained and tunedover the entire IRCC-PDX
dataset. The shaded area between the CeSta and elNet baseline ROC curves
represents the improvement in AUROC. Decision point coordinates correspond to
the false-positive and true positive rates obtained from the corresponding classi-
fier’s predictions. Here, rule-based classifier decision points overlap with the elNet
baseline’s. d Confusion matrix from a comparison of CeSta classifier outcomes
(same validation setup as c) and PDXs actual cetuximab response over the external
validation CR-PDX dataset. Correct predictions are on the diagonal highlighted in
blue, incorrect predictions off the diagonal are highlighted in purple. e CeSta
correct prediction counts (same validation setup as c) over the CR-PDX external
validation set grouped by PDX cetuximab sensitivity (x-axis) and PDX KRAS-NRAS-
BRAF triple-negative status (y-axis). CeSta correctly predicts additional triple-
negative non-responders (3) and triple-positive responders (1), which all baseline
classifiers miss. Source data are provided as a Source Data file.
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value < 10−16) and confirmed the relevance of subnetworks involved in
the transcriptional control (RELA, NFKB1-2, IRF1) and execution
(CXCL9-11-10 chemokines) of the inflammatory response (Supple-
mentary Fig. S22). This analysis also underscored interactions invol-
ving theMAPK pathway (i.e., between RAF1 and NRAS), transcriptional
regulators of WNT signalling (TCF7L2 and TLE1/3) and adhesion-
dependent growth control (L1CAM, and FGFR1).

We also detected very low collinearity among the top CeSta fea-
tures’ values,with the largest anticorrelation between theHh signalling
ssGSEA score and EREG expression (Pearson’s r = −0.2). In contrast,

high EREG expression was associated with both increased angiogen-
esis (Pearson’s r = 0.4) and high inflammatory response (Pearson’s
r =0.3) ssGSEA scores (Supplementary Fig. S23).

Comparison of cetuximab response in cell lines and PDXmodels
PDX models are thought to recapitulate inter and intra-tumour het-
erogeneity observed in patients more faithfully than immortalised cell
lines. They provide at least some stromal microenvironment interac-
tions and are more likely to follow pathways of drug sensitivity or
resistance found in primary human tumours74. However, 2d cell line

Fig. 4 | CeSta leverages informative features and combines weaker classifiers.
a Feature importance as determined by CeSta, represented by the mean absolute
SHAP value (x-axis) for the top significant features (y-axis). b Top significant fea-
tures’ impact on CeSta output using SHAP values (x-axis) across all 50 PDXs in the
CR-PDX validation set (scatter dots). The most important features in (a) have the
greatest impact on model outcomes, with a clear separation between positive and
negative effects. c Performance of CeSta’s top features on IRCC PDXs and the
external cohort. The relationship between a feature’s SHAP values and cetuximab
sensitivity on the train set (full IRCC PDX set, x-axis) and test set (CR PDX set), after
removing other features’ effects (partial correlation, parSHAP). Dot size and colour
indicate a feature’smean absolute SHAP value on the training set. Dots closer to the
diagonal indicate consistent performance across train and test sets. Key features
like KRASmutation and EREG expression align closely with the diagonal, indicating

a good fit or slight underfitting. d Underperformance of CMP-trained features on
the external cohort. The relationship between CatBoostCMP feature SHAP values
and cetuximab sensitivity on the train (panCMP set) and test (CR-PDX) sets, after
removing other features’ effects. Dot size and colour represent a feature’s impact
on model prediction. Many top features of this model fall in the lower right
quadrant, indicating overfitting. e AUROC confidence intervals (CI, 95%) for CeSta
(blue), three level 1 classifiers (orange), the catBoost model trained on the panCMP
dataset (green), and the same catBoost model retrained on the IRCC-PDX dataset.
CeSta shows a slight performance improvement over the best level 1 classifier, with
overlapping CIs. The cell-line-trained CatBoost classifier poorly predicts cetuximab
sensitivity in PDXs, but retraining improves its performance. Source data are pro-
vided as a Source Data file.
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models are undeniably cheaper as well as simpler to screen and char-
acterise, an advantage that has enabled the generation of large multi-
omics cell line datasets55,75,76 and aided systematic drug and functional
genetic screening efforts14,75.

Several methods have been proposed to align gene-expression
and other omics datasets from different model collections and
patients. These methods include anchoring on common genes77 or
employing batch correction methods originally developed for single-
cell data, thus harmonising all the features into a shared space across
datasets/model-collections (such as Celligner78). To avoid information
leakage we opted instead for a supervised continual learning
approach.

Particularly, we investigated whether a cetuximab sensitivity
classifier trained (1) ona largepan-cancermulti-omicdataset (panCMP,
N = 860) of 2d cell line models derived from the CMP dataset55, or (2)
on a small CRC-specific subset of the same panCMP cell-line dataset
(CRC-CMP, N = 44) would compare favourably against (1) the classifier
itself, retrained on the IRCC-PDX dataset (N = 231) or (2) the classifier
itself, retrained on a randomly selected subsample of IRCC-PDX, with
the same size as the colorectal 2d cell-line dataset (subIRCC-
PDX, N = 44).

We observed that a panCMP-trained boosting classifier catBoost79

performed very poorly in predicting PDX sensitivity to cetuximab
(Fig. 4). This poor performance persisted even when considering the
inclusion of the cell line tissue of origin as a categorical covariate
(Fig. S24). When this catBoost model was further trained on the IRCC-
PDX dataset (continual learning,Methods), its performance on the CR-
PDX validation set became comparable to that of the other IRCC-PDX
trained lvl1 classifiers. We observed a similar result when we traded
several examples for tissue specificity in the cell-line dataset and
compared a CRC-CMP-trained classifier against itself after retraining
on subIRCC-PDX (Supplementary Fig. 25).

We evaluated the partial correlation between a feature’s SHAP
values and the target variable (parSHAP) to investigate further these
differences inmodel performance across different training datasets. In
this case, a positive parSHAP suggests that the classifier has identified
and successfully exploited an informative feature for its current clas-
sification task. Given that our CeSta classifier performed just as well on
the internal and external validations, it was not surprising to see
matching parSHAP across CeSta SHAP values and cetuximab response
in IRCC-PDX and CR-PDX (Fig. 4c and Supplementary Data 9) for most
features, and particularly for thosewith themost significant impact on
model prediction (Fig. 4a, b and Supplementary Data 9). On the other
hand, several of the panCMP catBoost classifier’s top features
(VEGFBC, PTEN,MET, PIK3CA and LYZ expression, TCF7L2 loss) did not
perform as well on CR-PDX, compared to the cell lines training dataset
(Fig. 4d, e), that is: their SHAP values’ partial correlationwith the target
variable was lower across CR-PDX. This suggests that cell-line-trained
models of cetuximab response struggle to predict PDX cetuximab
sensitivity, primarily due to differences in the relationship between
expression features and the target variable. These transcriptional dif-
ferences between cell lines and PDXs might be due to the intense
selection pressure imposed during cell line establishment, which
makes available 2d models only partially representative of the general
patient population19.

Discussion
We have described and made available multi-omic characterisation
and drug screening data for one of the largest CRC PDX collections to
date. This dataset recapitulates typical CRC alteration patterns
observed in patient trials and gold-standard primary cohorts across all
examined ‘omics, and offers a combination of complete cetuximab
response labels as well as dense multi-omic features. The cohort pro-
vides a realistic, stable platform for cetuximab sensitivity biomarker
discovery and drug response modelling.

Building on this PDX collection, wedevelopedCeSta, amulti-omic
ensemble classifier of cetuximab sensitivity based on a stacked
ensemble architecture. CeSta identifies and leverages transcriptional
markers and predicts cetuximab responses (in an internal holdout
shuffle validation as well as when tested on an external independent
dataset) more accurately than other state-of-the-art classifiers and
outperforms the criteria currently used in the clinic to address CRC
patients to cetuximab treatment, specifically the KRAS-NRAS-BRAF
triple negative genotype. Among the predictive transcriptional mar-
kers identified by CeSta are EREG expression (which is higher in
responsive models) and REG4, Hh signalling, angiogenesis, and
inflammation gene set cumulative expression scores (all more repre-
sented in resistant models). Some of these response predictors con-
firm previous findings in independent datasets. EREG has been
documented to positively correlate with response to cetuximab in
mCRC patients62; EREG is an EGFR ligand, so it is conceivable that high
EREG abundance leads to sustained EGFR signalling and sensitisation
to EGFR inhibition. REG4 is a poor-prognosis biomarker in CRC, pos-
sibly due to its ability to promote cancer cell stemness80, and its
expression was found to correlate with resistance to cetuximab and
other ERBB family inhibitors in CRC PDXmodels12. Interestingly, some
elements of theHhpathwayproved tobeupregulated in aCRCcell line
in which resistance to cetuximab was attained by prolonged drug
treatment67. Our results provide translational significance for this
observation by extending its reach to patient tumours on a population
scale.We report that the expressionof genes associatedwith hallmarks
of angiogenesis and inflammation correlate with poor response to
cetuximab and, in the case of inflammation, this applies also to clinical
samples from patients. These transcriptional biomarkers might
therefore be viable candidates for inclusion into an improved com-
panion diagnostic for cetuximab sensitivity using clinical-grade gene
expression technologies, such as Nanostring.

The identified features show a weaker association with cetuximab
response in 2d CRCmodels than PDXs, corroborating our observation
of poorer predictive performance for models trained on cancer cell
line datasets.While this evidence supports the accuracy of PDXmodels
for biomarker discovery, it is fair to acknowledge that PDXs only partly
recapitulate the complexity of human tumours. In particular, the
human stroma is rapidly substituted by murine counterparts during
PDX serial passaging, and human immune components are not sub-
stituted by host populations owing to the severe immunodeficiency of
mouse recipients81. Accordingly, all molecular data that contributed to
CeSta development and application were limited to the exploration of
cancer cell-intrinsic traits. However, the fact that CeSta predictive
ability was maintained when analysing bulk transcriptomic datasets
frompatients’ samples62 indicates that CeSta, although unfit to capture
stromal and immune characteristics, has clinical applicability.

Collectively, our results highlight the value of extensive, cancer
type-specific, and well-characterised PDX collections for drug screen-
ing, drug sensitivity modelling and mechanism of action discovery,
and motivate future efforts to increase resource dimensions and
improve analytical approaches as a means to further enhance the
informative power and translational potential of PDX-based research.

Methods
Ethics statement
Tumour samples were obtained from 570 patients with CRC who
underwent surgical resection of liver metastases at the Candiolo
Cancer Institute (Candiolo, Torino, Italy), Ospedale Mauriziano
Umberto I (Torino), Città della Salute e della Scienza di Torino—Pre-
sidio Molinette (Torino), and Grande Ospedale Metropolitano
Niguarda (Milano, Italy) during the period 2008–2015. Informed con-
sent for research use, including for the collection of sex and age
information, was obtained in written form from all patients at the
enrolling institution before tissue banking. Donor patient sex was
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determined by self-report. Study approval was obtained from the
Review Board of the Fondazione del Piemonte per l’Oncologia FPO—
IRCCS (PROFILING protocol No. 001-IRCC-00IIS-10, version 11.0,
updated July 13, 2022). Tumour tissue (hepatic metastasis) not
required for diagnosis was used to generate PDXs. Animal procedures
were approved by the Candiolo Cancer Institute Institutional Animal
Care and Use Committee (IACUC) and by the ItalianMinistry of Health
(authorization 816/2016-PR) and were compliant with all relevant
ethical regulations.

Genomic data collection
Illumina PairEnd pre-capture libraries were synthesised from double-
stranded DNA according to Illumina’s protocol (Illumina Inc.). Geno-
mic DNA quality was validated and for each sample, 200ng were used
for library preparation. DNAwas sheared into 300 base-pair fragments
(1ug DNA in 100μl volume) using the E210 Covaris plate system
(Covaris, Inc. Woburn, MA). The fragmentation settings used are
Intensity of 4200 Cycles per Burst, for 120 s. Sequencing libraries were
amplified using the ‘bridge-amplification’ process by Illumina HiSeq
pair read cluster generation kits (TruSeq PE Cluster Kit v2.5, Illumina)
and were hybridised to custom RNA baits for the Agilent SureSelect®
protocol. Paired-end, 75 bp sequence reads were generated using
Illumina HiSeq 2000®. The sample mean sequencing coverage was
~700X if the lost coverage because of duplicated and off-target
reads is considered. Reads were aligned to the reference human gen-
ome (NCBI build37) using BWA-aln 0.5.982, and sequencing data were
archived in bam files stored at the European Genome-Phenome
Archive (https://www.ebi.ac.uk/ega/ at the EBI) with accession num-
ber EGAD00001003334 (cram files are in EGAD00001003334, the
study accession number is EGAS00001001171).

555 samples were sequenced using a custom-designed targeted
colon cancer panel (SureSelect, Agilent, UK) consisting of all coding
exons of 116 genes, 22 genes recurrently amplified/deleted, 51 CN
regions, 121 MSI regions and 2 gene fusions (RSPO2 and 3). Samples
were fragmented to an average insert size of 150bp and subjected to
Illumina DNA sequencing library preparation using Bravo automated
liquid handling platform.

Sequencing was performed on an Illumina HiSeq2000 machine
using the 75-bp paired-end protocol targeting 1 Gb sequence per
sample. Data quality was checked for 95% target coverage at 100x and
mutation analysis was performed using an in-house algorithm.
Sequencing reads were aligned to the NCBI 37 human genome build
using the BWA algorithm82 with Smith-Waterman correction and PCR
duplicates were removed. Base substitutions, small insertions or
deletions, and breakpoints were identified by comparison against an
unmatched control using established bioinformatic algorithms:
CaVEMan (https://github.com/cancerit/CaVEMan/) for mutations,
Pindel (https://github.com/genome/pindel) to detect insertions and
deletions, and CNVKit (https://github.com/etal/cnvkit) for CN
detection.

We used an unmatched blood sample sequenced to an equivalent
depth as control. To account for the absence of matched control, a
bespoke variant selection pipeline was developed. To enrich for high-
confidence somatic variants, we performed further filtering by
removing known somatic polymorphisms using human variation
databases—Ensembl GRCh37, 1000 genomes release 2.2.2 and
ESP6500—and whether the same polymorphism was observed recur-
rently in 93 normal DNA samples sequenced using the same protocol
and depth.

Cancer genes (CGs) are genes for which we can observe evidence
of positive selection. Several statistical approaches have been devel-
oped to categorise the likelihood of a given gene in a specific tumour
type to undergo a mutation at a high enough frequency for this to be
indicative of a positive selection process. The majority of these
methods rely on a comparison of non-synonymous (dN) and

synonymous (dS) mutations in each gene and factor in additional
covariates. We have elected to use as the foundation of our set of
colorectal CGs two recent statistical approaches developed using large
TCGA datasets83,84.

6426 driver variants across 113 genes were identified using the
statistically significant single-codon hotspots from Chang et al. 36 and
the intOGen85 framework. These variants were combined to generate a
reference set of driver variants, annotated based on their origin
(Intogen driver only, Chang driver only, or common to both), their
hotspot status, andwhether theywere knowndrivers forCRC.Thefinal
set of driver variants was used for annotating the PDX variants.

To assign segment log2R to individual genes we used coordinates
overlap (BEDtools v2.29.286, https://github.com/arq5x/bedtools2)
between them and gene coordinates (TSS-TES) obtained from GEN-
CODE (version 34, https://www.gencodegenes.org) for a set of 568
intOGen driver genes.

TCGA COAD/READ copy number calling
Segmented CN variation (CNV) data from TCGA-COAD and TCGA-
READ (~1200 samples) on 02/09/2020 was downloaded via the
Genomic Data Commons Data Portal (GDC, https://portal.gdc.cancer.
gov/repository) using the TCGAbiolinks R package (v2.20.087).

The GDC CNV pipeline uses Affymetrix SNP 6.0 array data (har-
monised toGRCh38) to identify genomic regions that are repeated and
infer the CN of these repeats. This pipeline uses the DNAcopy
R-package88 to perform a circular binary segmentation (CBS) analysis.
CBS translates noisy intensity measurements into chromosomal
regions of equal CN. The final output files are segmented into genomic
regions with the estimated CN for each region. The GDC further
transforms these CN values into segmentmean values, which are equal
to log2(copy-number/2). Diploid regions will have a segment mean of
zero, amplified regions will have positive values, and deletions will
have negative values89. Masked CN segments are generated using the
same method except that a filtering step is performed that removes
the Y chromosome andprobe sets that werepreviously indicated to be
associated with frequent germline copy-number variation.

Robust CNV events across our patient cohort were identified by
searching for matches in the combined TCGA COAD/READ data, using
GISTIC2.090 (ftp.broadinstitute.org/pub/GISTIC2.0) and ADMIRE v1.291

(https://ccb.nki.nl/software/admire/)
GISTIC2.0 was applied using the recommended ‘GISTIC2 Com-

mand Line Parameters’ listed in the GDC CN segmentation doc-
umentation at https://docs.gdc.cancer.gov/Data/Bioinformatics_
Pipelines/CNV_Pipeline/#copy-number-segmentation. Here the ‘seg-
mentation file’ corresponds to the masked segmented CN variation
downloaded from TCGA COAD/READ, the ‘marker file’ contains the
aforementioned probe coordinates filtered for ‘freqcnv == FALSE’ as
per the GDC reference files (https://gdc.cancer.gov/about-data/gdc-
data-processing/gdc-reference-files), and the ‘referencegenefile’ is the
GRCh38 reference provided alongside GISTIC2.0.

ADMIRE1.2 was applied using the same parameter configuration
shown in the example use case provided at https://ccb.nki.nl/software/
admire/readme.txt with the ‘segmented CNA’ file again corresponding
to the combinedCOAD/READ data, and the ‘marker file’ containing the
filtered probe coordinates.

The output of these two analyses identifies CNV events spanning
multiple segments from different samples across the patient cohort. We
then merged these results by computing the union of all (fully or par-
tially) overlapping ADMIRE or GISTIC segments, and included all non-
overlapping segments from either tool resulting in a set of 2382 events.
From this combined output, we extracted event and segment coordi-
nates and mapped both to 552 known cancer driver genes in the intO-
Gen catalogue85 (02/02/2020 release, https://www.intogen.org/
download?file=IntOGen-Cohorts-20191112.zip) using BEDtools v2.29.286

(https://github.com/arq5x/bedtools2) (Supplementary Fig. 27).
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CNV event frequencies are denoted as the number of equivalent
CNV events in TCGA samples divided by the number of COAD/READ
samples.

Comparing driver gene SNPs in TCGA COAD/READ and PDXs
Frequencies of somatic alteration for TCGA samples was obtained
from cBioPortal, selecting the Colorectal Adenocarcinoma TCGA,
PanCancer atlas (https://www.cbioportal.org/study/summary?id=
coadread_tcga_pan_can_atlas_2018) dataset.

Comparing copy number variation events in TCGA COAD/READ
and PDXs
Wefirst binned PDX segment log2R values into three categories (‘Loss’,
‘Neutral’, ‘Gain’), using the sameGISTIC log2R thresholdsweapplied to
the TCGA COAD/READ data (−0.2, 1) [using the same threshold as in
TCGA data here might be too strict for PDx sequencing data where
there’s less non-tumour tissue contamination as murine cells/DNA are
filtered out]. We then computed gene-specific CNV event frequencies
by counting the number of PDX samples with CN altered segments
mapping to each gene, divided by the number of PDX samples.

We then computed the Spearman correlation coefficient for the
TCGA and PDX genewise CNV event (here only ‘Loss’, ‘Gain’)
frequencies.

Assessing PDX copy number stability within lineages
We grouped 91 PDX samples, according to their genealogy, into 13
multi-passage lineages and retrieved gene-specific log2R data for 569
genes from the analysis described in the previous sections. We then
computed the Pearson correlation across all gene log2Rs for each pair
of PDX samples and labelled each Pearson coefficient according to
whether the two samples belonged to the same lineage or to
different ones.

Assessing PDX mutational stability within lineages
We analysed somatic mutations along multi-passage PDX lineages
using the same set of 91 PDX samples grouped into 13 lineages as
described above. To rule out false positive calls for putative WT sam-
ples in lineages with apparent inconsistencies (Fig. S4), we further
checked the coverage and absolute number of reads supporting each
individual SNVs and only found single mutated reads in three WT
samples with coverages ~400X.

Gene expression data collection and differential expression
analysis
RNAwas extracted usingmiRNeasyMini Kit (Qiagen), according to the
manufacturer’s protocol. The quantification and quality analysis of
RNA was performed on a Bioanalyzer 2100 (Agilent), using RNA 6000
Nano Kit (Agilent). Total RNA was processed for RNA-seq analysis with
theTruSeqRNALibrary PrepKit v2 (Illumina) followingmanufacturer’s
instructions. Sequencingwas then performed on Illumina Nextseq 500
at Biodiversa SRL, obtaining single end 151 bp reads, aiming at
20M reads.

Read counts were obtained using an automated pipeline (https://
github.com/molinerisLab/StromaDistiller), that uses a hybrid genome
composed of both human andmouse sequences to exploit the aligner
ability to distinguish between human derived reads, representing the
tumour component, and mouse ones, representing the murine host
contaminating RNA material.

Reads were aligned using STAR92 (version 2.7.1a, parameters--
outSAMunmapped Within--outFilterMultimapNmax 10--out-
FilterMultimapScoreRange 3--outFilterMismatchNmax 999--out-
FilterMismatchNoverLmax 0.04) versus this hybrid genome
(GRCh38.p10 plus GRCm38.p5hg38 with GENCODE version 27 and
mouse GRCm38 with GENCODE version 16, indexed with standard

parameters and including annotation information from the GENCODE
27 plus m16 comprehensive annotation).

Aligned reads were sorted using sambamba93 (version 0.6.6) and
only non-ribosomal reads were retained using split_bam.py94 (version
2.6.4) and rRNA coordinates obtained from the GENCODE annotation
and repeatmasker track downloaded from UCSC genome browser
hg38 and mm9.

featureCounts (https://rdrr.io/bioc/Rsubread/man/featureCounts.
html, version 1.6.3) was run with the appropriate strandness para-
meter (-s 2) to count the non-multi-mapping reads falling on exons and
reporting gene level information (-t exon -g gene_name) using combined
GENCODE basic gene annotation (27 plus m16).

Sequencing data was available for 480 samples, but different fil-
tering criteria lead to 470 QC passing samples. These criteria include:
(1) ≥ 15M total reads, (2) ≥60% reads assigned to genes by feature
counts, (3) ≥30% reads assigned to human genes over the total of
assigned reads.

These filters let us retain only samples with at least 5M
human reads.

To remove samples with lymphomatous characteristics4, 2 cri-
teria were applied: (i) Principal Component analysis of expression
data (samples with PC2 ≥ 30 were discarded): (ii) computation of a
sample-level score for a leucocyte expression signature95, averaging
FPKM values for all the signature genes (samples with an average
leucocyte signature ≥ 48 were discarded). Positivity for either cri-
terion flagged samples as lymphomatous and excluded them from
analysis.

Gene-level variance stabilised expression (VST) and robust fpkm
values for 33,670 genes were obtained usingDESeq296 (version 1.26.0),
tmm using edgeR97 (version 3.28.1) using only read counts from
human genes.

CRIS andCMS subtypingwas obtained for each individual tumour
averaging the VST values for replicates, when available, using the R
package CMScaller39 (v2.0.1, FDR =0.05 and RNAseq = TRUE) and the
R package CRISclassifier4 (v1.0.0, FDR <0.2).

Differential expression analysis to compare responders and non
responders was run with DEseq296 with the formula ‘~batch +
response’, where batch indicates which one of the five different
sequencing batches the sample belongs to ssGSEA scores were calcu-
lated using GSVA98 (version 1.34.0) on tmm values with kcdf = ‘

Gaussian’ and method= ‘gsva’.
The obtained DEGs were used to perform GSEA enrichment ana-

lysis with R libraries ClusterProfiler99,100 (v3.14.3), DOSE101 (v3.12.0),
msigdbr30 (v7.4.1) and enrichplot (https://yulab-smu.top/biomedical-
knowledge-mining-book/)(v1.6.1). Protein-protein interactions net-
work analysis was performed with STRING (string-db.org), the 20th
April 2023 (https://version-11-5.string-db.org/cgi/network?networkId=
bJPsEA2nP3WX).

Promoter sequences of the differentially expressed genes were
defined as regions 1500bpupstream and 500 bp downstream the TSS,
using the same annotations for transcripts that were used with fea-
tureCounts. Motifs enrichments were obtained with HOMER
(version 4.8).

Microarray data from Khambata-Ford62 (GSE5851) was obtained
using Gene Expression Omnibus (GEO) query102 (version 2.54.1),
applying a log transformation and selecting the most variable probe
when multiple ones were available for the same gene, then ssGSEA
scores were obtained as previously described.

Github repositories: https://github.com/molinerisLab/
StromaDistiller, https://github.com/vodkatad/RNASeq_biod_metadata
and https://github.com/vodkatad/biodiversa_DE.

The fastq files for all sequenced samples are stored at the Eur-
opean Genome-Phenome Archive (https://www.ebi.ac.uk/ega/ at the
EBI) with accession number EGAS00001006492.

Article https://doi.org/10.1038/s41467-024-53163-y

Nature Communications |         (2024) 15:9139 12

https://www.cbioportal.org/study/summary?id=coadread_tcga_pan_can_atlas_2018
https://www.cbioportal.org/study/summary?id=coadread_tcga_pan_can_atlas_2018
https://github.com/molinerisLab/StromaDistiller
https://github.com/molinerisLab/StromaDistiller
https://rdrr.io/bioc/Rsubread/man/featureCounts.html
https://rdrr.io/bioc/Rsubread/man/featureCounts.html
https://yulab-smu.top/biomedical-knowledge-mining-book/
https://yulab-smu.top/biomedical-knowledge-mining-book/
https://version-11-5.string-db.org/cgi/network?networkId=bJPsEA2nP3WX
https://version-11-5.string-db.org/cgi/network?networkId=bJPsEA2nP3WX
https://github.com/molinerisLab/StromaDistiller
https://github.com/molinerisLab/StromaDistiller
https://github.com/vodkatad/RNASeq_biod_metadata
https://github.com/vodkatad/biodiversa_DE
https://www.ebi.ac.uk/ega/
www.nature.com/naturecommunications


Methylation data collection
Methylationprofiles for 568CRCsampleswereobtainedusing Illumina
MethylationEPIC bead chip, which measures methylation status at
about 850,000 sites using hybridisation on two different probes after
bisulfite treatment on DNA. These samples comprise tissue from the
original patient, either primary tumours or metastases, or both in
some cases, and the corresponding engrafted tumours inmice (PDXs).

Raw data have been processed using the minfi package (https://
bioconductor.org/packages/release/bioc/html/minfi.html, version 1.32.0).
Data preprocessing was performed following the best practices outlined
by Bioconductor minfi vignette and documentation, and Hinoue et al. 41.
(https://www.bioconductor.org/packages/devel/workflows/vignettes/
methylationArrayAnalysis/inst/doc/methylationArrayAnalysis.html).

Background noise was removed using the minfi function pre-
processNoob(), which implements the noob background subtraction
method with dye-bias normalisation. Samples and probes that did not
pass the quality control were then excluded from further analyses.

For samples, minfi provides a simple quality control plot that
represents the log median intensity in both the methylated (M) and
unmethylated (U) channels. By adopting the default median intensity
cutoff of 10.5, six samples with lower values were removed from the
dataset.

We then filtered the probes, based on their detection p value (det-
Pval), which is indicative of the quality of the signal. By filtering out all
those probes of which det-Pval was higher than 0.01 in at least one
sample, we removed 64,361 probes. We also removed all the probes
mapping on X and Y chromosomes (19,627), to remove gender bias,
and those probes that are known to bind to common SNPs (30,435).
Moreover, using the list originally published by Chen et al. 103, we
removed 43,177 probes that have been demonstrated to map to mul-
tiple places in the genome.

To work with a coherent set of probes for all the samples, in
particular xenografts, we decided to apply one last probes filter,
removing all those probes known to specifically map on murine gen-
ome as well, in order to remove possible methylation signal coming
from the murine infiltrate, with the same rationale followed for
microarray data95. To do this, we combined two lists ofmurine-specific
probes, obtained from Needhamsen et al. 104 and Gujar et al. 105, which
resulted in removal of other 22,537 probes.

We combined the hg19 annotation package (IlluminaHu-
manMethylationEPICanno.ilm10b2.hg19 version 0.6.0), with the lift-
Over() function from the rtracklayer package106 (version 1.46.0) and the
imported file hg19ToHg38.over.chain.gz (http://hgdownload.soe.ucsc.
edu/goldenPath/hg19/liftOver/) in order to convert the remaining
700,298 probes’ coordinates from hg19 to hg38.

Moreover, as done for expression data (See Gene expression data
collection), we removed samples with clear lymphomatous char-
acteristics. Specifically for methylation, samples with PC2 ≥ 500 were
almost always flagged by H&E analysis when it was available, therefore
we considered all of them to be lymphomatous.

To identify groups of samples sharing similar methylation profiles,
Beta values were used to run non-negative matrix factorisation algo-
rithms in R (https://www.rdocumentation.org/packages/NMF/, version
0.22.0). k= 5 was identified as the best parameter by the cophenetic
correlation coefficient (bootstrapping arguments: rank= 2:6, nrun = 100,
seed= 42,.options= ‘p70’). We therefore selected 5 as the number of
classes used to characterise the methylation landscape of our samples.
We finally converted the five groups five engineered features from
methylation data via one-hot encoding (Supplementary Data 1).

The idat files for all samples are available at the GEO with acces-
sion number GSE208713.

Clinical data collection
Since the patients whose tumours are included in our biobank were
not enroled in a specific clinical trial and underwent surgery in

different hospitals, our clinical data collection is based on personal
communications with the Surgery Departments. This is the main rea-
son behind the sparseness of the data.

Measuring cetuximab response in PDX models
After surgical removal from patients, each metastatic CRC specimen
was fragmented; some fragments were frozen for molecular analyses,
and two fragments were implanted in two 5-week-old female NOD-
SCID mice. After engraftment and tumour mass formation, the
tumours were passaged and expanded for two generations until pro-
duction of 2 cohorts, each consisting of six 5-week-old male or female
NOD-SCID mice. When tumours reached an average volume of
400mm 3, mice were randomised for treatment: 6 mice were treated
with placebo and 6 mice were treated with cetuximab (20mg/kg/
twice-weekly i.p.).

Tumour size was evaluated once-weekly by calliper measure-
ments and the approximate volume of the mass was calculated using
the formula 4/3π·(d/2)2·D/2, where d is the minor tumour axis and D is
themajor tumour axis. Themaximum tumour diameter allowed by the
IACUC and the Italian Ministry of Health (20mm) was not exceeded.
Sex was not factored into the study design because large-scale studies
on cetuximab have demonstrated no significant differences in
response betweenmale and femalemice2,20. For assessing PDXmodels
response to therapy, we used averaged volume measurements at
3 weeks after treatment normalised to the tumorgraft volume at the
time of cetuximab treatment initiation. 231 tumour grafts were clas-
sified as follows: (1) ‘OR’ models with a decrease of at least 50% in
tumour volume (2) ‘progressive disease’ (PD)modelswith at least a 35%
increase in tumour volume, and (3) ‘SD’ for the ones in between2.

Finally, to obtain a balanced dataset, we elected to combine the
‘SD’ and ‘OR’ classes into a single ‘SD-OR’ (i.e., treatment responder)
class, turning our cetuximab response modelling task into a binary
classification problem.

All animal procedures were approved by the Ethical Commission
of the Candiolo Cancer Institute and by the Italian Ministry of Health
(authorization 806/2016-PR). All animal procedures for the CR PDX
data set were executed in an AAALAC-accredited animal facility and
approved by the Committee on the Ethics of Animal Experiments of
the regional council (Permit Numbers: G-13/13 & G18/12).

No statistical methods were employed to predetermine sample
size. Sample sizes were guided by our prior experience with various
PDX models2,20 and aligned with PDX minimal information
standards107. Tumour-bearing mice were randomised prior to treat-
ment using the Laboratory Assistant Suite108 by alternately assigning
them to different treatment groups. Investigators were not blinded to
group allocation during the experiments or outcome assessment.

Genomic feature engineering
To reduce data sparsity, we reshaped our mutational annotations into
a binary matrix -- with columns (110 in total) corresponding to genes
and rows (231 in total) corresponding to PDXmodels, where a value of
1 indicates that one or more SNVs mapping to a given gene have been
observed in a given PDX model. We also generated additional muta-
tional features: a ‘mutational burden’ feature containing the sum of all
mutated genes for each PDX, and a set of ‘multiplemutations’ features,
indicating the number of unique SNPs hosted by a given gene in a PDX
model. Finally, we filtered out any binary feature which was observed
in fewer than 5 PDXs across our IRCC-PDX collection. To obtain a
compact representation of relevant co-occurent or mutually exclusive
mutations, we developed an extended version of the CELLector
methodology31 that partitioned the PDx mutation landscape recur-
sively finding subgroups defined by the most recurrent combinations
of genomic events (mutations or CN alterations). Briefly, the original
version of CELLector (from now on referred to as hierarchical),
recursively applies the Eclat algorithm109 on a population described by
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a binary eventmatrix (BEM), with each column representing a genomic
feature and 0/1 possible entries indicating the absence/presence of
that feature in a sample. In the hierarchical version of CELLector, the
genomic background of a population is represented as a binary tree
whose topology is defined by the most frequently observed combi-
nation of genomic features (referred as signature) together with the
fraction of samples for which those mutations occur and hence satisfy
the signature rule (sequence of presence/absence of specific features).
In particular, CELLector first identifies the root as the genomic feature
with largest support, i.e., number of patients in which that feature is
observed, and then defines two sibling nodes. The left child corre-
sponds to the subset of samples satisfying the parent feature and the
feature with greatest support among the samples in the parent node.
The right child corresponds to the complementary population of the
parent node, composed of samples not satisfying that feature, and
among those the feature with greatest support. This algorithm is
applied recursively until no sub-population satisfying a certain sig-
nature rule of at least a minGlobSupp percentage of samples is iden-
tified, withminGlobSupp being a hyperparameter defined apriori. This
hierarchical structure outputs K recursive signature rules that can be
converted into a partition of K + 1 groups as follows.

Starting from CELLector hierarchical binary tree,
1. For each node starting from the root, we define with U the set of

samples satisfying that node rule defined as the corresponding
signature S.

2. If the considered node has a left child (Ul � U) associated to
feature Fl , we defined with Urm : =Ul the set of samples to be
removed from U.

3. If Ul has additionally a right child Ur defined by feature Fr , Urm is
updated with Urm : =Urm

S
Ur

4. If Ur has another right child Ur, r defined by signature Fr, r , the
update is repeated as Urm : =Urm

S
Ur, r and this step is per-

formed recursively until the considered node has no right child.
5. The new set of samples is defined as Un =UnUrm and corre-

sponding signature rule representing the group is defined
as S, � Fl , � Fr , � Fr, r , ::

If the condition in step 2. is not satisfied, the group is directly
defined as samples in node U and satisfying signature S rule. Once
every node in the hierarchical binary tree was considered, the last
groupwas defined as the remaining samples that did not satisfying any
hierarchical signature rule. The signature defining this group is created
as the negation of the root node and all the recursive right childers, as
described before. Note that the newly created groups could be com-
posed of a fraction of patients lower than the minGlobSupp.

We applied the partitioned version of CELLector (V2.0.0) to the
somatic mutation PDx space in BEM format with minGlobSupp
fixed at 0.02.

Similarly to what we describe for above for mutation features, we
discretise each of our 1162 gene-level log2 features into four categories
(‘Loss’, ‘Neutral’, ‘Gain’, ‘High Gain’), using, in addition to the GISTIC
log2R thresholds for ‘Loss’ and ‘Gain’ (−0.2, 1), an additional threshold
at 2, above which a gene is considered to be involved in a ‘High Gain’
event in which more than 1 additional copy is gained.

This ‘High Gain’ category is added to help capture any association
between driver gene high-order CN gain and cetuximab sensitivity.

We then reshape these categorical CN annotations into a binary
matrixwith columns corresponding to individualCNVevents involving
a given gene (e.g., ‘CD12_Gain’) and rows corresponding to PDX mod-
els. We then remove features which have the same value in 85% or
more of our training PDX models.

Transcriptomic feature engineering
To reduce RNAseq data dimensionality from an initial input of 33,668
gene-level expression features, as well as to include state-of-the-art

knowledge of cancer signalling pathways and transcription factor
activity, we computed (1) GSVA scores98 (http://www.biomedcentral.
com/1471-2105/14/7) using the GSVA R package (version 1.34.0, R 3.6.3,
kcdf = ‘gaussian’) on tmm expression levels and the MSigDB Hallmark
gene sets30 aswell as (2) PROGENy scores computed using the progeny
R package29. Both sets of scores were computed separately for each
train/test replicate (see following sections) to avoid any information
leakage. This step yelds to a total of 66 aggregated transcriptomic
features (Supplementary Data 1). Finally, we considered that many
PROGENy and Hallmarks gene set are partially overlapping: for
example PROGENy’s ‘NFkB’ set corresponds to Reactome’s ‘TAK1
activates NFkB by phosphorylation and activation of IKKs complex’
and ‘RIP-mediated NFkB activation via ZBP1’, and thus it shares 8 of its
48 genes with PROGENy’s ‘TNFa’ set (Reactome’s ‘TNF signalling’). To
avoid excessive collinearity between scores basedonoverlappinggene
sets, wefirst computed the Pearson correlation coefficient (PCC) for all
pairs of engineered transcriptomic features over all instances in the
training set, and considered as ‘collinear’ all pairs with a PCC larger
than 7. Here, for eachpair of collinear features,wediscard the onewith
the higher Mann-Whitney U test p value between responder and non-
responder PDXs in each training split.

Clinical feature engineering
We consolidated our clinical data by: (1) dropping any features with
more than 40%missing values, (2) dropping redundant or inconsistent
features (‘OXALIPLATIN-based treatments’, ‘N’, ‘T’, ‘N of other meta-
static resections before collected metastasis’, ‘M’, ‘Site M’, ‘Site of pri-
mary’, ‘Site of primary DICOT’), (3) converting ‘Stage at first diagnosis’
annotations to an integer score and retaining only thehighest score for
a given PDX model where multiple annotations are present, (4) con-
verting the ‘ Lymph node density’ annotations to a numerical score
corresponding to the ratio of positive lymph nodes over the total
lymphnode count, (5) encoding all treatment backbone annotations as
categorical features, (6) one-hot-encoding all sample anatomical
location annotations. This yielded 25 features covering patient, pre-
vious treatment, and tumour metadata (Supplementary Data 1).

Single-omic exploration of IRCC-PDX data
We conducted UMAP dimensionality reduction42 across individual
omics using umap-learn (v 0.5.2, https://github.com/lmcinnes/umap)
followed by density-based HDBSCAN43 (v0.8.29-1, https://github.com/
scikit-learn-contrib/hdbscanclustering) of the resulting 2d UMAP
embeddings. We then assessed omic feature distribution across clus-
ters for each omic and highlighted (Supplementary Fig. 12-15) those
which differentiate best between clusters using a Kruskal-Wallis test
(W. H. Kruskal & W. W. Wallis, ‘Use of Ranks in One-Criterion Variance
Analysis’, Journal of the American Statistical Association, Vol. 47, Issue
260, pp. 583-621, 1952) as implemented in scipy v1.11.1 (Supplementary
Data 2). Further,we computed a ‘one vs all’X2 test of independence for
each categorical feature and each cluster or aMann-Whitney U test for
each continuous feature and each cluster (Supplementary Data 2),
using scikit-learn v1.02 or scipy v1.11.1. This procedure was replicated
to compute enrichment analysis of covariates -- that is sample anno-
tations that were not included in the UMAP input, including NMF
methylation cluster labels, CRIS classes -- in the the above mentioned
UMAP+HDBSCAN clusters, as well as of differential drug response
across them (Supplementary Data 2). P values were corrected via
Bonferroni across all feature and clusters, divided per omic.

Model architecture
For our cetuximab response model we selected a stacking classifier
architecture. Stacking is an ensemble learning technique which com-
bines the individual contributions of multiple classification models
(level-1-classifiers) via a meta-classifier. Here, we use a soft voting
classifier which outputs the final binary class labels (cetuximab non-
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responder; cetuximab responder) based on the argmax of the sums of
the predicted probabilities from the level-1-classifiers (scikit-learn
VotingClassfier110,111, v1.02).

Our CeSta classifier pipeline uses a late integration approach to
prevent high-dimensional ‘omics (transcriptomics, methylomics) from
overwhelming smaller omics by dominating the selected feature set.
We perform an initial round of single-omic supervised feature selec-
tion whose output is then piped into each of the four lvl 1 classifiers
described below (Fig. 1a).

This selection step ranks features according to the product of (1) a
feature rank based on the Fisher’s exact statistic (scipy v1.9110,111) for
binary features or Mann-Whitney U-test statistic (scipy v1.9) for con-
tinuous features, (2) a feature rank based on percent lift, and (3) a
feature rank based on logit model (statsmodels v0.13.2 logit) coeffi-
cients. A set of topK features is then selected from this ranked list, with
K being one of CeSta’s hyperparameters. This selection process is
applied exclusively to the training set in each train, test split replicate
during the internal validation (Fig. 1b and below) to avoid any infor-
mation leakage. Model explanation in Fig. 4 shows feature importance
and corresponding statistics andmetrics obtainedwhen trainingCeSta
over the entire IRCC-PDX set as per the CeSta instance used for
external validation on CR-PDX sample (Fig. 1b)

We used four distinct level-1-classifier pipelines (Fig. 1a): (1) a
model-based (scikit-learn KNeighborsClassifier) forward feature
selection, followed by elastic net penalised logistic regression (scikit-
learn LogisticRegression with ‘penalty’ set to ‘elasticnet’), (2) ANOVA
feature selection (scikit-learn f_classif), followed either by a support
vector classifier (scikit-learn SVC) or (3) an extra trees classifier (scikit-
learn ExtraTreesClassifier), and (4) a CatBoost classifier (catBoost
1.0.579) trained on a common subset of features from CMP, then on
IRCC PDX (continual learning).

Each level-1-classifier was trained (or re-trained in the case of
CatBoost, see following sections) on a dataset of features selected (see
above) from our 5 ‘omic data sources (mutation, CNV, expression,
methylation, clinical). Finally, level-1-classifier prediction probabilities
were stacked and taken as input by our meta-classifier (see above)
which, in turn, gave in output a final binary prediction.

Model training, tuning, and validation
We generated 50 train, test split (150/81 PDXs) holdout shuffle repli-
cates by performing stratified sampling from our IRCC-PDX dataset.
The latter consisted of 231 fully characterised (targeted sequencing,
RNAseq,methylation assay, clinical metadata) PDXmodelswhichwere
labelled as cetuximab responders or non-responders according to
tumour volume variation after treatment, as described above.

For the internal validation analysis, we used a nested cross-
validation approach (inspired bymlextend’s StackingCVClassifier112) to
tune and train 50 independentCeSta replicates, one per each train, test
split. Each training set replicate was further split into 3 folds, and in
3 successive rounds, 2 folds were used (in turn) to fit the level-1-
classifiers. In each round, the level-1-classifierswere then applied to the
remaining 1 subset not used for model fitting in each iteration. The
resulting predictions were then stacked and provided -- as input data --
to the meta-classifier. After comparing the meta-classifier’s prediction
on the validation fold to the corresponding true labels, the first-level
classifiers were fit to the entire training set replicate (Fig. 1a, b).

This model training process was performed using a hyperpara-
meter combination suggested by Optuna113 across 200 trials, while
maximising the average of the area under the ROC curve (ROC AUC)
computed over 3 training folds. Tuned parameter include: the number
of top features selected during the first selection step, ‘colsample_-
bylevel’, ‘depth’, ‘boosting_type’, ‘boosting_type’, ‘bootstrap_type’ for
the CatBoost classifier; number of sequentially-selected features,
elastic net ‘C’, ‘l1_ratio’ for the Logistic elastic net classifier pipeline;
number of ANOVA-selected features, ‘C’ and ‘kernel’ for the SVC

classifier pipeline; number of ANOVA-selected features, ‘n_estimators’
for the ExtraTrees classifier pipeline. This hyperparameter space
search was performed, independently, for each model replicate.

Finally, we validated each of our 50 CeSta pipelines by predicting
each PDXmodel in their respective test set as a cetuximab ‘responder’
or ‘non-responder’, and computing the resulting ROC AUC and ROC
AUC 95 confidence interval (using DeLong’s method) by comparing
predicted and true labels.

For the external validation analysis, the same tuning, training, and
validation processwas repeated using the entire IRCC-PDXdataset as a
training set (N = 231), and the CR-PDX dataset as a test set (N = 50)
(Fig. 1b, c).

Performance baselines
To provide a realistic benchmark for CeSta performance, we define
and train a number of alternative, multi-omic cetuximab sensitivity
predictors. The latter are all trained, tuned, and validated using a set of
30 holdout shuffle replicates, analogous to the setup we use for CeSta
internal validation in Fig. 1b.

‘tripleNegRule’ is a rule-based classifier based on the KRAS-NRAS-
BRAF mutational signature: it will output a ‘non-responder’ prediction
if any of these three genes is mutated in the current PDX example.

‘tripleNegRightRule’ is a rule-based classifier based on the KRAS-
NRAS-BRAF mutational signature and the ‘right colon’ marker (i.e.,
whether the original tumour was located in the right portion of the
patient’s colon). This decision strategy originates from a retrospective
analysis of triple negative patients from the CRYSTAL and FIRE-3 trials
where right-sided tumours had significantly poorer prognosis and
lower response to cetuximab treatment(Tejpar et al. 44).

tripleNegRightRule will output a ‘non-responder’ prediction if
either (1) any of KRAS, NRAS, BRAF is mutated or (2) the original
tumour was right-sided.

‘elNet_baseline’ is an Elastic-Net net penalised logistic regression
classifier (scikit-learn LogisticRegression with penalty set to ‘elas-
ticnet’) based on four binary features encoding the mutational status
of KRAS, BRAF, NRAS (i.e., the ‘triple negative’ CRC signature), and
whether the primary tumour is located in the Right Colon. This cor-
responds to the state-of-the-art clinical signature for cetuximab sen-
sitivity in CRC, as we discuss in Introduction and Results.

‘rawL1elasticnet’ is an Elastic-Net net penalised logistic regression
classifier which uses our full set of raw (non aggregated) features, that
is: 110 binary gene mutational status features, 33,668 variance-
normalised gene-level RNAseq data, and 1162 binary CNV events.

‘MixOmics sPLS-DA’ uses mixOmic’s114 multivariate integration
approach, based on Partial Least Squares (PLS) regression and dis-
criminant analysis, in which the most informative features (i.e., those
that best discriminate between cetuximab responsive and non-
responsive PDXs) from different ‘omics are selected with the con-
straint of correlation between their first PLS components. More speci-
fically, here we follow themulti-omic classification case study illustrated
in http://mixomics.org/methods/spls/. We (1) perform LASSO feature
selection (glmnet v4.2, https://www.rdocumentation.org/packages/
glmnet) for methylation (700,298 probe-level features) and expression
(33,668 gene level features), (2) use a sparse partial least-squares dis-
criminant analysis model (sPLS DA) for single-omic dimensionality
reduction, (3) followed by a DIABLO model for horizontal multiple
‘omics integration. We optimise both the number of PLS components
and the number of selected features for each omic and each component
via 3-fold cross-validation on each training set replicate.

Finally, we validate these benchmark classifiers on each test set
replicate, as described for our CeSta classifier in Fig. 3b by labelling
each PDX model as a cetuximab ‘responder’ or ‘non-responder’, and
computing the resulting ROC AUC by comparing predicted and true
labels, again using DeLong’s method for computing the ROCAUC0.95
confidence interval where possible.
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Cell line multiomic data source
The Cell Model Passport portal55 (https://cellmodelpassports.sanger.
ac.uk/) catalogues and curates multi-omic data for cancer cell line and
organoid models. When combined with the Genomics of Drug Sensi-
tivity in Cancer dataset (https://www.sanger.ac.uk/tool/gdsc-
genomics-drug-sensitivity-cancer/), it provides genomics, tran-
scriptomics, and cetuximab response data for 860 unique cancer cell
line models (panCMP dataset). Here, we repeat the same data pre-
processing and feature engineering steps we performed for the IRCC-
PDX dataset, with the exception of the NMF-based clustering of
methylation probes as this omic is missing from the CMP collection.
Further, as cell line cetuximab response is quantified as IC50 values,
rather than tumour volume change, here we dichotomise our target
variable using the median IC50 for all cell lines in the panCMP dataset
with lines falling below this threshold being labelled as ‘responders’.

For the purpose of comparing the predictive performance of a
model trained on cell line data against one trained on PDX data, we
generate a panCMP training set which includes a subset of 860
examples and their multi omic characterisation (Data and Code
Availability). These features correspond to the subset available in both
the aforementioned panCMP dataset, our IRCC-PDX dataset, and the
CR-PDX dataset. We then train and tune a catBoost classifier pipeline
(see above for pipeline architecture, hyperparameters) over this
panCMP training set using an 8-fold cross-validation approach across
50Optuna trials. This cell-line trained ‘basemodel’ is then provided, as
a starting point for continual learning, to a second round of training
(using the ‘init_model’ flag) over either an IRCC PDX train set split for
internal validation, or the entire IRCC-PDX dataset for external vali-
dation on the CR-PDX dataset (Fig. 1b).

FromthepanCMPdataset, we can further subset 44 colorectal cell
lines (CRC-CMP), which are characterised with the same subset of
features as in the panCMP dataset. This context-specific dataset can
also be used to train a catBoost ‘basemodel’whichwe then feed into a
second catBoost classifier trained on IRCC-PDX.

External validation: Charles River dataset
An independent CRC PDX cohort115 (https://www.cancermodels.org/
search?filters=data_source%3ACRL+AND+dataset_available%3Acopy
+number+alteration%2Cexpression%2Cmutation+AND+model_type%
3APDX+AND+primary_site%3Acolon) has been assembled and char-
acterised by our collaborators at Charles River Discovery Research
Services (CR). We use 50 CRC LMX, first-pass PDX models corre-
sponding to 50 unique patient samples characterised using a partially
overlapping set of multi-omics features as in the IRCC PDX cohort. For
missing features (e.g., methylation NMF cluster labels, some clinical
annotations, someCNV events) we impute their values for this CR-PDX
cohort using the mode for categorical features and the median for
continuous features. We then use this CR-PDX dataset as a fully inde-
pendent validation cohort to compare our stacked classifier’s perfor-
mance against that of baseline models after training on the entire
IRCC-PDX dataset.

Post-hoc model explanation
As a cross-model proxy for feature importance, for each feature, we
calculate the mean of the absolute SHAP values (https://github.com/
slundberg/shap v0.4) across all instances in the test set. We consider
the absolute values as we do not want positive and negative values to
offset each other. Features that have large mean absolute SHAP values
are those that more significantly impact model predictions.

We are also interested in assessing, for a given classifier, which
features perform equally well across different datasets (i.e., panCMP,
IRCC-PDX, CR-PDX). To do so, we start by evaluating the relationship
between a feature’s SHAP values and the target variable. A positive
correlation here indicates that the model has identified and it is suc-
cessfully exploiting an informative feature for its current classification

task. Given that SHAP values are additive, with the model’s prediction
being the sumof all feature SHAPs, itmakes sense to remove the effect
of other features’ contribution by computing the partial correlation
between each feature and the target after removing the effect of all
other features (i.e., controlling variables). Specifically, here we use
pingouin116 (v0.5.1) and its partial_corr function specifying, in turn, all
features but one as x-covariates.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw sequencing data generated in this study have been deposited in
the European Genome-Phenome Archive (EGA) database under the
accession numbers EGAS00001001171 (targeted DNA sequencing) and
EGAS00001006492 (RNAseq), and are accessible upon request via the
EGA portal, as required for personally identifiable data. In compliance
with legal requirements to safeguard patient privacy, access to the raw
data stored in the EGA is managed by a Data Access Committee (DAC)
overseen by E.G., L.T. and the Data Sharing office at Sanger. Researchers
can request access by reaching out to the EGA, which will inform the
DAC of the request. The DAC will approve access within roughly two
weeks and decide the duration for which access will be granted. The raw
methylation data generated in this study have beendeposited in theGEO
database under the accession numbers GSE208713 (methylation data).
The Khambata-Ford dataset is available on GEO under the accession
number GSE5851. Intermediate data needed to fully replicate the results
in Figs. 1, 2 is available at https://bitbucket.org/uperron/ircc-pdx_
exploration. Intermediate data, models and code needed to fully repli-
cate CeSta and the results in Figs. 3, 4 is available at https://bitbucket.
org/uperron/cesta_pdx. The CR-PDX data is available on CancerMo-
dels.org. The sample list can be retrieved, matching sample identifiers as
detailed in Supplementary Data 1, at: https://www.cancermodels.org/
search?filters=data_source%3ACRL+AND+dataset_available%3Acopy
+number+alteration%2Cexpression%2Cmutation+AND+model_type%
3APDX+AND+primary_site%3Acolon. The associated multi-omic data
can be obtained on request by registering a free account on criver.com
at https://compendium.criver.com/search?m%5Bids%5D%5B0%5D=
10715&m%5Bs%5D=1&f%5Bg%5D%5Bht%5D%5Bs%5D=&f%5Bg%5D%5Bmu
%5D%5Ba%5D=&f%5Bg%5D%5Bmu%5D%5Be%5D=&f%5Bg%5D%5Bcn%5D
%5Bmi%5D=0&f%5Bg%5D%5Bcn%5D%5Bmx%5D=0&f%5Bp%5D%5Bage%
5D%5Bmin%5D=&f%5Bp%5D%5Bage%5D%5Bmax%5D=&f%5Bp%5D%
5BoriginTypes%5D=&f%5Bp%5D%5Bgenders%5D=&f%5Bp%5D%
5Bspecies_population_ids%5D=&f%5Bp%5D%5Bdifferentiations%5D=&g%
5Baccessions%5D=all, after registering a free user-account. Processed
RNAseqdata for the IRCC-PDXand theCR-PDXcollections is available on
figShare at https://figshare.com/s/35d13c7e7cf8f4759334117. The cell-line
multi-omic anddrug response data used in this study can be accessedon
the CellModelPassports55 and the Genomics of Drug Sensitivity in
Cancer118 data portals, respectively at: https://cellmodelpassports.sanger.
ac.uk/downloads and https://www.cancerrxgene.org/downloads/drug_
data. Source data are provided with this paper.

Code availability
The StromaDistiller Code119 and the RNASeq_biod_metadata code120

implementing a computational pipeline tracking counts and metadata
across different sequencing batches for xenografts/organoids RNAseq is
available at https://github.com/molinerisLab/StromaDistiller and https://
github.com/vodkatad/RNASeq_biod_metadata. The biodiversa_DE
Code121 performing differential expression analysis with DESeq2 and
various enrichment analyses on the results is available at https://github.
com/vodkatad/biodiversa_DE. CELLector v2.0.0122 is available at https://
github.com/francescojm/CELLector. Additional code performing multi-
omic data preprocessing, normalisation, and integration and
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reproducing the results depicted in Figs. 1,2, 3, 4 is available at https://
bitbucket.org/uperron/pdx_multiomics_integration_preproc and https://
bitbucket.org/uperron/ircc-pdx_exploration and https://bitbucket.org/
uperron/cesta_pdx, respectively.
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