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Optimal Defense Theory 2.0: tissue-specific stress defense prioritization as an
extra layer of complexity
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ABSTRACT
In nature, plants need to be able to quickly adapt to changing environments during their lifetime in
order to maintain fitness. Different defense responses are not only costly, but often also antagonistic
to one another. Hence, when faced with multiple stresses simultaneously, plants likely have to
prioritize their defense responses. This type of crosstalk between different stress response pathways
is suggested to balance the high costs of triggering andmaintaining stress responses with the limited
amount of resources available to a plant. This assumption is in accordance with the optimal defense
theory (ODT), which states that living organisms put more resources into protection of the most
valuable tissues, but does not explain how plants survive combined stress conditions in nature. In this
review, we describe recent evidence that expands on the framework of the ODT by suggesting that
under combined stress plants spatially separate contrasting stress responses, rather than protecting
themost valuable tissues to simultaneously protect themselves from contrasting stressors. We discuss
the implications of these findings for understanding plant responses to combined stresses and
suggest potentially fruitful avenues for further research.
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Hormone crosstalk in plant defense signaling
during combined stress

Plants in nature must frequently deal with changes to
their surrounding environment that result in suboptimal
conditions during their lifetime [1]. Critical changes in
a plant’s abiotic and biotic environment must be sensed
and translated into molecular, biochemical, and physio-
logical responses that allow plants to adapt to such stress-
ful environments in order to survive and successfully
reproduce [2,3]. The presence of (potentially) pathogenic
microbes triggers multiple layers of the plant’s sophisti-
cated immune system [4]. Similarly, abiotic stresses lead
to immediate molecular and physiological changes, such
as gene expression changes and stomatal closure [5], the
accumulation of osmo-protectants [6], as well as short-
ening the vegetative phase, by transition from vegetative
to reproductive states [7]. Interestingly, the response
pathways that protect plants against different stresses are
often highly specific and can potentially antagonize the
response to other types of stress [8,9]. One prominent
example is the dampened immune response of plants
responding to abiotic stresses, mediated by one of
the phytohormones, abscisic acid (ABA) [10].
Phytohormones have been identified as important regu-
lators in plant stress crosstalk [11]. For instance, the

antagonism between abiotic and biotic stress responses
is regulated through crosstalk between the abiotic stress-
related phytohormone ABA and the immune-related
phytohormone salicylic acid (SA) [12]. Another classic
example of signaling crosstalk is the antagonism between
immune-related jasmonic acid (JA) signaling and the SA
pathways activated when pathogens with contrasting life-
styles attack a plant simultaneously [13]. Trade-offs
between different stress response pathways are suggested
to balance the high costs of triggering and maintaining
stress responses with the limited amount of resources
available to the plant [11,14]. The impact of hormonal
crosstalk on plant fitness in the presence of multiple
combined stresses remains obscure. While both antago-
nistic and synergistic responses have been reported [8,15],
plants exhibiting antagonistic hormonal interactions do
not necessarily suffer from reduced fitness under sequen-
tial treatment with drought, or biotrophic and necro-
trophic pathogens [16,17].

Developmental control of plant stress
responses and the ODT

In recent years, the interaction between plant develop-
ment and plant stress responses on both physiological
and molecular levels and its potential role in mediating
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plant stress signaling crosstalk has come under increas-
ing focus [18]. For instance, it has been demonstrated
that single abiotic or biotic stresses are now known to
trigger stronger responses in young compared to old
leaves [19–21]. The magnitude of defense responses
triggered by SA or JA is determined by the develop-
mental age of the plant [22,23], which is coordinated
through crosstalk between defense hormones and key
developmental regulators, such as SHORT
VEGETATIVE PHASE (SVP) MADS-domain tran-
scription factor or the conserved developmental con-
troller micro RNA, miR156 [22,23]. Importantly,
understanding the molecular crosstalk between stress
responses and plant development could solve problems
we are facing in agriculture where enhancing domesti-
cation traits in crops may negatively affect plant cross-
talk and thus lower plants tolerance to stresses [24]. For
instance, Campos et al. [25] demonstrated how biotech-
nology can be used to glean molecular insights that can
disentangle a well-known immunity growth crosstalk in
Arabidopsis. Before interactions between stress
responses and development were understood on
a molecular level, observations of plant-herbivore inter-
actions led to the formulation of the ODT, which states
that organisms put more resources into protecting their
most valuable tissues to increase fitness [26]. However,
it has proven difficult to predict which tissue is the
most valuable. In the case of plants, several studies
have attempted to experimentally identify high-
priority tissues, such as, for example, the flowers as
carriers of the reproductive potential [27] or the stem,
which is a crucial structural element ensuring elevation
of the leaves towards the sunlight, while ensuring
exchange of resources between below- and above-
ground plant parts. In the context of resource alloca-
tion, young, developing leaves play an important role:
they are able to more dynamically adjust to light con-
ditions, they are better protected from photodamage
under high-intensity light conditions [28] and they
exhibit higher photosynthetic potential than older
leaves. Hence, young leaves supply the plant with
resources for a longer period of time than older, senes-
cing leaves. Consequently, the ODT predicts that stress
responses are more highly prioritized in young leaves
compared to older ones, a phenomenon that has been
described in natural plant – herbivore interactions [27].
However, even senescing leaves play an important role
as resource re-allocation organs in plant development
[29] and immunity [30]. That is why, despite the grow-
ing interest in understanding the ODT in plants during
single biotic or abiotic stresses, the question of how the
plant can evaluate which tissues are most valuable at
a given time remains unanswered.

Tissue-specific stress response prioritization as
an additional factor in the ODT

The ODT also does not explain how plants survive
under combined but contrasting stresses. Optimal
defense against one stress would render the plant sus-
ceptible against the other stress, which should ulti-
mately cause a loss of fitness [16]. Recently we
revealed a leaf age-dependent mechanism that plants
engage to prioritize contrasting stress responses to
ensure increased vegetative and reproductive fitness of
the whole organism under combined stress conditions
[31]. Using genetic analysis, we found that signaling
components of ABA and SA hormonal crosstalk coor-
dinate this prioritization. ABA responses suppressed
immune responses only in older leaves, whereas SA
signaling suppressed the antagonistic effect of ABA on
immunity in young leaves. Consequently, during com-
bined abiotic and pathogen stress, abiotic stress toler-
ance responses were prioritized in older leaves, while
young leaves prioritized pathogen defenses [31].
Figure 1 illustrates leaf-age dependent stress responses
in Arabidopsis plants infected with the fungal pathogen
Botrytis cinerea in combination with either mock, ABA,
or salt stress treatment. Importantly, plants that were
lacking a functional PBS3 gene, a key player in SA
biosynthesis and SA-mediated immunity [32,33], lost
the ability to differentially prioritize contrasting stress
responses, which resulted in an overall decrease in
plant fitness under combined stress [31]. Our study
thereby not only demonstrated that phytohormone sig-
naling pathways play an essential role in regulating
fitness under combined stress, but also described
a mechanism for prioritization of defense responses,
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Figure 1. Impact of leaf age-dependent stress signaling cross-
talk on leaf immune responses against Botrytis cinerea strain
B05 (B.c. B05, 2 μL of 2.5 × 105 spores mL−1) in Arabidopsis Col-
0 plants treated with control (water), 200 µM ABA or 100 mM
salt. Pictures were taken four days after pathogen infection
(4dpi) .
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in accordance with the ODT. However, we also build
on the ODT by suggesting that under combined stress,
rather than protecting a more valuable tissue, plants
compartmentalize stress responses into different tissues
to fence off contrasting stressors, which might other-
wise engage in crosstalk at downstream signaling levels
(Figure 2).

What is the signal that regulates tissue-specific
stress response prioritization?

Our genetic analysis showed that leaf age rather than
juvenile-to-adult development transitions in leaves regu-
lates stress crosstalk prioritization [31]. However, the
molecular signal that ensures contrasting stress responses
in old and young leaves in the presence of combined
stresses has not yet been identified. Previous studies
have already presented experimental techniques to
study tissue specificity of stress defense responses by
tissue- and cell-specific metabolomics and transcrip-
tomics analysis [34–36]. Although most of these studies
were in the context of a single stress, some studies ana-
lyzed the effects of combined stress [17]. While such
studies once more highlighted the importance of

phytohormones in combined stress signaling, our own
work suggested that additional signaling molecules might
be involved in stress response prioritization: First, global
analysis of hormone concentration dynamics under com-
bined stress did not reveal strong treatment × leaf age ×
genotype-dependent changes for most measured
hormones. Second, we found that even when the plant
immune system was genetically compromised (for exam-
ple in pbs3, npr1, and ics1 mutants), ABA treatment
further increased leaf susceptibility to biotic stress [31].
Given the overlapping roles of sugars in plant develop-
ment [37], immunity [38], and abiotic stress tolerance
[39], we hypothesize that sugars are promising candidate
molecules as potential mediators of tissue-specific stress
response prioritization. This notion is further based on
the observations that, on the one hand, soluble sugar
levels rise under abiotic stress where they have a role as
osmoprotectants and sugar signaling is closely connected
to ABA signaling [39], while on the other hand patho-
gens feed on soluble sugars, which are therefore an
important battleground in plant immunity [38].
Reactive oxygen species (ROS) are a further class of
molecules that could plausibly be hypothesized to play
a role in leaf-age dependent stress response prioritization.
Besides their general role in plant development [40],

Figure 2. Schematic representation and comparison of the traditional view and our updated model of plant stress responses under
the assumptions of the ODT. In the traditional view, hormonal crosstalk during combined stresses could prevent protection of only
the most valuable parts of the plant. In contrast, in our proposed model, during combined stress, plant fitness increases due to
a differential prioritization of contrasting hormonal defense responses in leaves of different ages. Na+ = salt stress,
Hpa = Hyaloperonospora arabidopsidis, Pto = Pseudomonas syringae pv. tomato.
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immunity [41,42], and abiotic stress tolerance signaling
[43], ROS levels follow a leaf-age dependent trend [44].
Interestingly, Yuan et al. [45] recently demonstrated
a molecular link between the defense regulators JA and
SA, the growth hormone auxin, and the production of
ROS as a mechanism of hormonal crosstalk. Since auxin
levels are highly correlated with leaf age [31], we suggest
that analyzing the interaction between auxin, SA, and
ROS may yield important molecular insights into plant
stress response prioritization.

Conclusion

Plants need to constantly adapt to changing envir-
onments. While we now have a deep understanding
of the molecular details of plant responses to diverse
single stresses, disentangling the processes underly-
ing defense against combined stresses has only more
recently become a focus of study. We recently
demonstrated that hormonal crosstalk increases fit-
ness under combined stress by prioritizing different
stress defense responses within separate leaves of
a single plant. These findings, which define a role
for plant developmental stage in responses to com-
bined stresses, were in some part accordant with the
ODT, which states that plants optimize defense costs
by protecting only the most valuable parts of the
plant. To date, however, only little is known about
the molecular mechanisms that mediate the ODT
under combined stresses. We identified phyto-
hormes as essential regulators of tissue-specific com-
bined stress defense responses, and we propose
spatial sugar and ROS signaling as a promising tar-
get for future studies to understand tissue specific
stress response prioritization on a molecular level.
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