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ABSTRACT

Proteins encoded by newly-emerged genes (‘orphan
genes’) share no sequence similarity with proteins
in any other species. They provide organisms with
a reservoir of genetic elements to quickly respond
to changing selection pressures. Here, we system-
atically assess the ability of five gene prediction
pipelines to accurately predict genes in genomes ac-
cording to phylostratal origin. BRAKER and MAKER
are existing, popular ab initio tools that infer gene
structures by machine learning. Direct Inference is
an evidence-based pipeline we developed to predict
gene structures from alignments of RNA-Seq data.
The BIND pipeline integrates ab initio predictions
of BRAKER and Direct inference; MIND combines
Direct Inference and MAKER predictions. We use
highly-curated Arabidopsis and yeast annotations
as gold-standard benchmarks, and cross-validate in
rice. Each pipeline under-predicts orphan genes (as
few as 11 percent, under one prediction scenario).
Increasing RNA-Seq diversity greatly improves pre-
diction efficacy. The combined methods (BIND and
MIND) yield best predictions overall, BIND identi-
fying 68% of annotated orphan genes, 99% of an-
cient genes, and give the highest sensitivity score
regardless dataset in Arabidopsis. We provide a light
weight, flexible, reproducible, and well-documented
solution to improve gene prediction.

INTRODUCTION

Eukaryotic and prokaryotic genomes contain genes (‘or-
phan genes’) whose proteins are recognizable only in a sin-

gle species. Some of these have emerged de novo from the
genome, while others have diverged from their cousins so
quickly that no sequence similarity is detectable (1–5).

As encoders of completely novel proteins, orphan genes
provide a disruptive force in evolution. Orphans play a cru-
cial role in adaptation to new biological niches. Studies from
vertebrates, annelids, insects, fungi and plants show that
many extant orphan proteins mitigate novel biotic chal-
lenges (prey, predators, hosts) or emergent environmental
shifts (2,6–9).

Some proteins encoded by orphan genes (e.g. toxins (6))
act externally, while others integrate into internal metabolic
and developmental pathways (7). Phylostratigraphic recon-
structions, which determine the phylogenic origin of every
gene based on homology, have implicated orphans in the
evolution of new reproductive and neural structures (10,11).
Thus, the advent of orphan genes may provide a critical
enabler of speciation. The ability to accurately predict or-
phan genes and other young lineage-specific genes conveys
unique percipience about evolution and ecology (2,11,12).

A subset of orphans are retained as genes and continue to
evolve, such that each genome contains a mixture of genes
of different ages (phylostrata) (1,3,13,14). Thus, the age of
each gene can be considered the time since its deepest an-
cestor emerged, as opposed to its most recent duplication.
Even the most ancient genes were orphan genes once (for
protein-coding genes, these would be genes whose proteins
trace back to early eukaryotic organisms or to prokary-
otes). Of the estimated billions of extant protein-coding or-
phan genes across all eukaryotic species (conservatively cal-
culated as 8.7 million extant eukaryotic species (15) × 1000
orphans per eukaryote) (16), the functions of only a few
hundred have been elucidated (2,3,7,8,17–21). In contrast,
about two thirds of the annotated genes of Arabidopsis are
very ancient (2), tracing back to a very early eukaryotic or a

*To whom correspondence should be addressed. Tel: +1 515 708 3232; Email: mash@iastate.edu
†The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.

C© The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License
(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work
is properly cited. For commercial re-use, please contact journals.permissions@oup.com

http://orcid.org/0000-0003-0761-2977
http://orcid.org/0000-0003-3703-0820
http://orcid.org/0000-0003-1552-9495


e37 Nucleic Acids Research, 2022, Vol. 50, No. 7 PAGE 2 OF 17

prokaryotic origin. In part because they have common mo-
tifs across species, these ancient genes are more likely to be
at least partially characterized. A model of the transcrip-
tome, which illustrates some of the nuances of gene predic-
tion research, is shown in Figure 1.

Orphan genes as well as genes of deeper origin can be in-
ferred by phylostratigraphy. This technique identifies genes
based on the earliest common ancestor to which a protein
homolog can be traced (1,30). Thus, phylostratigraphy clas-
sifies genes independently of their origin, including those
that emerged de novo from non-genic sequence or within
an existing gene, and those that evolved so rapidly that
they cannot be recognized even in genomes of their closest
(genus-level) relatives (1–3). In phylostatigraphic inference,
a phylogenetic tree is assembled, individual representative
of the tree are selected as target species,and the proteins of
each target species are compared to those of the species of
interest generally using BLAST. Challenges are that phy-
lostratal inferences are sensitive to false positives, incorrect
or ambiguous phylogentic trees, and the quality of protein
prediction in each target species differ across time and by
species. Historically, the process was time consuming and
not easily reproduced; however, the advent of the R tool
phylostratr (13) standardizes and automates the entire pro-
cess, renders it reproducible, and provides detailed diagnos-
tics at each step of the analysis.

Genes of ‘hybrid’ phylostrata, i.e. genes encoding pro-
teins that contain regions of more than one phylostratal ori-
gin, are not uncommon; the presence of such genes been
examined in relation to evolutionary mechanisms such as
recombination (31) and elongation of 3’ UTR into protein
coding (32). (Indeed, the later mechanism is an almost uni-
versal aspect of gene evolution- older genes become longer
as they ‘mature’.) ‘Hybrid’ genes are typically classified ac-
cording to the phylostratum of their most ancient domain
(1,30), and that is the approach we use herein. This ap-
proach necessarily misses evolutionary nuances. However,
even if the exact evolutionary back-trajectory of each gene is
determined, rules for classification of such genes become ar-
bitrary (13). Also, requiring the entire protein to be species-
specific provides a stringent classification of orphans.

An inescapable diversion to the entire field of gene pre-
diction is that it is predicated on the definition of a ‘gene’.
The same massive high-throughput sequencing that has en-
abled the identification and functional characterizations of
genes has raised havoc with the traditional definition of a
‘gene’ (3,5,26,33,34). There are a surprising diversity of def-
initions of ‘gene’ in current literature; an entire philosophy
surrounds the concept of the nature of a gene (see Supple-
mentary Table S1 and references therein).

To be consistent with current understanding of coding
and non-coding genes, we will consider a gene as ‘an ex-
pressed, selected DNA sequence that confers a chemical,
developmental, morphological or biochemical phenotype
under one or more conditions’. This definition requires
function, an expressed product (RNA or protein), and that
the sequence has been selected for based on its function.
It also emphasizes the context-dependency of some genes–
a sequence might confer a function that is essential only
under particular conditions (e.g. exposure to a draught or

a novel virus), or contribute a minor survival advantage
(35). An expressed sequence would be considered a protein-
coding gene if it is translated and its protein product ef-
fects a phenotype under some condition(s), and hence un-
der that condition has been under selection (inherited). Un-
der conditions in which function and heritability are weak,
sequence evidence of selective constraints could be mud-
died. Because many sequences are in transition to (or from)
‘gene-ness’, this murkiness is inescapable.

Perhaps most problematic for predicting genes is that
genes themselves are on a continuum of ‘gene-ness’ (Fig-
ure 1). A given gene may emerge, remodel, and recede in a
continuum across evolutionary time. some novel gene pre-
dictions might be ‘transcriptional noise’ (25)––fodder for
de novo evolution of protein-coding genes; others might
be ncRNAs with a non-translated or non-functional ORF
(3,5,27,36). Other novel gene predictions may be on the con-
tinuum between orphan gene and non-genic transcript or
the path from gene to pseudogene (3,5). And yet other novel
gene predictions might be bonafide functional genes. No
clear criteria articulate these products of the dark transcrip-
tome. However, a first step is to predict them, and provide
evidence-based metadata.

Gene prediction is a fundamental step in genome se-
quencing projects. However, no standard best practice has
been established, predictions are often based on very lim-
ited RNA-Seq evidence, protocols are diverse, and pipelines
are rarely well-documented (Supplementary Table S2). Pre-
vailing methods often combine homology-based analysis,
which compares a new genome to previously-identified
genes from other species, and ab initio prediction of genes
from the genome sequence (37). Each approach may have
inherent bias against orphan genes (38). Homology-based
methods assume that genes have identifiable orthologs in
other species. Because orphan genes are species-specific,
homology-based methods are not useful in predicting them.
Ab initio-based predictors assume a pre-defined gene struc-
ture for all protein-coding genes of an organism (39). Nu-
cleic acid signatures by which genes are predicted ab initio
can include sequence motifs of untranslated regions, trans-
lation start sites, termination sites, and intron-exon bound-
aries. However, canonical sequence signatures may be less
well-defined in young genes (29), in which case ab initio ap-
proaches might be less likely to detect them. The ability of
ab initio approaches to detect genes of recent origin had not
been directly evaluated.

A more straightforward evidence-based approach to
identify genes is to directly align RNA-Seq data to
genomes(25,27). This approach is key for predicting non-
coding RNAs (40) and young genes(3). Over 50% of novel
transcriptional active regions in rice were identified by tran-
scriptome profiling early in 2010 (41). However, it has been
less widely adopted to predict protein coding genes, in part
because of the challenge of distinguishing ‘noise’ from true
genetic signal (25,27). One approach to reduce ‘noise’ and
other false positive predictions is to combine direct in-
ference of genes with sequence similarity (25,39); this ap-
proach excludes orphan genes (42).

Here, we compare predictions of five prediction pipelines:
MAKER (44), BRAKER (43), Direct Inference- an
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Figure 1. The dynamic transcriptome: Dark and annotated. Genes form, evolve, remodel, and recede in a continuum across evolutionary time. These
dynamics result in a significant challenge to gene prediction. The expressed genome, i.e., the transcriptome, is comprised in part by annotated genes.
However, the transcriptome also includes a vast, uncharacterized but expressed body of sequences that can be termed the ‘dark transcriptome’. Within
this dark transcriptome is low abundance non-genic ‘noise’, as well as (as-yet-unannotated) protein-coding genes, pseudogenes, and non-coding genes
(5,22–26). Protein coding orphan genes can be formed from expressed non-functional sequence, extant non-coding genes, and to a lesser extent from
existing genes whose proteins have rapidly evolved beyond recognition (4,12,27). Over evolutionary time, some orphans will be retained in the species and
become members of deeper phylostrata. In general, an older, more conserved gene is more likely to have a known molecular function. The proportion of
functional genes that are unannotated in any given species is unclear; we posit that, depending on the species, a sizable proportion of orphan genes remain
unannotated. This is because many are sparsely expressed (16,26,28,29), by definition none have homologs, many may have not yet evolved the canonical
features by which a gene can be recognized ab initio, and there is a grey area in evolution between ‘noise’ and ‘gene’. Black arrows, evolutionary transitions;
red font, protein-coding genes; green font, non-[protein]-coding genes; grey font, non-genic transcripts; blue oval, annotated protein-coding genes; green
oval, annotated non-[protein]-coding genes.

evidence-based pipeline we developed to predict genes
by genome-guided alignment of RNA-Seq data, and
two novel pipelines that combine ab initio and the Di-
rect Inference approaches: MAKER-Inferred Directly
(MIND), and BRAKER-Inferred Directly (BIND)
(Figure 2).

We compare our gene predictions to those of the highly-
curated ‘gold-standard’ gene predictions in Arabidopsis
thaliana (Arabidopsis) and Saccharomyces cerevisia (yeast)
and apply these methods to the most recent and hence less-
curated NCBI predictions for a genome of the staple crop,
Oryza sativa (rice)(47). Our results reveal that ab initio pre-
diction pipelines can vastly under-detect younger genes. We
show that diverse RNA-Seq evidence significantly improves
gene prediction, in particular for younger genes. We demon-
strate that the novel BIND and MIND pipelines improve
the number and performance of predictions.

To enable Findable, Accessible, Interoperable and
Reusable (FAIR)(48) pipelines for MIND and BIND, we
implemented the Direct Inference pipeline in an automated,
reproducible manner using the python-based RNA-Seq
processing workflow, pyrpipe (45) such that it can be
easily customized; we included singularity containers for
MAKER and BRAKER.

MATERIALS AND METHODS

Software and data

Complete methods, all scripts used in this study, and all
result files are documented, and a fully automated ver-
sion of the direct inference pipeline implemented with pyr-
pipe and snakemake (49) are available at https://github.
com/eswlab/orphan-prediction. pyrpipe source code is
available at https://github.com/urmi-21/pyrpipe. The pyr-
pipe package can be installed from bioconda (https://
anaconda.org/bioconda/pyrpipe) or PyPi (https://pypi.org/
project/pyrpipe).

RNA-Seq, genome and protein input data

Arabidopsis thaliana Col0 genome (version Araport11) and
reference genomes, GFF3 files, annotated transcript and
protein sequences for (Araport11 version) were down-
loaded from The Arabidopsis Informatics Resource (TAIR)
(50). Saccharomyces cerevisiae analysis used genome (ver-
sion R64-1-1) and annotated genes (version R64-1-1).
Oryza sativa analysis used genome (GCA 009797565.1) and
annotated genes (GCA 009797565.1) downloaded from
NCBI.

https://github.com/eswlab/orphan-prediction
https://github.com/urmi-21/pyrpipe
https://anaconda.org/bioconda/pyrpipe
https://pypi.org/project/pyrpipe
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Figure 2. Schematic diagram of MIND and BIND gene prediction pipelines. BRAKER (43) (top left) and MAKER (44) (top right) predict genes based
solely on ab initio machine learning, while Direct Inference (top middle) is an evidence-based method we developed to predict genes based on alignment
of RNA-seq data to an assembled transcriptome. BRAKER (darker turquoise area) automates most of the pipeline software; Direct Inference (lime green
area) automates the full pipeline; MAKER requires user-intervention for each step. BRAKER parameters for training are hard-coded within script and
difficult to manipulate; Direct Inference and MAKER enable parameter management. Direct Inference also enables software to be exchanged (e.g. STAR
for HiSat2) (45), MAKER uses settings files and can be user-edited to change parameters. BRAKER, MAKER, and Direct Inference prerequisites and
features are shown in Supplementary Figure S7. The BIND and MIND pipelines (bottom) use Mikado (46) to combine predictions from the Direct
Inference pipeline with predictions of either MAKER (MIND) or BRAKER (BIND). The full MIND and BIND pipelines with clearly documented, open
source code are at https://github.com/eswlab/orphan-prediction.

We identified RNA-Seq datasets of various sizes and
complexities for Arabidopsis, yeast and rice (see Supple-
mentary Table S3, and Table 1). The smallest datasets we
term ‘Typical’; they are of sizes at the upper end of those
often used in many gene prediction projects (The ‘Pool’
datasets are about 10-fold larger than the ‘Typical’ datasets,
and are more diverse. The ‘Orphan-rich’ datasets for Ara-
bidosis and yeast are designed to maximize orphan repre-
sentation. In developing this dataset, we reasoned that se-
lecting samples which contain a breadth of orphan gene
transcripts would be important because many, though by
no means all, orphans are highly expressed under only a
very limited set of conditions, such as a particular stress
or a unique developmental stage (2,3,16). The ‘Orphan-
rich’ datasets for A.thaliana and yeast were comprised of
38 RNA-Seq samples that each contained >60% of all
annotated orphan transcripts. We compiled and predicted
genes using three additional intermediate-sized datasets
for Arabidopsis, and tested a ‘ground truth’ dataset, com-
posed of models of all Arabidopsis genes/proteins as an-
notated in Araport11 (‘Ara11’ dataset) (The Arabidopsis
Informatics Resource (TAIR) (50)) (Supplementary Table
S3-A). RNA-Seq data and respective sample metadata were
downloaded from NCBI-SRA as raw reads using the SRA-
toolkit (v2.8.0) (51) or automatically via pyrpipe (45).

Protein sequence used as evidence in MAKER (44) were
generated in one of two ways: (i) for Arabidopsis, yeast, and
rice, RNA-Seq reads were assembled using Trinity (v2.6.6)
(52), followed by open reading frame (ORF) prediction and
translation using orfipy (42) or TransDecoder (v3.0.1) (52).
(ii) For Arabidopsis only, data was downloaded from Phy-
tozome (53) as predicted protein sequences for nine species:
Arabidopsis thaliana, (Glycine max, Populus trichocarpa,
Arabidopsis lyrata, Conradina grandiflora, Setaria italica,
Oryza sativa, Physcomitrella patens, Chlamydomonas rein-
hardtii and Brassica rapa).

Ab initio prediction of genes by BRAKER

RNA-Seq raw reads were mapped to the indexed refer-
ence genome using HiSat2 aligner (v2.1.0) (54) (default set-
tings). The resultant SAM files were sorted and converted to
BAM format. BAM files from each set of RNA-Seq samples
were combined using SAMTools (v1.9) (55) and provided
as training for the BRAKER (v2.1.2) pipeline (43), along
with the unmasked genome. BRAKER is an automated
pipeline to predict genes using GeneMark-ET (v4.33) (56)
and AUGUSTUS (v3.3.1) (57). Briefly, GeneMark-ET is
used to iteratively train AUGUSTUS, by generating ini-
tial gene predictions. GeneMark-ET-predicted genes are fil-

https://github.com/eswlab/orphan-prediction
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Table 1. Gene prediction scenario used for A. thaliana. The ‘Typical’ RNA-Seq dataset is of a size similar to or greater than that used in many gene
prediction projects. The ‘Pooled’ dataset is more diverse and includes the Typical dataset. The ‘Orphan-rich’ dataset is designed to maximize orphan
representation

Extrinsic evidence

Scenario
(abbreviation) Analysis pipeline Description

# SRR
samples

Datasize
(GB)

Ara11 NA (gold-standard
annotations from TAIR (50))

Araport11 version of A. thaliana annotationsa NA NA

Maker-Typical MAKER Maker predictions using Typical dataset (assembled
transcripts and translated proteins)

12 12.8

Maker-Pool Maker predictions using Pooled dataset (assembled
transcripts and translated proteins)

77 241.4

Maker-Orphan Maker predictions using Orphan-rich dataset (assembled
transcripts and translated proteins)

38 595.1

Braker-Typical BRAKER Braker predictions using Typical RNA-Seq dataset (raw
RNA-Seq)

12 12.8

Braker-Pool Braker predictions using Pooled RNA-Seq dataset (raw
RNA-Seq)

77 241.4

Braker-Orphan Braker predictions using Orphan-rich RNA-Seq dataset
(raw RNA-Seq)

38 595.1

DirInf-Typical Direct Inference Direct Inference using Typical RNA-Seq dataset
(transcripts assembled using multiple assemblers)

12 12.8

DirInf-Pool Direct Inference using Pooled RNA-Seq dataset
(transcripts assembled using multiple assemblers)

77 241.4

DirInf-Orphan Direct Inference using Orphan-rich RNA-Seq dataset
(transcripts assembled using multiple assemblers)

38 595.1

BIND-Typical Combined (BIND or MIND) Direct-Inference using Typical RNA-Seq dataset plus
BRAKER Typical predictions

12 12.8

MIND-Typical Direct-inference using Typical RNA-Seq dataset plus
Maker Typical predictions

12 12.8

BIND-Pool Direct-Inference using Pooled RNA-Seq dataset plus
BRAKER Pooled predictions

77 241.4

MIND-Pool Direct-inference using Pooled RNA-Seq dataset plus
Maker Pooled predictions

77 241.4

BIND-Orphan Direct-Inference using Orphan-rich dataset plus BRAKER
Orphan-riched predictions

38 595.1

MIND-Orphan Direct-inference using Orphan-rich RNA-Seq dataset plus
Maker Orphan-riched predictions

38 595.1

aWe use the word ‘annotation’ to describe genes that have been predicted experimentally and/or computationally, and to which, as possible, a putative
function has been assigned.

tered and provided for AUGUSTUS training, followed by
AUGUSTUS prediction, integrating the RNA-Seq infor-
mation, to generate the final gene predictions (Figure 2, up-
per left panel).

BRAKER (v2.1.2) permits use of protein sequence train-
ing data to supplement the RNA-Seq training data. How-
ever, results with RNA-Seq plus protein evidence and
with RNA-Seq evidence alone were virtually identical
(the BRAKER User Guide also notes that it is not al-
ways best to use all evidence, https://github.com/Gaius-
Augustus/BRAKER#running-braker). Thereafter, we used
RNA-Seq evidence but not protein sequence for input train-
ing data to BRAKER.

Ab initio prediction of genes by MAKER

To implement the MAKER (v2.31.10) (44) pipeline, RNA-
Seq data was assembled into a transcriptome using Trinity
(v2.6.6) (52); this CDS evidence, was supplied along with
the unmasked genomes (Araport11). Depending on the case
study and species, either CDS-only; CDS and translated
proteins; or CDS and Phytozome proteins were supplied
(Supplementary Tables S3 and S4).

MAKER was run in two successive rounds with default
settings (Figure 2). In round one, transcriptome and pro-
tein data were aligned to the reference genome to generate
crude gene predictions. These crude predictions were then
used for training SNAP (release 2006-07-28)(58) and AU-
GUSTUS (v3.2.1) ab initio gene predictors with default op-
tions. In round two, the Hidden Markov Models (HMM)
for ab initio gene predictors, along with self-trained HMM
of GeneMark-ES (v4.32) were used within MAKER to pre-
dict genes. MAKER finalizes the comprehensive sets of
genes from all three predictors by ranking using Annota-
tion Edit Distance (AED) (59); the highest-ranking genes
were retained for the final set of predictions. MAKER’s de-
fault output includes key metadata about gene predictions
(evidence scores supporting each prediction, name of the
component(s) within MAKER that generated the predic-
tion).

Evidence-based prediction of genes by Direct Inference

Raw RNA-Seq reads were assembled using three genome-
guided transcriptome assemblers: viz. Class2, StringTie and
CuffLinks (60–62).

https://github.com/Gaius-Augustus/BRAKER#running-braker
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The BAM file generated by mapping reads to the
Araport11-annotated indexed genome using HiSat2
(v2.1.0) (54) was provided as training for the assemblers.
The resultant assembled transcripts were used to predict
ORFs using Transdecoder(52) or orfipy (42). We selected
those complete ORFs over 150 nt. (Other user require-
ments might include: transcript length, number of exons,
exon length, intron length, expression value or presence
of UTRs.) These data files, along with splicing junctions
identified from the alignments using Portcullis (63), were
provided as input to Mikado (46). Mikado pick was run
with 28 threads, ‘nosplit’ mode, report all orfs, and other
default parameters.

We have engineered our Direct Inference pipeline in an
automated, reproducible, scalable, and flexible manner by
implementing the steps from downloading data through
transcriptome assembly in the python library, pyrpipe (45).
Direct Inference requirements are relatively simple and are
detailed in Singh et al. (45).

Package managers, like Conda, or containers like Singu-
larity or Docker, control for the execution environment and
tool versions. We have implemented Direct Inference such
that it can be used as is, or easily customized by the user. All
requirements for the Direct Inference pipeline can be easily
installed via Bioconda (64) and the provided Conda envi-
ronment file. Conda was built to install and update python
packages and their non-python dependencies; it can also
package software in other languages. The Conda environ-
ment enables a Direct Inference user to add or substitute
software facilely to evaluate efficacy for different use cases.
We selected Conda because it not only controls for the ex-
ecution environment and tool versions, but it also works
across platforms, and makes available a wide variety of
bioinformatic software packages via the Bioconda channel.
The Bioconda channel is a community driven repository to
provide up-to-date bioinformatics software.

We used the Snakemake workflow manager (49) to
integrate the Direct Inference pyrpipe pipeline with the
meta-assembly steps. The Direct Inference pipeline is avail-
able from https://github.com/eswlab/orphan-prediction/
tree/master/evidence based pipeline.

Combined gene predictions by MIND and BIND

The total predictions from Direct Inference were integrated
with BRAKER predictions (BIND) or with MAKER pre-
dictions (MIND), using Mikado (46) to merge predictions.
The process and parameters of Mikado were identical to
those for Direct Inference, except that the input files were
changed to BRAKER (or MAKER) predictions and Di-
rect Inference predictions. The merged predictions were fi-
nalized in GFF3 format.

Implementation, computer allocations and ease of use:
BRAKER, MAKER and Direct Inference

Supplementary Figure S7 gives an overview of BRAKER,
MAKER and Direct Inference prerequisites and features.
For this comparison, we ran the three pipelines using the
Arabidopsis genome with the Typical and Pooled RNA-Seq
datasets as input (Table 1). Without a container, installa-

tion is far easier for BRAKER and Direct Inference than
for MAKER.

To run Direct Inference with pyrpipe and Snakemake
requires a single step - the input of SRA accession IDs;
BRAKER requires a user to execute three single command-
line operations. In contrast, MAKER is a hands-on pro-
gram, in which a user must manually perform most steps,
including transcript assembly, translation, evidence collec-
tion, training ab initio gene prediction programs (snap, AU-
GUSTUS, GeneMark). Users must also manually track
outputs of all these steps and use them to run multiple it-
erations of MAKER.

Being able to change software and software parameters
in prediction pipelines is important because genomes of dif-
ferent organisms have different characteristics, and different
quantities of RNA-Seq data will be available depending on
the species. Because of its modular construction in python,
the Direct Inference pipeline can be modified with respect
to the software program parameters. Furthermore, the soft-
ware programs themselves can be exchanged or added. The
RNA-Seq processing components implemented via pyrpipe
are simple to modify. Snakemake provides multiple options
for executing and scaling the pipeline on different HPC
systems. Running MAKER entails a higher manual over-
head, but this design aspect allows for the parameters to be
changed by the user (65) However, MAKER is not designed
to enable changes of software programs. Because BRAKER
is hard coded, changing parameters is difficult. However,
some software programs that meet BRAKER’s core script
requirements can be swapped or added.

Implementing computational pipelines that are easily re-
producible can be a challenging task (45,66). Because bioin-
formatics pipelines run a number of software programs
that interact with the operating system libraries and with
each other, controlling for the version, execution environ-
ment, and parameters of each program is essential for re-
producible pipelines. We have implemented the Direct Infer-
ence pipeline keeping this principle in mind. All the required
dependencies for the Direct Inference pipeline are automat-
ically installed inside an isolated Conda environment. Cen-
tralized parameter management makes it easy to share and
modify pipeline parameters. To maximize reproducibility
for the MAKER and BRAKER pipelines, we have provided
Singularity containers; these containers execute the tool in
a virtual environment.

Gene prediction using large RNA-Seq datasets may best
be done using multiple nodes. Because we implemented Di-
rect Inference using the Snakemake workflow manager, it
can be conveniently managed and scaled for multiple nodes.
The BRAKER container is also optimized for use on mul-
tiple nodes. The MAKER container was not optimized for
running on multiple nodes. For MAKER, the user would
need to correctly configure the MPI program on both host
and on the container- which would be quite challenging,
and eliminate the benefits of having a container. Further,
the configuration would likely require admin privileges on
the HPC; general users rarely have such privileges.

If running the pipelines on a single node, relative effi-
ciency is dependent on data size. When run with the large
Pooled or Orphan datasets, BRAKER is more efficient than
Direct Inference or MAKER in terms of disk usage, disk

https://github.com/eswlab/orphan-prediction/tree/master/evidence_based_pipeline
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I/O (input/output). In contrast, when run with the ‘Typ-
ical’ dataset (12.8 GB), Direct Inference is more efficient
than BRAKER or MAKER in terms of disk usage.

Comparing prediction scenarios and estimating performance
of gene prediction methods

The results of each gene prediction pipeline scenario were
compared to the existing predictions using Mikado Com-
pare (46). Gene structure prediction predictions were pro-
vided to Mikado as GFF3 files. Similarity statistics are re-
ported for each gene locus individually. Performance calcu-
lations were based on sensitivity (Sn), precision (Pr), and the
combined performance metric, F1 score (67). Sn is a mea-
sure of the percent of predicted genes matched to all refer-
ence annotated genes (true positives) (Equation 1). Preci-
sion (Pr) is a measure of of the specificity of the predictions,
that is percent of reference annotated genes (true positives)
matching all predicted genes (Equation 2). The F1 score
combines the sensitivity and precision as a measure of per-
formance (Equation 3).

Sn = matched prediction
all annotated genes

× 100 (1)

Pr = matching annotated genes
all predictions

× 100 (2)

F1 = 2 × Sn × Pr
Sn + Pr

(3)

Gene and transcriptome features for each prediction

The gene features were identified by Genome Annota-
tion Generator (GAG) (68) based on the final GFF3 files
(available at https://github.com/eswlab/orphan-prediction/
tree/master/prediction gff3). These include: number and
length summary for genes, mRNAs, exons and introns;
genome coverage by CDSs and genes; overlapping and
contained genes in Supplementary Table S5. The coverage
of transcribed sequence was calculated by bedtools2 (69)
based on the predicted transcriptome.

RNA-Seq expression analysis

To investigate the expression level for A.thaliana predic-
tions, we collected 5210 RNA-Seq samples from NCBI-
SRA database. Criteria were: paired end reads (layout) and
transcriptomic (source) and rna-seq (strategy) and illumina
(platform) and organism (Arabidopsis thaliana). Salmon
(70) (mapping-based mode) was used to quantify the ex-
pression of all genes predicted by Orphan-rich dataset and
annotated in Araport11. We calculated the median of mean
expression of all Araport11 genes across all samples; this
median was 2.18 tpm. Then, those unannotated transcripts
with expression of at least 2.18 tpm in at least 100 samples
were used to plot Figure 5. The less-expressed transcripts
were considered as low-expressed transcripts. The expres-
sion for all predicted transcripts was visualized by R and
shown in Supplementary Figure S1.

Ribo-Seq analysis

To investigate the translational activity of BIND predic-
tions, we analysed 185 samples of Ribo-Seq data from 21
studies (Supplementary Table S8). Raw reads were down-
loaded from NCBI-SRA, and the SRA-toolkit (v2.8.0) was
used to convert the raw reads to a FASTQ format. BB-
Duk was used to remove adapter sequences from the 3énd
of reads, and rRNA reads were identified and removed us-
ing BBMap (71). The cleaned Ribo-Seq reads were aligned
to the reference genome by STAR aligner (v2.5.3) (72).
Ribosome-bound ORFs were detected and quantified by
Ribotricer (73), which considers the periodicity of ORF
profiles, using the recommended parameters for Arabidop-
sis. A gene with at least five codons with non-zero reads was
considered to have translation signal in a Ribo-Seq sample
(73).

Phylostratigraphy

Phylostratigraphic analysis based on the homology of pre-
dicted proteins to proteins in clades of increasing depth
(age) was inferred using the R-platform phylostratr soft-
ware (v0.2.0) (13). The focal species were set as ‘3702’ for
A. thaliana, ‘4932’ for S. cerevisiae and ‘39947’ for O. sativa.
With the exception that we incorporated additional user-
specified target datasets for the three test species (See Sup-
plementary Tables S7, S11 and S12), we used the default
options in phylostratr. phylostratr automatically (i) creates
a clade tree from the species represented in UniProt, based
on the current NCBI tree of life; (ii) trims the clade tree, us-
ing an algorithm that maximizes the evolutionary diversity
of species; (iii) creates a database of protein sequences from
hundreds of species retrieved from Uniprot Proteome (74),
which we supplemented by adding selected species of very
high quality genomes (Supplementary Table S10); (iv) pair-
wise BLASTs the focal species proteome against the pro-
teome of each species in the clade tree; (v) identifies the
‘best hits’ for each focal gene against each target species; (vi)
phylostratr assigns each gene to the phylostratum associated
with the deepest clade to which the gene has an inferred ho-
molog. The genes present only in the focal species are in-
ferred as orphan genes, and assigned to phylostratum ‘Ara-
bidopsis thaliana’ (for A. thaliana), ‘Saccharomyces cere-
visiae’ (for S. cerevisiae), and ‘Oryza sativa’ (for O. sativa).
Phylostratal designations for TAIR-annotatated genes of
Arabidopsis, as based on our previous analysis (13), are
available in TAIR’s jbrowse ‘phylostratigraphy identifica-
tion’ track (arabidopsis.org). We used the resultant phy-
lostratal assignments to benchmark each gene prediction
pipeline for its efficacy in predicting genes according to their
inferred phylostrata.

RESULTS

MAKER is a popular software that combines a variety
of ab initio approaches to predict genes (44). Our original
impetus for this research was to assess MAKER’s ability
to predict orphan genes. However, our initial analysis pre-
dicted only 11% of the orphan genes annotated in TAIR
(Araport11 version) (50).

https://github.com/eswlab/orphan-prediction/tree/master/prediction_gff3


e37 Nucleic Acids Research, 2022, Vol. 50, No. 7 PAGE 8 OF 17

This poor performance of MAKER in identifying or-
phans and other young genes led us to consider other
gene prediction scenarios. First, we reasoned that using
more RNA-Seq evidence for training MAKER’s algorithms
might improve predictions. However, there was little guid-
ance in the literature on how to formulate the training
datasets for ab initio gene predictions (43,44,75); many
genome predictions use very limited datasets (See Supple-
mentary Table S2). Second, we considered that other gene
prediction programs might improve prediction outcomes.

Thus, we evaluated the efficacy of different gene predic-
tion software and the extrinsic evidence of varied sizes on
predictions. Specifically, raw reads from diverse RNA-Seq
datasets were used by ab initio (MAKER and BRAKER),
Direct Inference or the combined (MIND and BIND) ap-
proaches to predict genes.

We focused specifically on predicting protein-coding
genes; the pipelines we applied––MAKER, BRAKER, and
Direct Inference- each require the presence of an ORF to
indicate the potential for translation. Protein evidence for
each ORF would confirm its translation.

Arabidopsis gene predictions by MAKER

MAKER (44) is a widely-used gene prediction pipeline.
Reads are aligned to the genome and assembled into tran-
scripts before being provided to MAKER, which uses as-
sembled transcripts of RNA-Seq datasets along with pre-
dicted protein sequence exclusively as training data.

We assembled seven combinations of transcript and pro-
tein evidence (Table 1 and Supplementary Tables S3-A and
S4-A and provided these to MAKER as training data.
Gene predictions corresponding to annotated genes were
greater when RNA-Seq and protein data were both pro-
vided Supplementary Table S11-A. Regardless of input evi-
dence, MAKER’s ability to predict genes (Figure 3 and Sup-
plementary Table S11-A) was greatest for the genes of the
oldest phylostratum (Cellular Organisms, PS1) and progres-
sively decreased for younger phylostrata.

Predictions by MAKER were highly dependent on the
training dataset supplied. Total predictions varied between
80% and 96% of the annotated genes. For example, 22 065 of
the annotated genes were predicted when the Typical RNA-
Seq dataset plus its predicted proteins were used as input,
whereas 25 649 of the annotated genes of Arabidopsis were
predicted with training data from the Pooled dataset plus
its predicted proteins (Figure 3 and Supplementary Table
S11-A).

This sensitivity to input evidence was much more pro-
nounced for genes of the younger phylostrata. Twenty-one
percent of the annotated orphan genes were predicted if
MAKER was provided the Typical RNA-Seq dataset, ver-
sus 53% predicted from the Pooled dataset, and 68% for
the Orphan-rich dataset (Figure 3 and Supplementary Ta-
ble S11-A). Even when provided a ‘gold-standard gene set’
comprised of all annotated genes and their proteins (includ-
ing all orphans) as training data, only 77% of the annotated
orphans were predicted by MAKER (Supplementary Table
S11-A).

The greater the diversity of the RNA-Seq evidence pro-
vided to MAKER, the more novel genes MAKER pre-

dicted that did not match any current gene annotation, for
example, the Typical dataset predicted 4035 novel genes
(1,183 of which were inferred by phylostratigraphy to be
orphans), while the Orphan-rich dataset predicted 13 657
novel genes (7194 of which were inferred by phylostratigra-
phy to be orphans) (Supplementary Table S12-A).

Arabidopsis gene predictions by BRAKER

BRAKER differs from MAKER in that it uses RNA-
Seq alignments to the genome for unsupervised training of
GeneMark-ES/ET (Figure 2). Then, BRAKER selects a
subset of the predicted protein coding genes to train AU-
GUSTUS and predict genes. BRAKER (43) predicted 96–
97% of all annotated genes (Figure 3 and Supplementary
Table S11-A). Regardless of the training dataset provided
(Supplementary Table S4-A), gene predictions differed in
quantity and performance by less than 2% (Supplementary
Tables S7-A and S13-A).

BRAKER’s ability to predict genes was greatest for the
genes of the oldest phylostratum (‘Cellular organisms’) and
progressively decreased for younger phylostrata (Figure 3
and Supplementary Table S11-A). For example, when pro-
vided the Pooled dataset as training data, BRAKER pre-
dicted 100% of ancient genes that traced back to Cellular
Organisms, but only 41% of the orphan genes (Figure 3);
8,204 of the genes predicted by BRAKER were not anno-
tated in TAIR (1,498 of these encode orphans) (Supplemen-
tary Table S12-A).

Arabidopsis gene predictions by direct inference

Prediction by direct alignment of transcriptomic evidence
to the genome is rarely used to annotate genes in newly se-
quenced genomes (e.g. Supplementary Table S2) (76). That
said, the use of cDNA and EST evidence-based prediction
was a mainstay for early predictions (50,77).

We considered that genes with non-canonical sequence
features might be difficult to identify with machine learn-
ing algorithms. To mitigate this possibility, in addition to
using transcript evidence indirectly as training data only,
we developed an evidence-based approach that generates
gene predictions, ‘Direct Inference’ (Figure 2; detailed in
Methods). Briefly, the pipeline uses a genome-guided as-
sembly, concatenates the transcripts, removes redundant
transcripts, and determines ORF(s) in each inferred tran-
script. Because this approach directly relies exclusively on
RNA-Seq alignments, only those RNAs that are expressed
under the conditions sampled will be detected. Thus, we an-
ticipated that providing RNA-Seq evidence collected from
a wide variety of developmental stages, tissues and environ-
mental conditions would be critical to maximize predictions
when using Direct Inference. The overall performance of
Direct Inference improved with larger dataset size Supple-
mentary Table S13-A. Specifically, the diverse Orphan-rich
dataset predicted nearly 96% of all annotated genes, and
63% of annotated orphans, while the Typical dataset pre-
dicted about 71% of all annotated genes, and 13% of the
orphans (Figure 3, Supplementary Table S11-A).
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Figure 3. Arabidopsis Araport11-annotated gene predictions, shown by phylostratal designation (see Supplementary Table S4 for predictions of all tested
scenario). For each prediction scenario, the ability to predict genes was greater for the genes of oldest phylostratum (Cellular Organisms) and gradually
decreased for the younger phylostrata. More annotated genes were predicted when pipelines were supplied with a more diverse dataset, an exception being
BRAKER pipeline predictions. Overall, BIND with the Orphan-rich dataset as input predicted the most genes matching Araport11 annotations.
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Figure 4. Sensitivity scores of gene predictions scenarios for A. thaliana at
gene level. Results are compared to the annotations in TAIR (Araport11
version) (50). Regardless of the RNA-Seq dataset supplied, BIND gives
the highest sensitivity score.

BIND and MIND: gene predictions combining ab initio
(BRAKER or MAKER) with direct inference

Because ab initio methods can identify very high propor-
tions of the conserved genes, while direct inference can iden-
tify genes that are represented in the RNA-Seq data evi-
dence without regard to canonical structure or homology to
genes in other organisms, we evaluated whether combining
both approaches would maximize gene predictions across
phylostrata (Figure 2).

BIND increases the number of genes matching annotated
genes compared to BRAKER or Direct Inference alone;
MIND performed better than MAKER or Direct Inference
alone (Figure 3 and Supplementary Table S11-A). Using
the Orphan-rich dataset as input, BIND, and to a lesser
extent, MIND, predicted more TAIR-annotated orphan
genes than did either ab initio predictor alone. Base level
F1 scores for overall prediction performance were compara-
ble for BIND and MIND (∼75%). Regardless of the RNA-
Seq data input, BIND predicted the most accurate represen-
tation of all genes, and young genes in particular (Figure
4, Supplementary Table S13-A). MIND predicted 18 114
genes that did not match any TAIR-annotated genes; BIND
predicted 14 739 such genes.

Multiple low-expression transcripts are predicted by the
ab initio methods, MAKER or BRAKER (Supplementary
Figure S1). To remove low expressed novel predictions from
predictions using the Orphan-rich dataset, we combined all
the annotated and novel transcripts predicted; then, we fil-
tered those novel transcripts with low-expression (see meth-
ods). When using the Orphan-rich dataset as input, ∼89%
of the transcripts annotated in Araport11 are predicted by
each pipeline; 6% more of the Araport11-annotated tran-
scripts are predicted by one or more pipelines (Figure 5).
BIND and MIND also predicted more short genes than
other methods (Supplementary Table S14).

Over 85% of annotated orphan genes were predicted
by combining BIND and MIND, using the Orphan-rich
dataset or the Pooled dataset. In contrast, using the Typical
dataset, only 51% of annotated orphan genes were predicted
by combining BIND and MIND, (Supplementary Figure
S2).

We used ribosome footprinting data to assess the trans-
lation evidence for those genes predicted by BIND with the
Orphan-rich dataset. (See Supplementary Table S6-A for
all predictions) Predictions were filtered to remove those
of low expression (see Materials and Methods). A limita-
tion of this analysis was that the 185 Ribo-Seq samples that
were publicly available did not represent diverse develop-
mental and environmental conditions (Supplementary Ta-
ble S6-B). Overall, 97% of the genes predicted by BIND
had translation evidence. Translation evidence was great-
est for proteins of the most ancient phylostratum (Cellular
Organisms), decreasing for younger phylostrata (Figure 6).
Ninety-eight percent of the predictions that matched anno-
tated genes had translation evidence, while about 56% of the
novel genes had translation evidence (Supplementary Table
S6-A).

Gene predictions for Saccharomyces cerevisiae

We evaluated the efficacy of the gene prediction pipelines
on a disparate genome, that of the model system fungus, S.
cerevisiae, using the highly curated Saccharomyces Genome
Database (SGD) (77) gene annotations for benchmarking.
As for Arabidopsis, yeast genes have been manually anno-
tated through experimental evidence over tens of years. We
assembled three datasets of varied sizes and compositions: a
‘Typical’ dataset; a ‘Pooled’ dataset, consisting of the ‘Typ-
ical’ dataset plus other RNA-Seq data from samples from
varied conditions; and an ‘Orphan-rich’ dataset, compris-
ing 38 RNA-Seq samples (selected from 3,457 high-quality
samples (26)) that are highly represented in SGD-annotated
orphan genes (Supplementary Tables S3-B and S4-B). We
partitioned the SGD-annotated genes according to the phy-
lostratigraphic inferences from a previous study (26).

Yeast genes were predicted using the MAKER,
BRAKER, Direct Inference, MIND and BIND gene
annotation pipelines, each in combination with ‘Typical’,
Pooled’ and ‘Orphan-rich’ datasets as extrinsic training
data, thus providing a total of 15 gene prediction scenarios.

MAKER’s ability to predict genes was greater for more
ancient genes (e.g. Cellular Organisms and Fungi, PS1-4)
than genes of younger phylostrata, (Saccharomyces, PS10;
and orphans, PS11), regardless of the extrinsic evidence
provided (Supplementary Table S11-B). MAKER predicted
more SGD-annotated genes when the Pooled or Orphan-
rich data was provided as input, matching 74% and 71% of
SGD-annotated genes, respectively.

BRAKER’s ability to predict genes was greater for genes
of more ancient phylostrata than those of younger phy-
lostrata (Supplementary Table S11-B). BRAKER yielded
predictions that differed in quantity and F1 score by less
than one percent for each of the three datasets. BRAKER
predicted 82% of all SGD-annotated genes (Supplementary
Table S11-B, Figure S8) with an F1 score of 97% (Supple-
mentary Table S13-B, base level). However, BRAKER did
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Figure 5. Upset plot of Arabidopsis protein-coding Araport11-annotated genes and novel genes for each prediction pipeline. The Orphan-rich dataset was
used as input data. The resultant 41 078 non-redundant predictions were filtered for low expression across over 5000 diverse RNA-Seq samples before
plotting (see Materials and Methods and Supplementary Figure S5). Top panel, percentage of genes, binned by five phylostrata. Middle panel, numbers
of predictions; Bottom panel, non-redundant genes grouped by prediction method; Bottom right panel, total number of genes in Araport11 and predicted
by each pipeline, colored by phylostrata. When the Orphan-rich dataset is used as evidence, about 89% of all annotated genes are predicted by any single
method alone.

Figure 6. Translation evidence for highly expressed BIND-predicted genes
of A. thaliana. Novel genes predicted by BIND were filtered for expression
(see Supplementary Figure S6 for all predicted genes). Predicted proteins
are binned by phylostratal designation. Translation signal was evaluated
from the available ribosome profiling data. Translation evidence is con-
sistent, but not sufficient, to indicate a protein-coding gene. Regardless
of whether predictions matched to Araport11 annotations or were novel,
younger genes had less translation evidence than ancient genes, as might
be expected based on the sparser transcription patterns of younger genes.

not predict a single orphan gene in yeast, even when sup-
plied the Orphan-rich dataset.

Using the Orphan-rich dataset as input, the Direct-
Inference pipeline predicted nearly 83% of all annotated
genes and 13% of SGD-annotated orphans. In contrast, us-
ing the Typical dataset, Direct-Inference predicted only 33%
of all SGD-annotated genes and 6% of the annotated or-
phan genes (Supplementary Table S11-B, Figure S8).

BIND and MIND, using the Orphan-rich dataset as in-
put, predicted more SGD-annotated orphan genes than did
either of the ab initio predictors or the Direct Inference
pipeline alone (Supplementary Table S11-B, Figure S8).
Similar as Arabidopsis, BIND gives the highest sensitiv-
ity score than other method (Supplementary Figure S10).
Three quarters of the SGD-annotated orphan genes were
missed even using the Orphan-rich RNA-Seq datasets as
input. However, novel orphan genes were predicted using
the Orphan-rich dataset; over 90% of these were predicted
by Direct Inference (Supplementary Figure S3). BIND and
MIND predicted 206 and 223 novel orphan genes, respec-
tively.

Gene predictions for Oryza sativa

The monocot, rice, is a staple crop for over half the world’s
population, with a complex genome where 35% of the se-
quence is made up of transposable elements (47). We pre-
dicted rice genes in Oryza sativa subsp. japonica cv. Kitaake
used the MAKER, BRAKER, Direct Inference, BIND,
and MIND pipelines to and compared these predictions
to those of NCBI (GCA 009797565.1). The recent high-
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quality KitaakeX genome (78) was used by NCBI and by
us. The NCBI in silico gene predictions were obtained via
the standard NCBI ab initio and homology pipeline; it is
note on that they were enriched with EST evidence, how-
ever, there is no indication of which EST evidence was used
(Supplementary Table S2). japonica cv. Kitaake rice annota-
tions have not undergone the manual community curation
as have Arabidopsis and yeast, thus do not provide the same
gold standard on which to base our interpretation of the
efficacy of the methodologies. Oryza phylogenetic research
(79,80) has predicted multiple orphan genes; however, to
our knowledge, these gene predictions have not been inte-
grated into the NCBI annotations. Thus, because the gene
annotations we are using for rice have not yet been highly
curated, they do not represent the same gold standard as do
the Arabidopsis and yeast gene annotations. It is more likely
that the annotations include many false-positive predictions
and are missing multiple true genes.

We assembled two RNA-Seq datasets to input to the gene
prediction pipelines. The first was a ‘Typical’ dataset; the
second was a larger ‘Pooled’ dataset consisting of diverse
tissues and stress conditions (Supplementary Tables S3-C
and S4-C). Because the rice gene predictions have not yet
been extensively curated manually, we did not assemble an
‘orphan-rich’ RNA-Seq dataset. We partitioned the NCBI-
annotated genes, as well as the resultant predictions made
by each of the pipelines, according to their inferred phy-
lostrata (Supplementary Tables S7-C and S9).

Similar to the results with Arabidopsis and yeast, regard-
less of prediction scenario, the ability to predict genes was
greatest for the genes of the most ancient phylostratum and
gradually decreased for the younger phylostrata. As ob-
served for Arabidopsis and yeast, more annotated genes
were predicted when pipelines were supplied with a more
diverse dataset, with the exception being the BRAKER
pipeline predictions (Supplementary Table S11-C, Figure
S9). Similar to Arabidopsis and yeast, MIND predicted
more genes matching annotations than did the MAKER or
Direct Inference methods alone.

Unlike Arabidopsis and yeast, BRAKER predicted more
genes that match to the NCBI annotations compared to
any other pipeline (Supplementary Table S11, Figure S9).
However, 13 178 of the transcripts that BRAKER predicted
contained incorrect fusions of splice junctions (Supplemen-
tary Table S5-C), that’s why BRAKER predict over 9000
novel orphan genes which were not in the annotation or
predicted in any other method (Supplementary Figure S4).
These 13,178 incorrect fusions were removed by BIND in
the step combining BRAKER and Direct Inference predic-
tions using Mikado. MAKER predicted 2302 incorrect fu-
sions for the typical rice dataset, while NCBI annotations
include 1374 incorrect fusions. MIND and BIND predicted
the correct splicing. (In contrast, for Arabidopsis, no incor-
rect fusions were predicted by BRAKER, BIND or MIND,
though MAKER predict several hundred; unsurprisingly,
no pipeline tested predicted incorrect junctions for yeast
(Supplementary Tables S5-A and S5-B)). About 28% of
BRAKER-predicted rice genes (a number of which contain
incorrect splice junctions) and 13% of BIND-predicted rice
genes, are inferred by phylostratal analysis to be orphans;
most were not annotated by NCBI. Sensitivity scores were

under 13% for MAKER and BRAKER; DI, MIND and
BIND were between 17 and 36% depending on the dataset
analyzed (Supplementary Figure S11). BIND gives a some-
what lower sensitivity score than Direct Inference, however,
BIND correctly predicts more genes.

To enable BIND and MIND in a best practices for-
mat, we have implemented all Direct Inference core RNA-
Seq processing steps in python using pyrpipe (45) and the
pipeline in Snakemake (49) (see methods for details), we
provide MAKER and BRAKER in singularity containers,
and we have developed full, documented MIND and BIND
pipelines in a versatile reproducible open source framework.

DISCUSSION

Structural prediction of genes in a genome is critical to mak-
ing genomics data useful to the research community. How-
ever, the multiple protocols used to annotate genes, some
of which exclusively rely on ab initio predictions; the wide
variation in amount of training data input; and the dearth
of reproducible methods (Supplementary Table S2) do not
make for best-practice. Also importantly, they are rarely
set up to easily compare across gene prediction methods.
For example, EuGene (81) gene prediction program can be
configured to run either completely ab initio, completely
homology-based or as a hybrid. It is typically run using a
single configuration file, where all the settings and inputs
are passed to the predictor. The manual suggests that the
program is quite resource-heavy, requiring almost a week
for 500Mb plant genome, or almost 2 weeks for 3Gbp plant
genome on a cluster with 500 cores. Running it with custom
datasets will most likely increase the run-time.

As another example, the NCBI Eukaryotic Genome An-
notation Pipeline (82) offered by NCBI provides compre-
hensive annotation starting from fetching raw and curated
data from public repositories, alignment of sequences, and
the prediction of genes, to the submission of the accessioned
annotation products to public databases. However, the com-
ponents of this pipeline are tightly integrated into the NCBI
infrastructure, and external testing is not possible. In order
to predict genes using this pipeline, the user will need to
submit the genome, track the progress on the website; then,
the results are made available on their databases upon com-
pletion. Due to this limitation, extensive tests with varying
datasets are not feasible.

Funannotate (83), a fungal genome annotation pipeline,
is probably one the most user-friendly gene prediction pro-
grams. It uses similar components of the MAKER gene
prediction pipeline and provides scripts that automate the
training and predicting steps. It also integrates the function
annotation and comparison utilities. Many of the default
settings are preset to fungal gene prediction and users are
expected to manually change them before running it on the
target genome (eg: default intron size, default busco pro-
file etc). We tested Funannotate on the ‘Typical’ dataset
for Arabidopsis genome, it performed better in predictions
than MAKER, however, it was not good as BRAKER,
MIND or BIND.

Quality gene prediction is particularly important for ex-
pression studies; this is because standard practice is to align
RNA-Seq reads directly to reference transcriptomes con-
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sisting exclusively of annotated genes, or to align transcripts
to the reference genome but count only the annotated genes.
Both practices completely miss the detection of any genes
that have not been annotated.

Prediction of young genes is improved by a pipeline that com-
bines ab initio/evidence-based methods and by supplying di-
verse RNA-Seq training data

By deploying the manually-curated, community-based gene
annotations from the model species, Arabidopsis and yeast,
as gold standards(50,77) as well as the more recently an-
notated genes of Kitaake rice, we have explicitly illustrated
some of the challenges of annotating young genes. The
efficacy of every gene prediction scenario we tested, re-
gardless of the pipeline used for prediction, the amount or
quality of evidence supplied, or the species annotated, was
strongly dependent on the phylostratal origin of the gene.
As reflected by their lower visibility to ab initio prediction,
younger genes appear to generally have a less recognizable
sequence signature than do their more ancient counterparts,
which have undergone hundreds of millions of years of se-
lection. The clear trend is that the younger a gene is, the less
likely it is to be predicted. This finding supports previous
speculation (79).

Ab initio pipelines infer genes by their structural motifs.
In contrast, the Direct Inference pipeline uses the RNA-Seq
evidence provided to directly infer genes. We show that com-
bining ab initio predictions with evidence-based, direct in-
ference of genes improves predictions compared to either
method alone.

Our analyses reveal the extent to which selection of train-
ing data can significantly affect gene predictions by the
MAKER, Direct Inference, MIND, and BIND pipelines.
For these pipelines, extrinsic data from samples drawn
from diverse environmental and developmental condi-
tions improve the prediction of annotated genes. Although
BRAKER is less affected by the quantity of training data, it
has a ceiling on predictions. A possible explanation for this
phenomenon is that, unlike MAKER, the extrinsic RNA-
Seq evidence is filtered by BRAKER prior to making its
final predictions. This filtering of the RNA-Seq evidence en-
ables BRAKER to make reasonable predictions from even
small RNA-Seq datasets, but also means it cannot take full
advantage of the extra information offered by large, diverse
RNA-Seq training datasets. The integration of Direct Infer-
ence predictions via BIND also removed most mis-spliced
(artifactual) predictions made by BRAKER when annotat-
ing the transposon-rich rice genome (Supplementary Ta-
ble S5). In the absence of extended diverse RNA-Seq data,
BIND provides the best option for gene prediction.

If highly diverse RNA-Seq data is available, the BIND
and MIND pipelines leverage this information. Including
samples that often express high levels of young genes,such
as reproductive tissues and stressed tissues (9,16,28,84–87),
is particularly critical for prediction of young genes.

Challenges and limitations of gene prediction

Compelling evidence from bacteria, to yeast, to humans, in-
dicates that many sequences that are not annotated as genes

are transcribed and translated (3,22–27,88–90). This ‘per-
vasive transcription’ does not appear to occur randomly
across genomes. Alignment to the genomes of all transcripts
(with or without ORFs) from the RNA-Seq data summed
from the diverse developmental, environmental conditions
and genetic perturbations used in this study, indicates about
17% of the yeast genome and 24% of the Arabidopsis
genome is not detectably transcribed. (Thirty-five percent
of the rice genome was not detectably transcribed, but this
result is based on more limited RNA-Seq evidence).

A major quandary in any gene prediction pipeline, and
especially for evidence-based pipelines like Direct Inference
(26,33,35,91), is to determine which of the many gene pre-
dictions to retain and which to filter out. Each scenario that
we tested predicted thousands of genes that were not an-
notated. One approach to provide more evidence for each
prediction of a protein coding gene is to obtain translation
evidence (Ribo-Seq and proteomics). This approach is lim-
ited by the available translation data, which may be non-
existant for newly-sequenced species. In this study, over half
of the unannotated ancient genes predicted by BIND for
Arabidopsis also have translational evidence– even though
the samples represented in the available Ribo-Seq data were
limited as to the diversity of conditions represented.

Indeed, the same massive high-throughput sequencing
that has enabled the identification and functional character-
izations of genes has raised havoc with the traditional defi-
nition of a ‘gene’ (3,5,26,33). Perhaps most problematic for
predicting genes is that genes themselves are on a contin-
uum of ‘gene-ness’ (Figure 1). A given gene may emerge, re-
model, and recede in a continuum across evolutionary time.

As can be deduced from Figure 1, almost any of the
methods that predicts genes from genomic and other omic
data will include false positives. Some predictions might be
‘transcriptional noise’ (25)––fodder for de novo evolution of
protein-coding genes; others might be ncRNAs with a non-
translated or non-functional ORF (3,5,27,36). Other gene
predictions may actually be transcripts that are on the con-
tinuum between orphan gene and non-genic transcript or
the path from gene to pseudogene (3,5). And yet other novel
gene predictions might be bonafide functional genes. No
clear criteria articulate these products of the dark transcrip-
tome. However, a first step is to predict them, and provide
evidence-based metadata.

Most protein-coding orphans appear to have arisen de
novo from non-protein coding sequence, although various
scenarios of defunctionalization and refunctionalization of
existing genes provide another origin (1,3,4,27,92). These
youngest, most recently-formed protein-coding genes, en-
coding proteins with no amino acid sequence similarity to
proteins of any other species, are among the least likely
to have been functionally characterized (2). A few orphan
genes will persist over vast evolutionary time- as newer,
younger genes arise in the organism the former orphans will
become more and more ancient. Such genes will trace to
deeper evolutionary origins (e.g., in the extant species Ara-
bidopsis a gene that arose as an orphan at the inception of
it’s Magnoliophyta ancestor would be classified in the Mag-
noliophyta phylastratum). About two thirds of the anno-
tated genes of Arabidopsis trace back to a very early eukary-
otic or a prokaryotic origin (2). The most complex molec-
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ular process, catalysis appears predominantly restricted to
genes of these ancient phylostrata(2).

Application of gene prediction

In practice (see Supplementary Table S2), gene prediction
is often biased against the prediction of young protein-
coding genes. prediction protocols that contribute to bias
against young genes include: (i) using RNA-Seq evidence
from only a few conditions, which may not detect sparsely-
expressed genes; (ii) relying exclusively on ab initio predic-
tions, which miss many annotated orphans and other young
genes; (iii) filtering out gene predictions that have only one
exon, thereby excluding the many orphan genes with a sin-
gle exon; (iv) removing gene predictions that do not have ho-
mologs in other species, which eliminates all orphan genes;
(v) removing predicted genes based on low overall expres-
sion or have many missing values, which eliminates the
many orphan genes are expressed only under limited condi-
tions. Thus, although these filtering strategies may minimize
false positives, they also can exclude thousands of bonafide
genes.

The challenge of confirming that young genes are an-
notated efficiently is not addressed by evaluating the ex-
tent that the prediction identifies Benchmarking Universal
Single-Copy Orthologs (BUSCO, http://busco.ezlab.org),
highly-conserved genes among the gene predictions. This
method, though highly useful in determining how well a
pipeline annotates more ancient genes, does not capture
the efficacy of a pipeline in identifying orphans or other
young genes. Recently, Scalizati et al (93) have developed
a benchmarking approach that takes phylostrata into ac-
count; herein we provide a different approach to bench-
marking that considers phylostrata, and enables customiza-
tion of phylostrata to include line-specific genes.

There is no substitute for manual curation in providing
gene annotations that are useful to the community. An in-
clusive approach to predicting and annotating genes that
would benefit both curators and researchers would be to
make accessible in the annotations the confirmed, curated
genes along with predicted genes, as inferred based on ex-
pression and/or ab initio analysis, together with the avail-
able evidence for each. Thus, the signal of each predicted
gene would be retained in the reference annotations. To
minimize gene predictions that are actually ‘transcriptional
noise’, filtering predictions based on transcript accumula-
tion may provide a useful approach; however, applying a
cutoff should take into consideration the RNA-Seq data
that is available as well as the sparsity of expression of many
orphan genes. Ultimately, providing broad, straightforward
access to metadata on predicted genes will facilitate under-
standing of genome evolution and gene function.

The importance of retaining a broad view of gene ex-
pression is highlighted by the crucial functions that have
been experimentally demonstrated for proteins encoded by
both annotated and unannotated orphan genes. This is true
particularly in the realm of orphan genes that confer resis-
tance to abiotic and biotic stresses. Such genes may pro-
vide disruptive genetic elements that fundamentally repo-
sition metabolic and regulatory networks (8,36,94,95). The
potential for transcripts that encode orphan proteins to be

beneficial or essential has been reinforced by findings from
synthetic biology research. This growing body of research
reveals that even randomly-generated or evolutionarily-
selected peptides with no clear similarity to any known
proteins are often able to bind small molecules, such as
ATP and amino acids, in vivo (96). Furthermore, such ‘syn-
thetic’ orphan genes can have beneficial consequences, in-
cluding developmental, stress-resistance, and longevity phe-
notypes, when expressed in vivo (96,97). Thus, although a
gene has only ‘recently’ been subjected to selection pres-
sure, it may be important to the organism. If, as we ad-
vocate here, information on predicted non-canonical genes
was easily accessible, experiments could be designed to pri-
oritize these inferred genes for experimental study and to
elucidate the potential roles of these transcripts (45,49,66)
and to validate new pipelines by benchmarking against well-
sequenced, well-annotated genomes. Furthermore, gene ex-
pression studies would include these predicted genes, and
experimental biologists would gain a sense of how the genes
might be acting.

FAIR-ness of gene prediction protocols

Best practice for gene prediction is to use pipelines that
can be easily reproduced and have been validated in model
species. Unfortunately, neither have been standard practice
(eg., Supplementary Table S2).

Two key factors to advance the field of gene prediction
are reproducibility and the ability to modify the pipeline and
its parameters. Our aim is implementation of Best Practice,
reproducible pipelines for the methods we have deployed
and developed in this research. To enhance reproducibil-
ity of the MIND and BIND pipelines, the workflow uti-
lizes a package manager (for Direct Inference) and singu-
larity containers (for MAKER and BRAKER) to install
and run the bioinformatics tools. By automating the Direct
Inference pipeline using pyrpipe (45) and Snakemake (49),
we provide an end-to-end prediction solution that requires
minimal user intervention.This automation, combined with
extensive step-by-step documentation, enable a researcher
aiming to annotate a novel genome to apply the methods to
her/his own dataset.

We have facilitated future research in gene prediction
by making all pipelines, containers, scripts, benchmark
data, output data, and extensive step-by-step documenta-
tion open source and available (https://github.com/eswlab/
orphan-prediction). Researchers can easily add/swap in
new software for Direct Inference, and to some extent for
BRAKER, and can optimize parameters of the software
modules for Direct Inference and MAKER. A new pipeline
can be compared to existing pipelines using benchmark data
for model organisms, such as the TAIR and SGD gene an-
notations and the RNA-Seq data we provide. Researchers
can compare and contrast the prediction pipelines by using
the post-prediction analysis tools provided, or other tools
selected by the researcher.

CONCLUSION

We demonstrate that orphans and other young genes often
elude prediction, and illustrate challenges and best practices

http://busco.ezlab.org
https://github.com/eswlab/orphan-prediction
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in gene prediction. Our analyses showcase the importance
of including diverse transcriptomic evidence and incorpo-
rating an evidence-based approach. BIND and MIND pro-
vide improved, user-friendly gene prediction, identifying se-
quences for further study and curation. In addition, the
BIND and MIND platforms will facilitate future research
on gene prediction approaches.
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49. Köster,J. and Rahmann,S. (2012) Snakemake––a scalable
bioinformatics workflow engine. Bioinformatics, 28, 2520–2522.

50. Berardini,T.Z., Reiser,L., Li,D., Mezheritsky,Y., Muller,R., Strait,E.
and Huala,E. (2015) The Arabidopsis information resource: making
and mining the ‘gold standard’ annotated reference plant genome.
genesis, 53, 474–485.

51. Leinonen,R., Sugawara,H. and Shumway,M. (2010) The sequence
read archive. Nucleic Acids Res., 39, D19–D21.

52. Haas,B.J., Papanicolaou,A., Yassour,M., Grabherr,M., Blood,P.D.,
Bowden,J., Couger,M.B., Eccles,D., Li,B., Lieber,M. et al. (2013) De
novo transcript sequence reconstruction from RNA-seq using the
Trinity platform for reference generation and analysis. Nat. Protoc.,
8, 1494–1512.

53. Goodstein,D.M., Shu,S., Howson,R., Neupane,R., Hayes,R.D.,
Fazo,J., Mitros,T., Dirks,W., Hellsten,U., Putnam,N. et al. (2012)
Phytozome: a comparative platform for green plant genomics. Nucleic
Acids Res., 40, D1178.

54. Kim,D., Langmead,B. and Salzberg,S.L. (2015) HISAT: a fast spliced
aligner with low memory requirements. Nat. Methods, 12, 357–360.

55. Li,H., Handsaker,B., Wysoker,A., Fennell,T., Ruan,J., Homer,N.,
Marth,G., Abecasis,G., Durbin,R. et al. (2009) The sequence
alignment/map format and SAMtools. Bioinformatics, 25,
2078–2079.

56. Lomsadze,A., Ter-Hovhannisyan,V., Chernoff,Y.O. and
Borodovsky,M. (2005) Gene identification in novel eukaryotic
genomes by self-training algorithm. Nucleic Acids Res., 33,
6494–6506.

57. Stanke,M., Diekhans,M., Baertsch,R. and Haussler,D. (2008) Using
native and syntenically mapped cDNA alignments to improve de
novo gene finding. Bioinformatics, 24, 637–644.

58. Korf,I. (2004) Gene finding in novel genomes. BMC Bioinformatics,
5, 59.

59. Eilbeck,K., Moore,B., Holt,C. and Yandell,M. (2009) Quantitative
measures for the management and comparison of annotated
genomes. BMC Bioinformatics, 10, 67.

60. Song,L., Sabunciyan,S. and Florea,L. (2016) CLASS2: accurate and
efficient splice variant annotation from RNA-seq reads. Nucleic Acids
Res., 44, e98.

61. Pertea,M., Pertea,G.M., Antonescu,C.M., Chang,T.-C., Mendell,J.T.
and Salzberg,S.L. (2015) StringTie enables improved reconstruction
of a transcriptome from RNA-seq reads. Nat. Biotechnol., 33, 290.

62. Trapnell,C., Roberts,A., Goff,L., Pertea,G., Kim,D., Kelley,D.R.,
Pimentel,H., Salzberg,S.L., Rinn,J.L. and Pachter,L. (2012)
Differential gene and transcript expression analysis of RNA-seq
experiments with TopHat and Cufflinks. Nat. Protoc., 7, 562.

63. Mapleson,D., Venturini,L., Kaithakottil,G. and Swarbreck,D. (2018)
Efficient and accurate detection of splice junctions from RNA-seq
with Portcullis. GigaScience, 7, giy131.
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