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The concept of a critical period for visual development early in life during which sensory experience is
essential to normal neural development is now well established. However recent evidence suggests that a
limited degree of plasticity remains after this period and well into adulthood. Here, we ask the question,
‘‘what limits the degree of plasticity in adulthood?’’ Although this limit has been assumed to be due to neural
factors, we show that the optical quality of the retinal image ultimately limits the brain potential for change.
We correct the high-order aberrations (HOAs) normally present in the eye’s optics using adaptive optics,
and reveal a greater degree of neuronal plasticity than previously appreciated.

T
he pioneering work of Hubel and Wiesel1 established the concept of a critical period for visual development
early in life during which sensory experience is essential to normal neural development. Although this is a
fundamental concept in neurobiology it is also now recognized that some limited plasticity remains after this

period well into adulthood2–5. During recent decades, numerous studies have shown that a range of visual
functions in normal adult subjects can be improved as a result of intensive training (termed perceptual learning).
These functions include contrast sensitivity6–10, motion perception11–13 and object recognition14,15. However, there
is abundant evidence to indicate that this kind of learning-induced plasticity in adults while being possible is also
very limited in extent8,9,16–18. We wished to know what limits visual improvements that can occur as a consequence
of perceptual learning in the normal adult. This refers directly to the mechanisms of brain plasticity that operate
beyond the critical period.

In the adult visual system, uncorrectable optical aberrations limit the quality of the retinal image19,20, even when
defocus is corrected by sphero-cylindrical lenses21–23. These aberrations, termed higher order aberrations
(HOAs)19, exist throughout the life span24–27. We wondered if HOAs set a fundamental limit to the benefits
obtained from perceptual learning for the adult visual system.

The aim of the current study is to assess whether perceptual learning in normal adults is limited by the eye’s
optical quality. To address this we measure the effects of perceptual learning on visual sensitivity with and without
HOAs-correction, using a real-time closed-loop adaptive optics visual stimulator system28 (for details, see
Supplementary online). We found larger and more robust contrast sensitivity improvements when the HOAs
were corrected than when they were left uncorrected. We show that this is not due to the better optical quality per
se or by the brain’s ability to utilize this information but a consequence of improved perceptual learning using
images of higher optical quality. This also transferred to a significant improvement of visual acuity in the HOAs-
corrected perceptual learning group, compared with that of the HOAs-uncorrected group. We confirm previous
reports of brain plasticity well beyond the critical period and show that its benefits are even larger if the eye’s
higher-order optical aberrations are corrected.

Results
Visually normal adults were separated into two training groups, in one (Group1 – 13 subjects) training was
undertaken under the HOAs-corrected condition whereas in the other (Group2 – 8 subjects) training was
undertaken under normal viewing condition (i.e. HOAs-uncorrected). Learning effects were then analyzed in
accordance with individuals’ pre-training baseline conditions. In both cases, 10 training sessions of 1 hour were
undertaken with a high spatial frequency stimulus. For each subject, a high spatial frequency was selected for
training that corresponded to a pre-training contrast threshold of 0.4. In particular, subjects in Group1 were
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trained using spatial frequency when contrast threshold at HOAs-
corrected condition is 0.4; subjects in Group2 were trained using
spatial frequency when contrast threshold at HOAs-uncorrected
condition is 0.4. Correction of HOAs has been shown to improve
contrast sensitivity at all spatial frequencies but more so at higher
spatial frequencies29,30. The contrast sensitivity benefits that we found
when the HOAs were corrected were similar to that previously
reported by Yoon and Williams30 for a 3 mm pupil (see
Supplementary Table S1 online). After training, Group1, the
HOAs-corrected group, showed a 5.39 dB (86.1%) significant
(Paired Samples Test, t(12)527.66, P5 0.0000059, 2-tailed)
improvement of contrast sensitivity. The slope of the average learn-
ing curve was 0.41 log units, and reached a plateau after 7.35 training
sessions (Fig. 1a). Group2, the HOAs-uncorrected group, showed a
smaller (3.42 dB or 48.2%) but also significant (Paired Samples Test,
t(7)522.62, P50.03, 2-tailed) improvement. The slope of the aver-
age learning curve was 0.35 log unit, and reached a plateau after 4.12
training sessions (Fig. 1a- individual leaning curves data are given in
Supplementary Table S2 online).

Contrast sensitivity functions (CSFs), which measure sensitivity to
stimuli of different spatial frequencies, were measured at pre- and
post-training stages for both groups. There were significant improve-
ments after training in both Group1 (Fig. 1b, post- vs. pre-training:
F (1, 12) 575.43, P,0.00001) and Group2 (Fig. 1c, post- vs. pre-
training: F (1, 7) 55.46, P50.05). The average magnitude of the
contrast sensitivity improvements across observers and spatial fre-
quencies were 3.11 dB and 1.31 dB in Group1 and Group2, respect-
ively (Fig. 1d). For the subjects in Group1 and Group2 who showed
significant contrast sensitivity improvement (all 13 subjects in
Group1 and only 4 subjects in Group2. For method, see
Supplementary online), while the magnitude of improvements at
the training spatial frequency were not significantly different
(Independent Samples Test, t(15)520.58, P50.57, 2-tailed), a dif-
ferent spatial frequency dependency was evident (Fig. 1e). A
Gaussian function was fitted to the average normalized improvement
curve6 (for detail, see Supplementary online): there was a specific
learning effect (full width at half height bandwidth of 1.11 octaves)
together with a more general increase in sensitivity at all spatial
frequencies tested in Group1. The magnitude of this general increase
was half the magnitude of the peak increase; while only a specific
learning effect (bandwidth 1.42octaves) in Group2.

Another important finding was that training also significantly
improved visual acuity in Group1 (Paired Samples Test,
t(12)59.16, P5 0.00000091, 2-tailed), but not in Group2 (Paired
Samples Test, t(7)51.42, P5 0.20, 2-tailed). The average improve-
ment of visual acuity in Group1 was 2.32 dB (or 31%), and this was
larger than what was found in Group2 (Independent Samples Test,
t(19)53.97, P50.00082, 2-tailed) (Fig. 2a). All subjects in Group1
had visual acuity improvements after training (Fig. 2b) that could
sustain for at least 5 months (4 subjects in Group1 had visual acuity
retested 5 months after training).

It is important to stress that correction of HOAs results in
improved optical quality and therefore improved contrast sensitivity
and visual acuity, however these purely optical improvements are
incorporated in the pre-training baseline measurements from which
any training improvements are assessed. To confirm that the CSF
improvements we found after training were neural in origin, we also
assessed pre- and post-training optical modulation transfer func-
tions (MTF), to quantify the quality of the optics20, for subjects in
Group1 and Group2. We found significant improvements in the
MTFs as a result of the correction of HOAs but no significant change
in the MTFs after training for both groups. On the other hand, the
neural transfer function (NTF), calculated from subtracting MTF
from the CSF31, showed significant improvements after training in
both groups (for details, see Supplementary online). These results
demonstrate that optical quality did not alter significantly as a result

of training; the training-based improvement to the CSF reflected
neural changes.

To confirm that the neural benefits were contingent on perceptual
learning and not just a passive consequence of having a sharper
retinal image, we undertook another training experiment under
the HOAs-corrected condition (Group3, 6 adults) using a spatial
frequency which, while being optimal in terms of HOAs-corrected
sensitivity, was sub-optimal in terms of perceptual training9. Group3

Figure 1 | Different training effects between Group1 and Group2. (a)

Average learning curves of Group1 (red) and Group2 (blue). The first and

last points in each condition were derived from pre- and post-training

contrast sensitivity function (CSF) measurements, respectively. Error bars,

SEM. Subjects in Group1 were trained under the HOAs-corrected

condition. Red solid line represents a piecewise linear model fit to the

average learning curve of Group1; Subjects in Group2 were trained under

the HOAs-uncorrected condition. Blue solid line represents a piecewise

linear model fit to the average learning curve of Group2. (b) Average post-

and pre-training CSFs of Group1. (c) Average post- and pre-training CSFs

of Group2. (d) Average magnitude of contrast sensitivity improvements

across observers and spatial frequencies in Group1 (3.11dB) and Group2

(1.31dB); (e) Average normalized improvement curves of Group1 (red)

and Group2 (blue). Dashed line represents no improvement. Solid lines

represent Gaussian fit to the average normalized improvement curves.
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was same as Group1, except subjects were trained at a spatial fre-
quency that corresponded to the peak of the CSF, a frequency lower
than previously used (Figs 1 & 2) and one known to be non-optimal
in terms of perceptual learning9. If the previous improvements were
simply a passive adaptation32 to the new HOAs-corrected image,
(and not specifically a result of perceptual learning) we would expect
to find similar results for Group3 as we did previously for Group1.
Interestingly, we found much less improvement in Group3 (Fig. 3):
the average magnitude of improvements across observers and spatial
frequencies was 1.12 dB, which was much less than previously found
in Group1 (F(1,17)59.86, P50.006); improvements were not gen-
eralized across spatial frequency and did not transfer to letter acuity

(Paired Samples Test, t(5)50.32, P5 0.76, 2-tailed). In these respects
they were different to that previously found in Group1 for the high
spatial frequency training target, suggesting that a HOAs-corrected
environment in itself is necessary but not sufficient to explain the
results previously described for Group1 of this study; training at a
near-cutoff spatial frequency is also required, which suggests the
neural improvement is specific to perceptual training.

The neural improvements in contrast sensitivity after training
under the HOAs-corrected condition could in principle be due to
increased signal efficiency or reduced internal noise. Either effect
would result in improved signal-to-noise and thus, lower thresh-
olds33–36. To separate between these two potential explanations, we
assessed the training improvement in contrast thresholds for stimuli
with and without added spatial noise. Training improvements were
measured at a spatial frequency of 16 c/d and 2 c/d for 4 subjects in
Group1 within the HOAs-corrected environment. These results are
shown in Fig. 4 where contrast thresholds are plotted against the
amplitude of the added white spatial noise, before and after training
in the HOAs-corrected environment. The solid lines are best fits to
an equivalent noise model of the form:

d~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E|K
NzNi

r
ð1Þ

Where K is related to sampling efficiency, E is the squared contrast
energy, N is the squared rms noise contrast, and Ni is related to the
internal noise required to account for the measured thresholds. This
is referred to as the equivalent noise model33,34,37. The values of the
two derived parameters (K and Ni) are shown in Fig. 4. We found
that contrast sensitivity improvements under the HOAs-corrected
condition for noise-free stimuli were similar to those found with
noisy stimuli (Fig. 4), indicating an improved neural efficiency (K)
as a consequence of training in the HOAs-corrected condition train-
ing38, not a reduction in the internal neural noise (Ni).

Discussion
We demonstrate that the optical quality of the eye limits visual
improvements from perceptual learning in adults well beyond the
critical period. This in turn means that a greater degree of adult
plasticity exists than previously thought. When the HOAs are cor-
rected, we show larger visual improvements that are a consequence of
perceptual learning, not the better viewing condition per se. Using
the conventional method where training occurred in a HOAs-uncor-
rected environment (Group2), we found only half of the subjects
exhibited improvement in contrast sensitivity, and the average band-
width of the improvement from perceptual learning was 1.42 octaves.
These results are consistent with previous results in the literature. For
example, Huang et al.9 found only 7 out of 14 normal adults had
performance improvement, and the average bandwidth was 1.40
octaves.

Interestingly, we found that identical training within the HOAs-
corrected environment (Group1) produced very different results: all
subjects exhibited visual performance improvement; training not
only produced the expected specific improvement9 but also produced
a general benefit for all spatial frequencies tested. General benefits
after training have been reported previously. Sowden et al.6 reported
that training subjects at a parafovea site resulted in an improvement
with a bandwidth of 1.30 octaves and a general learning effect of 0.05
log units. They claimed that the general learning effect was due to
using naive subjects who were not pre-trained. However, in our
study, the general learning effect is not amenable to this explanation.
First of all, all the subjects in our study received 1.5 h of practice to
make sure that they were familiar with the task requirements before
the experiment commenced. Second, because Group1 and Group2
were measured using an identical procedure, the explanation for the
general improvement displayed by Group1 cannot be in terms of any
general procedural learning effect. It must be the consequence of

Figure 3 | Training effect in Group3. Subjects in Group3 were trained at a

low spatial frequency (spatial frequency that has peak contrast sensitivity

under the HOAs-corrected condition), when HOAs were corrected. Error

bars, SEM. (a) Average post- and pre-training CSFs of Group3; (b) Average

magnitude of improvements across observers and spatial frequencies in

Group3 was 1.12dB, less than in Group1 (F(1,17)59.86, P50.006);

improvements of visual acuity in Group3 were not significant (Paired

Samples Test, t(5)50.32, P5 0.76, 2-tailed), and less than in Group1

(Independent Samples Test, t(17)53.27, P50.004, 2-tailed).

Figure 2 | Improvements of visual acuity after training in Group1 (red)
and Group2 (blue). Visual acuity associated with 75% correct

identification was measured with the Chinese Tumbling E Chart at HOAs-

uncorrected condition, and converted to MAR acuity. (a) There were

significant improvements of visual acuity in Group1 (Paired Samples Test,

t(12)59.16, P5 0.00000091, 2-tailed), but not in Group2 (Paired Samples

Test, t(7)51.42, P5 0.20, 2-tailed). (b) Visual acuity of all subjects before

and after training in Group1. Abscissa represents visual acuity after

training; ordinate represents visual acuity before training. Each red ‘e’

point represents one subject. The dashed line indicates a prediction of no

improvement. The 4 yellow ‘m’ points represent visual acuity retested 5

months after training for 4 subjects (the corresponding pre-/post-training

results of these 4 subjects are shown by red ‘e’ points that are marked by

black ‘%’).
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learning within a HOAs-corrected environment, as this is the only
difference in the experimental manipulations between Group1 and
Group2.

The general improvement we report at all spatial frequencies was
only found in the HOAs-corrected group (Group1). It is not caused
by the improved quality of the retinal image per se because this
improvement, which is shown in Supplementary Table S3 online,
is instantaneous39, easily verified by the improved MTFs and factored
out since it is incorporated in our pre-training baseline. Furthermore
it cannot be the results of slow term optical changes over the duration
of training because it was not reflected in the optical transfer func-
tions we obtained (see Supplementary Fig. S2 online). Therefore the
improvement that occurred over the training period must be neural
in origin. This neural effect is not a passive consequence of extended
viewing under the HOAs-corrected condition32 but rather a con-
sequence of perceptual learning per se under the HOAs-corrected
condition. The hallmarks of perceptual learning9,10 are its mag-
nitude39, its generalization to lower spatial frequencies and its trans-
fer to letter acuity. These three conditions are met only when
perceptual training is undertaken at a high spatial frequency
(Group1) not at a peak spatial frequency (Group3). Passive neural
adaptation cannot provide an explanation because 1. No similar
effects were seen for Group3 who had similar HOAs-corrected
experience, 2. For each subject, exposure to the HOAs-corrected
condition was lasting only 1 hr a day with at least 15 hrs of normal
viewing and 3. The improvements were sustained in that visual acuity
improvements under normal viewing condition were still present 5
months later. Therefore, we are left to conclude that the visual
improvement (i.e. contrast sensitivity and letter acuity) exhibited
by Group1 are a consequence of perceptual training when under-
taken under the HOAs-corrected viewing condition.

We also show that the neural improvements reported here are due
to improved transduction efficiencies rather than reductions in
internal neural noise. Using an equivalent noise model36 to separate
these different components of perceptual learning, we show, by
evaluating the effects of additive spatial noise, that the benefits are
multiplicative rather than additive in nature, consistent with the
notion of improved signaling efficiency. This is in agreement with
a number of studies that have investigated this distinction for other
perceptual learning tasks, such as position discrimination40,41, letter
identification42, faces and textures38 and contrast detection8. The
general finding is that training improves efficiency (position discrim-
ination, letter identification, faces & textures) but that there are also,
in some cases, reductions in internal noise (contrast detection). Thus
the mechanisms underlying the effects we report may not be different
in principle to those reposted by others; simply our effects are

larger due to the improved optical quality of our participants.
Parenthetically, the fact that the improvements are due to efficiency
(or sampling efficiency), rules out a purely optical explanation, as this
would have been manifested as a reduction in the equivalent noise
measure36,43.

It has been argued that the typical perceptual learning that exhibits
a selectivity for spatial frequency, contrast and field position is more
to do with changes in the higher-level decision stage than it is to do
with improved efficiency of neural responses at lower level of visual
processing44. The improvements we report using adaptive optics and
trained at a high spatial frequency involve two components, one is
the typical leaning effect that is spatial frequency specific and does
not transfer to other functions such as letter acuity8,9 whereas the
other extends to lower spatial frequencies and represents not only a
more generalized improvement at all spatial frequencies but a more
generalized improvement in visual function in general, extending to
letter acuity (Fig. 2). This latter component is due to perceptual
learning because it is not present when training is undertaken at a
low spatial frequency even when the HOAs have been corrected ( i.e.
Group3). It is possible that the sites of these two components are
different and that the more generalized benefit occurs at an earlier
site of processing.

Visual function rapidly improves after birth reaching asymptotic
values for acuity and contrast sensitivity by 9 months of age. While it
is true that infants do suffer from refractive errors in early life45–47,
there is good evidence48,49 that their depth of field, due to their rela-
tively large pupils, is sufficiently large to make them resistant to the
HOAs that limit adult vision. We surmise that initial neural develop-
ment reaches asymptotic levels that are eventually matched to and
limited by the optical quality of the adult eye. Improvements in the
eye’s optical quality during adulthood by adaptive optics can facil-
itate concurrent gains in the efficiency of neural learning in visual
areas of the brain. We reveal two components to this plasticity, one
tuned for spatial frequency and limited to high spatial frequencies
and another one that is untuned for spatial frequency. This latter
component is only revealed when the optical quality is improved and
a high spatial frequency stimulus is used to engage perceptual learn-
ing. Importantly, this second component allows benefits to extend to
the detection of stimuli that are more spatially broadband such as
letters. In turn this implies the visual benefit will transfer to the
detection of real world objects. Our finding in normals with
improved optics may help explain one of the mysteries of perceptual
learning in amblypes where, unlike normals, the visual benefits do
transfer from the trained spatial frequency to letters50. In amblyopes,
the optics do not limit function due to the presence of neural loss and
to this extent amblyopes are like normal subjects whose HOAs have

Figure 4 | Averaged sensitivity (squared contrast) of four subjects in Group1 (trained with HOAs-corrected) as functions of external noise levels
(squared rms) for spatial frequencies of 16 c/d and 2 c/d. Contrast thresholds corresponded to 79.3% correct. 9#9, pre-training; 9.9, post-training; Error

bars, SEM. Solid lines are curve fits to the equivalent noise (see text) and demonstrate that perceptual training improvements are the result of improved

neural efficiency rather than diminished neural internal noise.
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been corrected and for which more generalized spatial frequency
improvements are obtainable. Our finding of enhanced visual plas-
ticity in the adult, in both magnitude at the trained spatial frequency
and extent of transfer to other spatial frequencies, is directly relevant
to the development of new therapies applied in later life to redress
brain dysfunction resulting from anomalous visual development
earlier in life9,10,51,52.

Methods
Observers. Twenty seven adults (Age: 19–26) with normal or corrected to normal
vision (slightly myopic, ƒ23.0 D) were randomly assigned into three groups. There
was no substantial difference between these groups in terms of mean age or mean
refractive error. There were 13 observers, 8 observers and 6 observers in Group1,
Group2 and Group3 respectively. Group1 was trained at the HOAs-corrected cut-off
spatial frequency (spatial frequency when contrast threshold at HOAs-corrected
condition is 0.4 which was 29.53 6 1.68 c/d (s.e.m.)), with HOAs corrected. Group2
was trained at the HOAs-uncorrected cut-off spatial frequency (spatial frequency
when contrast threshold at HOAs-uncorrected condition is 0.4 which was 28.75 6

1.88 c/d (s.e.m.)), with HOAs uncorrected. Group3 was the same as Group1, except
subjects were trained at a lower spatial frequency (spatial frequency corresponding to
peak contrast sensitivity at HOAs-corrected condition which was 6.00 6 0.89 c/d
(s.e.m.)).

The study was approved by the Institutional Review Board of University of Science
and Technology of China. All subjects were naive to the purpose of the experiment
and informed consent was obtained from each of them.

Apparatus. All experiments were conducted on a real-time closed-loop adaptive
optics visual stimulator system (AOVS)28 in a dark room. It consists of a Hartmann-
Shack wavefront sensor (WFS) with 97 lenslets, operating at 25 Hz, and a 37-actuator
PZT deformable mirror with a stroke of about 2 microns. The control bandwidth of
the system is about 1 Hz. See Supplementary online for diagram (Fig. S1) and more
detail. The aberrations are measured for a 4 mm artificial pupil up to 35 Zernike
polynomials (7th order) according to OSA wavefront standards19.

Design. The experiment in each group consisted of four consecutive stages: a pre-
training practice stage, a pre-training test stage, a training stage and a post-training
test stage. For each subject, only one eye was used in the experiment, the other eye was
covered by an opaque fabric. The tested eye having normal or corrected to normal
vision was selected randomly for each observer. At the pre- and post-training test
stages, visual acuity was measured under conditions where the higher order
aberrations (HOAs) were uncorrected. Contrast sensitivity functions (CSFs) were
measured under both the HOAs- corrected and uncorrected conditions. Visual acuity
corresponding to 75% correct identification was measured with the Chinese
Tumbling E Chart, and converted to MAR acuity. Contrast sensitivity, defined as the
reciprocal of contrast threshold for detecting a sine-wave grating with 79.3%
accuracy, was measured at spatial frequencies 0.6, 1, 2, 4, 8, 16, 24, 36 c/deg on the
AOVS. See Supplementary online for more detail.

Procedure. A two-interval forced-choice procedure was used for both training and
threshold measurements. In training and CSF measurements, the presentation
sequence in each trial was as follows: a 267-ms fixation cross signalled by a brief tone
in the beginning, a 117-ms interval, a 500-ms inter-stimulus interval blank, a 267-ms
fixation signalled by a brief tone in the beginning, a 117-ms second interval, and blank
until response. See Supplementary online for more detail.
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