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A single molecule assay to probe 
monovalent and multivalent bonds 
between hyaluronan and its key 
leukocyte receptor CD44 under 
force
Fouzia Bano1, Suneale Banerji2, Mark Howarth3, David G. Jackson2 & Ralf P. Richter1,4,5

Glycosaminoglycans (GAGs), a category of linear, anionic polysaccharides, are ubiquitous in the 
extracellular space, and important extrinsic regulators of cell function. Despite the recognized 
significance of mechanical stimuli in cellular communication, however, only few single molecule 
methods are currently available to study how monovalent and multivalent GAG·protein bonds respond 
to directed mechanical forces. Here, we have devised such a method, by combining purpose-designed 
surfaces that afford immobilization of GAGs and receptors at controlled nanoscale organizations with 
single molecule force spectroscopy (SMFS). We apply the method to study the interaction of the GAG 
polymer hyaluronan (HA) with CD44, its receptor in vascular endothelium. Individual bonds between 
HA and CD44 are remarkably resistant to rupture under force in comparison to their low binding affinity. 
Multiple bonds along a single HA chain rupture sequentially and independently under load. We also 
demonstrate how strong non-covalent bonds, which are versatile for controlled protein and GAG 
immobilization, can be effectively used as molecular anchors in SMFS. We thus establish a versatile 
method for analyzing the nanomechanics of GAG·protein interactions at the level of single GAG chains, 
which provides new molecular-level insight into the role of mechanical forces in the assembly and 
function of GAG-rich extracellular matrices.

Glycosaminoglycans (GAGs), a family of linear and anionic polysaccharides, are abundant in the extracellular 
space of vertebrates and act as vital regulators of the interactions between cells and their local environment. 
Simplest in structure among GAGs, hyaluronan (HA) is a regular polymer of disaccharides, composed of glu-
curonic acid and N-acetylglucosamine linked via alternating β​-1,4 and β​-1,3 glycosidic bonds, that can reach a 
contour length of several micrometers. The functional diversity of HA arises from its ability to bind various pro-
teins, termed hyaladherins. These bind to the flexible HA chains and promote their self-assembly in hydrogel-like 
multimolecular complexes that frequently undergo further dynamic re-modelling. Such HA-rich matrices are of 
prime importance for regulating cell migration in key physiological processes such as inflammation1 and ferti-
lization2, and in disease processes such as tumor metastasis3. HA also binds cell surface receptors, among which 
CD44 is structurally and biochemically the best characterized to date. In the vasculature, HA·CD44 interactions 
are known to mediate the recruitment of activated lymphocytes and neutrophils4,5 from the blood circulation, and 
have also been implicated in the recruitment of circulating stem cells6 and tumor cells7,8.

Cells migrating within the extracellular matrix are profoundly affected by physical forces and the mechani-
cal properties of their environment. This realization has driven efforts to probe and understand how forces act 
on the molecular scale9. A prime example is the capture of activated leukocytes from the blood flow during 
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inflammation, where mechanical forces are of vital importance in regulating adhesive interactions between 
PSGL-1 on the leukocyte surface and selectins on the blood vessel endothelium and the ensuing cell adhesion 
and rolling10,11. In this particular scenario, interactions between HA and CD44 also experience the shear stress 
of the blood flow4,7,12. More generally, given the structural role of GAG-protein interactions in the extracellular 
space, it is clear that these interactions are subjected to mechanical forces when matrix or tissues are deformed. 
To determine the biomechanical consequences of GAG-protein interactions, new methods are needed to probe 
the mechanical response of GAG-protein interactions at the nanoscale. On the most basic level, individual bonds 
need to be probed, and then, to better understand complexity in real biological systems, it must be determined 
how these elementary interactions are integrated into multivalent supramolecular systems. This is particularly 
important for GAGs because the polysaccharide chains can bind multiple proteins simultaneously.

Single molecule force spectroscopy (SMFS) is a powerful tool to study how forces affect molecular interac-
tions, and to identify the underlying molecular mechanisms. In particular, atomic force microscopy (AFM) based 
SMFS is now well established for probing intra- and inter-molecular forces13–15. A few SMFS studies have probed 
GAG-protein interactions on the single bond level16–19, and similar assays have revealed specific and multivalent 
interactions between GAGs20, or GAG analogues in the case of lower organisms21, on complex proteoglycans. To 
date however, only one study has applied SMFS to probe multivalent GAG-protein interactions17. Furthermore, 
these were not analysed in detail, and the particular assay system allowed only limited control over the orientation 
of the immobilized protein. Seminal studies (reviewed in ref. 22) with DNA, another biological polymer, not only 
demonstrate the unique ability of SMFS approaches to de-construct the dynamic and hierarchical assembly of 
large supramolecular complexes such as chromatin but they also highlight the critical importance of controlling 
the immobilization of such complexes for successful measurements. One of the main challenges to obtaining 
physiologically meaningful data using SMFS is achieving a well defined spatial arrangement of the studied mol-
ecules in their native orientation, while at the same time permitting the controlled application of the necessary 
tensile forces.

Here, we have devised such a method for GAG·protein interactions, by combining purpose-designed sur-
faces that afford immobilization of GAGs and receptors in the form of controlled nano-scale organizations with 
AFM SMFS. More specifically, the tailored surface functionalization and characterization by quartz crystal micro-
balance (QCM-D) and spectroscopic ellipsometry (SE) has enabled the anchoring of receptors and HA to solid 
substrates at controlled orientation, grafting density and lateral mobility. The new assay system has allowed us 
to study monovalent interactions between the leukocyte receptor CD44 and its HA ligand at the single molecule 
level as well as multivalent interactions between individual HA chains and CD44-coated surfaces in well-defined 
spatial arrangements. These measurements reveal that CD44·HA bonds have a high tensile strength despite their 
low affinity, and that multiple bonds along an HA chain rupture independently under load. We also demonstrate 
that strong but non-covalent bonds such as those between biotin and streptavidin (SAv), or between polyhistidine 
and metal chelators, which are ideal tools for immobilization of biomolecules at well-defined orientation and 
densities, are sufficiently strong to be used as anchors in the force spectroscopy of GAG·protein interactions. Our 
new method should thus be widely applicable to the study of GAG·protein interactions.

Results
In multivalent interactions, the (supra)molecular arrangement of the interaction partners can be critically impor-
tant, and we therefore applied particular care in controlling the immobilization of both GAGs and proteins. 
Correct functionalization of surfaces with HA and its receptor CD44 was ascertained through quartz crystal 
microbalance (QCM-D) characterization.

Immobilization of HA.  HA polymers of well-defined molecular mass (840 ±​ 60 kDa; contour length 
2.10 ±​ 0.15 μ​m23) were immobilized by end-grafting through a biotin tag at the reducing end. This method 
has been described previously24,25 and was applied here to AFM probes with incubation conditions adjusted 
such that only one or at most a few HA molecules are able to contact the protein-covered surface (Fig. 1a and 
Supplementary Fig. S1). In our force spectroscopy assays, polymeric HA fulfils three distinct functions. First, it 
serves as a flexible linker to discriminate specific interactions from undesired non-specific interactions that may 
occur when the AFM tip is close to the surface26. Second, the HA polymer is long enough to accommodate several 
hundred HA-binding proteins simultaneously, and thus enables the study of both single bond and multivalent 
interactions between an individual HA chain and a protein-coated surface under load. The end-grafted HA chain 
transmits force to HA-receptor bonds in a well-defined and controlled way, thus facilitating quantitative data 
analysis.

Optimization of receptor immobilization procedures by QCM-D.  The immobilization strategies for 
CD44 were devised to provide stable and specific immobilization at controlled orientation and lateral mobility, 
and at tunable surface densities. Specifically, the CD44 construct consisted of the extracellular domain (ECD) 
and a C-terminal His10 tag for immobilization. CD44 was bound to either His-tag-capturing sensor surfaces via 
a Cu2+ chelate, or to supported lipid bilayers (SLBs) via a Ni2+-tris-nitrilotriacetic acid (NTA) chelate27, in a way 
that reproduces the native orientation of the HA binding domain on the plasma membrane (Fig. 1b).

QCM-D frequency and dissipation shifts (Δf and ΔD, respectively) upon exposure of CD44 to 
His-tag-capturing sensor surfaces showed saturable binding (Fig. 2), the magnitudes of which were consistent 
with the formation of a protein monolayer. Indeed, the frequency shift close to saturation (∆f =​ −​47 ±​ 4 Hz) 
corresponds to a film thickness of about 7 nm (see Methods), a value that is larger than the size of the HA binding 
domain alone (3.5 nm)28,29 and compatible with the estimated molecular mass (60 kDa) of the glycosylated CD44 
domain (the exact dimensions of the full ECD are not known to our knowledge). CD44 remained stably bound 
throughout the buffer washing step, but was fully dissociated by elution with imidazole (Fig. 2a), confirming 
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Figure 1.  Surface functionalization with HA and CD44. (a) Representation (not to scale) of the protocol used 
to functionalize AFM probes with end-biotinylated HA (b-HA; 840 kDa) via monolayers of streptavidin (SAv) 
formed on a gold-supported mixed monolayer of thiolated oligo(ethylene glycol) with (b-OEG) and without 
(OEG) biotin. Rg is the radius of gyration of a single HA chain and rc the radius of curvature of the apex of the 
AFM probe. (b) Representation of the architecture of surfaces (not to scale) displaying the cell-surface HA 
receptor CD44 either immobile (i.e., His-tag-capturing layer; left) or laterally mobile (i.e., SLB; right).

Figure 2.  QCM-D immobilization assays for CD44 on His-tag-capturing sensors. QCM-D responses in 
(a) indicate formation of a stable and HA-binding CD44 monolayer, and demonstrate that CD44 is specifically 
immobilized through its polyhistidine tag (i.e., it can be fully eluted in imidazole). Data in (b) demonstrate 
that HA binds through the authentic HA-binding site on CD44 (largely blocked with anti-CD44 Ab). The 
magnitude of the final shifts upon binding of HA polymer to CD44-coated surfaces were ∆f =​ −​7.4 ±​ 1.0 Hz and 
∆D =​ 1.7 ±​ 0.2 ×​ 10−6.
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its immobilization solely via the polyhistidine tag. HA polymers (250 kDa) adsorbed readily and stably to the 
immobilized CD44 monolayers (Fig. 2a; ∆​f =​ −​7.4 ±​ 1.0 Hz), whereas no binding was observed to bare sen-
sors and only residual binding (∆f =​ −​2 Hz) persisted when the HA-binding site of CD44 was impeded with the 
function-blocking anti-CD44 monoclonal antibody BRIC23530 prior to HA incubation (Fig. 2b). The residual HA 
binding in this case most likely reflects incomplete blocking, e.g. due to spatial constraints of the large antibodies 
on the small receptor domains. These data clearly demonstrate that HA engages the authentic HA binding site on 
CD44. Given the low HA binding affinity for soluble CD44 as determined from previous surface plasmon reso-
nance analyses (KD =​ 10 to 100 μ​M)31, the stable binding we observed to immobilized receptor most likely arises 
from multivalent ligand interactions30.

Measurements of HA binding to CD44 immobilized on SLBs yielded similar results (Supplementary Fig. S2). 
Importantly, these SLBs retain the lateral mobility of CD44 in contrast to the conventional His-tag-capturing 
sensors in which the protein remains fixed32. In this way, the effect of receptor mobility on the interaction with 
HA can be independently assessed.

Immobilization of proteins for AFM SMFS.  The immobilization procedures for CD44 established by 
QCM-D were then adopted to prepare samples for AFM SMFS. The solution concentration of CD44 was varied 
to generate surfaces with desired protein coverage, where the protein surface density was estimated from spec-
troscopic ellipsometry (SE) measurements and where we exploited the fact that the protein binding rate is largely 
mass transport limited (Supplementary Fig. S3). In the following, we operationally define root-mean-square 
(rms) distances between receptors around 50 nm (comparable to the size of the HA coil, Rg ≈​ 75 nm; Fig. 1) as 
‘low receptor density’, and rms distances around 10 nm as ‘high receptor density’.

We stress that the correct orientation of the immobilized proteins is critical for their functionality. For exam-
ple, when another HA-binding protein, the aggrecan G1 domain complex with cartilage link protein33 was 
immobilized through a randomly positioned tag, we detected only residual binding by QCM-D and AFM SMFS, 
revealing that only a very small fraction of the immobilized proteins engaged efficiently with HA (Supplementary 
Fig. S4).

Single molecule force spectroscopy of individual HA·CD44 bonds.  We first used force spectros-
copy to characterize the forces associated with the unbinding of HA from a single CD44 molecule (Fig. 3 and 
Supplementary Fig. S5). Predominantly single rupture events were observed when the HA-bearing AFM probe 
was exposed to His-tag-capturing surfaces with low CD44 density (rms distance ~50 nm; Fig. 3a). Several obser-
vations confirm that these curves indeed represent the genuine interaction of a single HA chain with a single 
CD44 molecule. First, most (78%) of the force curves (n >​ 600) showed no rupture event, and only a minor 
fraction (9%) showed two or more distinct rupture events: a distribution that would be predicted for stochastic 
single-molecule interactions. Second, the HA stretching curves in every case overlapped when the distances were 
normalized according to predictions of the worm-like chain (WLC) model (Supplementary Fig. S5a)34. Third, 
no rupture events (in n =​ 200 force curves per condition) were observed when either CD44 or HA were omitted, 
indicating that the interactions are specific to these components (Supplementary Fig. S5b). Fourth, statistical 
analysis of force-separation curves with a single rupture event, acquired over a spectrum of retract velocities, 
using the WLC model revealed a velocity-independent persistence length (Lp =​ 4.1 ±​ 0.4 nm; Fig. 3b). The mag-
nitude of Lp agrees with previously reported values obtained from single-molecule HA stretching experiments at 
comparable ionic strength and pH values (4.4 ±​ 1.2 nm)35. Fifth, the contour length Lc between the anchor point 
of HA and the CD44-binding locus varied broadly between measurements, and the maximum observed value 
matched the total contour length of the employed HA chains (2.1 μ​m) well (Fig. 3c). This confirms that a single 
HA chain is being stretched in our experiments and that CD44 can bind (with similar likelihood) at any position 
along that chain.

Histograms of the rupture forces revealed unimodal distributions for all retract velocities (Fig. 3d), suggesting 
that one specific bond is being probed. Indeed, the mean rupture force F depended linearly on the logarithm of 
the instantaneous loading rate r (Fig. 3e), as predicted by the Bell-Evans model13,36–38 for stochastic bond rupture 
under external load across a single energy barrier
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where kBT is the thermal energy, xβ is the width of the energy barrier, and koff is the unbinding rate constant 
in the absence of external load. Fitting of the data with Eq. (1) (Fig. 3e, line) yielded koff =​ 0.3 ±​ 0.5 s−1 and 
xβ =​ 0.8 ±​ 0.3 nm.

We note that the above-mentioned minor fraction of force curves showing more than one rupture event (9%) 
might originate from the binding of an HA chain to several distinct CD44 molecules. Given the large size of HA, 
it is though also possible that rebinding to the same receptor molecule occurs during the retract phase. The dom-
inance of force curves with single binding events over multiple binding events indicates that re-binding is a rare 
phenomenon under the experimental conditions.

Multivalent HA·CD44 interactions.  Next, we used His-tag-capturing surfaces with high CD44 density 
(rms distance ~10 nm) to examine multivalent HA·receptor interactions. On these surfaces, force curves with 
a single rupture event were rare and multiple discrete unbinding peaks, typically around 10, were instead com-
monly observed (Fig. 4a,b).

The individual peaks in the force curves could be fitted closely (Fig. 4a) with a WLC model in which Lp 
was fixed to the previously established value of 4.1 nm. Detailed analysis over a spectrum of loading rates again 
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Figure 3.  Analysis of HA·CD44 single-bond interactions. Representative force-separation curve (pink – 
approach, green – retract; retract velocity 1000 nm/s) recorded at low CD44 surface density (rms inter-CD44-
distance ~50 nm) for a specific single unbinding event as schematically shown; the inset on the right shows an 
enlargement of the boxed portion of the force curve with an expanded separation axis. The red line represents 
a best-fit worm-like chain (WLC) model curve for HA stretching. The slope of this curve at the end of the 
extension curve (dashed line) corresponds to the linker stiffness and, together with the retraction speed, gives 
the instantaneous loading rate at the moment of bond rupture. (b–e) Results of the statistical analysis of single-
rupture-event force curves, obtained at low CD44 density, with the WLC model. (b) Persistence length (Lp) 
of HA as a function of instantaneous loading rate. The dashed line marks the mean Lp value, with mean ±​ s.d. 
indicated. The inset shows histograms of Lp for the studied instantaneous loading rates (as listed with color 
codes) with best-fit Gaussian curves. (c) Histograms of Lc, i.e. the contour length of the HA chain from its 
anchor point to the CD44 binding locus, for the studied instantaneous loading rates (as listed with color codes). 
The largest measured Lc is comparable to the total contour length of the employed HA chains (2.1 μ​m), as 
expected. (d) Rupture force histograms for the different instantaneous loading rates (listed in the back panel as 
mean ±​ s. d.). The solid lines represent best-fit Gaussian curves. (e) Dynamic force spectra obtained from the 
data in (d); error bars represent s.d. The black line represents the best-fit Bell-Evans model curve with kinetic 
parameters indicated.
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revealed unimodal distributions of rupture forces (Fig. 4c), with distribution means and widths (Fig. 4d) that 
were fully consistent with the values obtained for interactions of an HA chain with a single CD44 molecule 
(Fig. 3e). The close match of the best-fit model curves with fixed Lp with the experimental data and the consistent 
distribution of rupture forces imply that all rupture events occur on the same HA chain, and that the individual 
bonds rupture independently from one another under load. The drastically enhanced number of rupture events at 
high CD44 surface density provided a larger dataset for statistical analysis (Fig. 4c) thus improving the accuracy 
of the determination of kinetic parameters through the Bell-Evans model (Fig. 4d): consolidated values were a 
barrier width xβ =​ 0.60 ±​ 0.02 nm and a dissociation rate constant koff =​ 0.57 ±​ 0.11 s−1.

From the sample force curves in Fig. 4a,b, it can be readily appreciated that the spacing between subsequent 
rupture events in a given force curve is irregular, and that the location of rupture events across different force 
curves varies widely. This indicates that HA interconnects CD44 molecules through loops of varying size, a pic-
ture that is consistent with simple theoretical predictions for the adsorption of flexible polymers to surfaces39 and 
also with an earlier report on the thickness of films of HA polymers bound to CD44-coated surfaces30. The dif-
ference in contour length between successive rupture events provides a measure for the contour length of a loop, 
and the histogram (Fig. 4e) revealed a broad distribution of loop sizes: the loop size distribution had a maximum 
around 50 nm, but loops of several 100 nm contour length could also be observed.

Role of lateral mobility in the rupture of HA·CD44 bonds.  The experiments thus far assessed the 
behavior of immobilized CD44. However, under normal physiological conditions, HA receptors may be mobile 
in the cell membrane. To test how lateral mobility affects the unbinding of multivalent HA-receptor interactions, 
we performed complementary measurements with CD44 attached to SLBs. As shown in Fig. 5, the force curves 
and the distribution of rupture forces were comparable to those obtained on His-tag-capturing sensors (see e.g. 
Fig. 4), i.e. the receptor’s lateral mobility does not substantially affect the unbinding process.

On the basis of all these findings, we conclude that individual HA·CD44 bonds are remarkably resistant to 
rupture under load considering their relatively low affinity, and that HA binds multivalently to a CD44-covered 
surface through the stochastic formation of loops, with bonds rupturing sequentially and independently under 

Figure 4.  Analysis of HA·CD44 multivalent interactions. (a) Representative force-separation curve (pink –  
approach, green – retract; retract velocity 2000 nm/s) recorded at high CD44 surface density (rms inter-CD44-
distance ~10 nm) for specific multiple unbinding events as schematically shown. The red lines represent best-fit 
WLC model curves (Lp =​ 4.1 nm fixed). (b) Five representative force-separation curves obtained under the 
same conditions; the curves are offset along the force axis for clarity. Each force curve is distinct, illustrating 
that bonds form stochastically at random positions along the HA chain. (c–e) Results of the statistical analysis 
of multiple-rupture-event force curves obtained at high CD44 density. (c) Rupture force histograms displayed 
analogous to Fig. 3d. (d) Dynamic force spectra displayed analogous to Fig. 3e. The similarity with the dynamic 
force spectra extracted from single-rupture-event curves (Fig. 3e) indicates that bonds rupture individually. 
(e) Histograms of HA loop length, equivalent to the contour length difference Δ​Lc between successive rupture 
events.
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load. In particular, these results illustrate that our approach is well suited for the characterization of monovalent 
and multivalent interactions with a single platform under well-defined interaction conditions.

Are CD44·HA bonds being probed?  The rapid, strong and specific interactions between biotin and SAv, 
and between polyhistidine and metal chelators, are ideal for the anchorage of proteins and glycans at controlled 
orientation and density. Moreover, supported lipid bilayers with functionalized lipids being retained in the mem-
brane through hydrophobic interactions are a unique platform to produce well-defined surfaces with laterally 
mobile receptors. However, given that these interactions are non-covalent, there is a finite possibility that an 
anchor point yields upon application of a tensile force, and it is thus a priori not clear if the above-determined 
parameters characterize the genuine HA-receptor interaction. To resolve this question, we performed a set of 
control experiments with distinct anchors.

First, we replaced streptavidin as an anchor for HA by traptavidin (TAv), a streptavidin variant that binds more 
stably to biotin (Supplementary Fig. S6)40. The distributions of rupture forces with this modification were virtually 
identical compared to those obtained with SAv. Consequently, the kinetic parameters derived from the force spec-
tra also agreed within experimental error (compare Supplementary Fig. S7c,d with Fig. 4c,d; Table 1). Moreover, 
single molecule force spectroscopy with biotin (attached to the AFM tip via a polyethylene glycol linker and a 
thiol-gold bond) and monolayers of SAv or TAv (prepared identically to the coatings used for HA attachment; 
Supplementary Figs S1 and S6) confirmed the enhanced mechanostability of TAv·biotin over SAv·biotin in our 
setup (Supplementary Fig. S8). Specifically, the mean rupture forces with TAv were increased by 10 to 20 pN 
compared to SAv within the range of loading rates tested (0.8 to 10 nN/s), and the derived kinetic parameters were 
comparable to those previously reported40.

Second, we replaced the His-tag-capturing surface by a SAv monolayer for the anchorage of CD44 
(Supplementary Fig. S9a–c). Our CD44 construct featured a biotin tag side by side with the polyhistidine tag 
at the C-terminus, and thus enabled the effect of the anchors to be compared at virtually identical protein 

Figure 5.  Effect of lateral mobility of CD44 on the interaction with HA. (a) Representative force-separation 
curve (approach/retract velocity 1000 nm/s) obtained between a HA-modified tip, and CD44 anchored 
to an SLB at high receptor density (rms inter-CD44-distance ~10 nm) as schematically shown (see also 
Supplementary Fig. S2). The force curve is qualitatively similar to those obtained for fully immobilized CD44 
(cf. Fig. 4a,b). The red lines represent best-fit WLC model curves (Lp =​ 4.1 nm fixed). (b–d) Results of the 
statistical analysis of multiple-rupture-event force curves. (b) Rupture force histograms displayed analogous to 
Fig. 3d. (c) Dynamic force spectra displayed analogous to Fig. 3e. (d) Histograms of HA loop length, equivalent 
to the contour length difference Δ​Lc between successive rupture events. These data are comparable to Fig. 4c–e, 
indicating that CD44 lateral mobility does not substantially affect the unbinding process.
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orientation on the surface. As for HA, the change in CD44 anchor had no substantial effect on the distribution 
of rupture forces and the derived kinetic parameters (compare Supplementary Fig. S9e,f with Fig. 4c,d; Table 1).

These control experiments demonstrate that the anchorages of HA via biotin and SAv, and of CD44 via poly-
histidine and metal chelator, are strong enough and do not affect the force spectroscopy of HA·CD44 interactions 
appreciably. Moreover, the similar results obtained on SLBs (compare Fig. 5c,d with Fig. 4c,d; Table 1) imply that 
the anchorage of polyhistidine-binding lipids in the lipid bilayers is also strong enough. To explain this mecha-
nistically, we performed in addition a theoretical analysis of rupture probabilities of bonds connected in series. 
We assumed that n bonds in a chain can rupture independently from each other, each according to the Bell-Evans 
model. Adopting the approach described by Neuert et al.41, the probability ϕ(i) of bond i to rupture as a function 
of force f and loading rate r is defined by a system of n +​ 1 coupled ordinary differential equations
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( ) is the probability of the n-bond chain to remain intact. The boundary conditions to 

solve these equations are defined by the n-bond chain being intact at the start of the measurement (Φ​ =​ 1 and 
ϕ = 0i( )  at f =​ 0).

To compare with our experiments, we considered for simplicity a system with two reversible bonds, represent-
ing CD44·HA and a SAv·biotin anchorage (thus effectively assuming the second anchorage to be irreversible). 
For SAv·biotin, we used the experimentally determined values for koff and xβ (Supplementary Fig. S8f; Table 1) as 
input parameters. For CD44·HA, we used the values shown in Fig. 4d (and Table 1), as our control experiments 
had shown that these represent the individual CD44·HA interaction adequately even though they were obtained 
in a system with multiple bonds in series.

Figure 6a shows the results of the numerical calculations in the form of the derivative dϕ​/df of the rupture 
probability as a function of the force f at two selected loading rates (1 and 10 nN/s) that are close to the lowest and 
highest loading rates used experimentally, respectively. This plot reveals that the breakage of CD44·HA dominates 
over SAv·biotin, but also that the probability of SAv·biotin to break is sizeable.

Figure 6b shows the rupture probability ϕ of the individual bonds in the limit of high forces when all chains 
have effectively ruptured (Φ​ =​ 0). This plot illustrates that the rupture of CD44·HA dominates over SAv·biotin 
over the entire range of experimental loading rates. The probability of the anchor to rupture is though sizeable 
(between 10 and 30%), and is reduced by approximately two-fold when SAv·biotin is replaced by the more stable 
TAv·biotin.

Figure 6c compares the numerical calculations for the total rupture probability of the two bonds in series 
(i.e. cumulating the ruptures of either CD44·HA or SAv·biotin) with the expected response for scenarios in 
which there is only one reversible bond, i.e. either CD44·HA or SAv·biotin (for n =​ 1, Eq. (2) simplifies to dϕ/
df =​ ϕkoff exp[fxβ/(kBT)]/r). From this presentation, it can be appreciated that the curves for CD44·HA alone are 
very similar to the curves for the two bonds in series, to such an extent that the width and the mean of the dis-
tribution are barely affected by the presence of the SAv·biotin bond. Specifically, the decrease in the location of 
the maxima in the distributions owing to the presence of SAv·biotin remained within ~1 pN. This is below the 
resolution limit of our experiments, and explains that the occasional breakage of SAv·biotin, when in series with 
CD44·HA, does not affect the force spectra appreciably that are ultimately used for fitting with the Bell-Evans 
model (Eq. (1)).

We note that the presentation in Fig. 6c is equivalent to idealized rupture force histograms. The mean rupture 
forces predicted for CD44·HA alone and SAv·biotin alone are in agreement with the experimental data in Fig. 4d 
and Supplementary Fig. 8f, respectively. This is to be expected because these data were effectively used as input 
parameters, and merely confirms that the numerical calculations are correct. Reassuringly, however, the widths 
of the distributions in Fig. 6c also compare well with the experimental data (cf. standard deviations indicated in 
Fig. 4d and Supplementary Fig. 8f). The width was not an input parameter of the numerical calculations, and the 
agreement thus provides further support for the validity of the simple theoretical model described by Eq. (2).

Collectively, the experimental results at low and high receptor density demonstrate that the stochastic rup-
ture of individual bonds between HA and CD44 can be reliably characterized in our experimental setup, thus 
validating that the kinetic parameters shown in Figs 4d and 5c pertain to the genuine interaction of HA with its 
receptor. The results of the theoretical model are fully consistent with our experimental findings and confirm 

Anchor 1a Bond probed Anchor 2a koff(s−1) xβ(nm) cf. Figure

Cu2+ chelate·His10

CD44·HA

b·SAv·b2 0.57 ±​ 0.11 0.60 ±​ 0.02 4d

SLB·Ni2+ chelate·His10 b·SAv·b2 0.63 ±​ 0.37 0.67 ±​ 0.07 5c

Cu2+ chelate·His10 b·TAv·b2 0.44 ±​ 0.07 0.65 ±​ 0.02 S7d

b2·SAv·b b·SAv·b2 0.43 ±​ 0.21 0.65 ±​ 0.06 S9f

b2·SAv SAv·biotin thiol-Au 1.40 ±​ 0.59 0.31 ±​ 0.03 S8f

b2·TAv TAv·biotin thiol-Au 0.85 ±​ 0.58 0.28 ±​ 0.04 S8f

Table 1.   Summary of kinetic parameters obtained from fitting force spectra with the Bell-Evans model. 
aAll non-covalent interactions in the chain of bonds are listed and indicated by “•”; biotin is abbreviated as “b”.
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that the anchors break occasionally but are mostly stable and sufficiently strong not to perturb the analysis of the 
HA·CD44 interaction with the Bell-Evans model.

Discussion
In this manuscript we have conceived an experimental platform for the analysis of the nanomechanics of 
GAG·protein interactions. Focusing on the fundamentally important interaction between HA and its primary 
cell surface receptor CD44, we have demonstrated how GAG·protein binding can be analyzed at the level of a sin-
gle GAG chain in a well-defined system that not only preserves the native orientation of the receptor, but which 
also enables important parameters such as its density and lateral mobility in the membrane to be varied. With 
this system, the unbinding mechanics of monovalent and multivalent GAG-protein interactions can be measured 
and directly compared.

Figure 6.  Theoretically predicted rupture probabilities for two reversible bonds in series. (a) Derivative of 
the rupture probability dϕ/df vs. force f for the scenario of CD44·HA in series with SAv·biotin at loading rates 
r =​ 1 nN/s (solid lines) and 10 nN/s (dashed lines); data for ϕ ⋅(CD44 HA) is shown in green, for ϕ ⋅(SAv biotin) in red, 
and for the total rupture probability ϕ ϕ ϕ= +⋅ ⋅(total) (CD44 HA) (SAv biotin) in blue. (b) Rupture probabilities ϕ in 
the limit of high forces (Φ​ =​ 0) vs. loading rate r for the scenarios of CD44·HA in series with SAv·biotin (red) or 
TAv·biotin (black); ϕ ⋅(CD44 HA) is shown as solid lines, ϕ ⋅(SAv biotin) and ϕ ⋅(TAv biotin) as dashed lines. The rupture of 
CD44·HA dominates over SAv·biotin over the entire range of loading rates, and the probability of the anchor to 
rupture is reduced by approximately two-fold upon replacing SAv·biotin by TAv·biotin. (c) Total rupture 
probabilities, displayed as dϕ/df vs. force f, for the scenario of CD44·HA in series with SAv·biotin (as shown in 
(a); blue lines) compared to CD44·HA alone (light green filling), and SAv·biotin alone (light red filling). The 
curves for CD44·HA alone are very similar to the curves for the two bonds in series, demonstrating that the 
occasional breakage of SAv·biotin, when in series with CD44·HA, does not affect the force spectra appreciably. 
See Table 1 and main text for the input data of the theoretical model.
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HA·CD44 interactions are critical for capturing circulating cells such as activated lymphocytes and neutro-
phils from the blood flow5, enabling their transient adhesion to the luminal surface of the vessel, and the charac-
teristic rolling behavior that precedes extravasation4,7,12,42,43. Among studies on the interaction of HA with CD44 
on a larger scale (involving many HA chains)7,12,44, binding of CD44-positive cells and CD44-coated microspheres 
to HA-coated surfaces has been reported to strengthen under flow, and it has been proposed that this effect 
is encoded at the molecular level in the form of an unconventional bond that strengthens under force (catch 
bond)7,12. In the measurements described here, the dependence of the mean rupture force on loading rate as well 
as the magnitude of the standard deviations in mean rupture force (Figs 3e and 4d) are consistent with the pre-
dictions of the Bell-Evans model indicating that CD44·HA bond rupture is adequately described by conventional 
unbinding across a single barrier. These two scenarios, however, are not mutually exclusive: as recently demon-
strated by Harder et al.19 for a different GAG·protein bond, the catch bond behavior may simply not be picked up 
over the range of loading rates accessible in our experiments. This question clearly deserves further study in the 
future. On the multi-bond level, the major finding of this study is that multiple CD44·HA bonds along a single HA 
chain rupture sequentially and independently under load (Fig. 4). Leukocyte rolling along the luminal surface of 
blood vessels mediated by CD44·HA interactions would thus rely largely on the stochastic rupture and renewal 
of CD44·HA bonds.

Raman et al.16 have previously reported single molecule force data on CD44·HA bonds, and it is notable that 
the mean rupture forces reported with their assay exceed those measured here by about two-fold. The presenta-
tion of HA in the earlier work was distinct, with HA polymers being chemically modified at multiple sites along 
the polymer chain, likely resulting in multiple attachment points to the AFM tip. Furthermore, the CD44 con-
structs employed and their anchorage to the surface were also different to those in our study. A definitive explana-
tion at this stage is difficult, however, because representative force-separation curves or force histograms were not 
provided in the earlier study and hence cannot be compared directly with the data presented here.

We have here studied the interaction of HA with a selected construct of CD44. The binding of HA to CD44 
on the cell surface in the absence of tensile force has previously been found to be tightly regulated through CD44 
post-translational modifications, such as N-glycosylation and terminal sialylation45 and receptor clustering. 
Future studies should focus on the possible contributions of such modifications to the regulation of HA binding 
under force. In addition, it will also be interesting to compare the mechanical response of CD44·HA bonds with 
the bonds that HA forms with other cell surface receptors such as the lymphatic vessel endothelial receptor-1 
(LYVE1)46–48. Such a comparison would be of particular interest, as the lymphatic system experiences lower flow 
and shear stress than the blood vasculature and how the two receptors respond to the distinct mechanical envi-
ronments in which they act remains an open question.

Our methodology for protein and GAG immobilization relies on the bio-affinity of selected tags, a feature 
which offers rapid assembly and precise control on molecular orientations. With its modular design, and the 
increasing availability of methods for the site-specific tagging of proteins and GAGs49 with polyhistidine or bio-
tin, the platform can now be readily applied to a wide range of different proteins and their GAG ligands. Several 
extensions of the assay platform are conceivable. First, future progress in the conjugation of GAGs may enable the 
effects of their disposition to be tested through selective tethering via the reducing or non-reducing ends as well as 
permitting analysis of the effects of GAG topology (e.g. GAGs containing loops of defined size) on the mechanical 
response. Second, other force spectroscopy schemes such as force clamps or variations in the direction of applied 
force could provide further insight into bond mechanics to resolve the presence of multiple unbinding pathways 
underlying unconventional behavior such as catch bonds19, and their effect on multivalent interactions. In this 
regard, the method should also be applicable to other single-molecule techniques that require immobilization of 
the interaction partners on surfaces, such as magnetic tweezers, laminar flow assays, acoustic force spectroscopy, 
or centrifuge force microscopy (see ref. 50 and references therein). Third, other aspects of the in vivo conditions 
also can be readily incorporated to probe the regulatory role of multiple simultaneous protein-GAG interactions. 
For example, experiments in which GAG-binding proteins are presented in the solution phase jointly with the 
immobilized receptors would help determine how the modulation of GAG structure by proteins51, such as that of 
HA by TSG-652, affects the nanomechanics of GAG binding to the cell surface. Last but not least, our methodol-
ogy could conceivably be combined with the analysis of GAG-receptor interactions in live cells. This would enable 
a direct comparison of responses in biomimetic systems that are well defined and recapitulate selected properties 
of the cell surface with the more complex (and less well defined) native system.

The ideal anchorage of biomolecules in SMFS is both well defined (in terms of orientation, surface density and 
lateral mobility) and resistant to tensile force. In practice this represents a trade-off scenario: covalent attachment 
guarantees high mechanical strength but is often not well defined, whereas attachment through bio-affinity tags is 
very well defined but the resistance to tensile force is lower. In this regard, the combination of adequately designed 
control experiments with a simple theoretical model (Eq. (2)) provides an effective tool to assess the viability of 
non-covalent bonds as anchors in SMFS. Our results demonstrate that interactions of biotin with SAv, and pol-
yhistidine with metal chelators, and the embedding of metal-chelator functionalized lipids in lipid bilayers, are 
sufficiently strong for the reliable analysis of HA·CD44 interactions. Given the relatively weak nature of typical 
GAG·protein interactions, it is likely that the anchor stability will also be sufficient to study many other inter-
actions. Where needed, the accessible force range can be extended by the use of TAv instead of SAv. Moreover, 
the model presented in Eq. (2) may also be used to correct for the effect of anchors in cases where the rupture 
probability of anchor(s) is comparable to that of GAG·protein interactions, thus further extending the application 
range. To this end, a data fitting procedure can be envisaged that uses koff and xβ of the anchor bonds (determined 
with control measurements for each anchor type; cf. Fig. S8) as input to extract the koff and xβ values for the 
GAG·protein interaction from experimental force spectra for the GAG·protein bond in series with the anchor 
bonds. The sensitivity of the assay to the GAG·protein bond (and thus the accuracy of the correction method) 
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can be expected to be good as long as the rupture probability of the GAG·protein bond is larger than that of the 
anchors, but to decrease rapidly in the inverse case.

In summary, we have reported the combination of tailored surface functionalization strategies and surface 
characterization by QCM-D and SE with AFM SMFS to study the nanoscale mechanics of monovalent and mul-
tivalent bonds between proteins and GAGs at a level down to a single GAG chain in supramolecular architectures 
that are designed to reproduce specific aspects of the in vivo situation. Applying this approach, we have quantified 
the mechanical strength of individual CD44·HA bonds and revealed that multiple bonds along a given HA chain 
rupture sequentially and independently under load. This platform technology should be widely applicable for 
elucidating molecular mechanisms underlying the response of extracellular matrix and cell surface receptors to 
mechanical forces.

Methods
Buffer, proteins and hyaluronan.  A ‘working’ buffer consisting of 10 mM HEPES at pH 7.4 and 150 mM 
NaCl was used to dilute proteins and HA and throughout all QCM-D and AFM experiments. The full-length 
ECD (terminating after residue number 267) of human CD44 with a His10 tag and a biotin tag at the C-terminus 
was produced and purified as described in the Supplementary Methods. Monoclonal mouse anti-human CD44 
function-blocking antibody BRIC235 (anti-CD44 Ab) was obtained from International Blood Group Reference 
Laboratory (Bristol, UK). Lyophilized SAv (Sigma Aldrich) was dissolved in ultrapure water to form a stock at 
1 mg/ml concentration. TAv was expressed and purified from E. coli as described previously40, stored at 1 mg/ml 
in PBS at −​20 °C, and further diluted in working buffer for final use. Lyophilized HA polymers with well-defined 
molecular masses (SelectHA) were purchased from Hyalose (Oklahoma City, OK, USA): HA with a biotin at its 
reducing end (for AFM SMFS assays) had a molecular mass of 840 ±​ 60 kDa, and plain HA (for QCM-D assays) 
had a molecular mass of 250 ±​ 12 kDa. HA was dissolved, and gently shaken for 2 h in ultrapure water, to provide 
a stock of 1 mg/ml. Stock solutions of all proteins and HA were aliquoted and stored at −​20 °C. Thawed aliquots 
of proteins were used within a few days, while thawed aliquots of HA were used within a few weeks.

Lipids.  1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) was purchased from Avanti Polar Lipids (Alabaster,  
AL, USA). Tris-NTA-functionalized lipid analogues ((NTA)3-SOA)53, prepared as previously described54 were 
kindly provided by J. Piehler (Osnabrück University, Germany). Small unilamellar vesicles (SUVs) in working 
buffer were prepared by sonication from a mixture of DOPC and (NTA)3-SOA (95:5 molar ratio), as described 
previously55,56. SUVs at a stock concentration of 1 to 2 mg/ml were stored at 4 °C under argon and used within 
three weeks.

Substrates.  QCM-D sensors with gold coating (QSX301), silica coating (QSX303) and His-tag-capturing 
coating (QSX340) were obtained from Biolin Scientific (Västra Frölunda, Sweden). Silicon wafers (9 mm ×​ 9 mm) 
with a native oxide layer of about 2 nm were from University Wafers (South Boston, MA, USA). 100 nm gold 
coatings were prepared by sputter deposition.

Silica-coated substrates were cleaned with 2% (w/v) SDS for 30 min, rinsed thoroughly with ultrapure water 
followed by blow-drying with N2, and treated with UV/ozone (Bioforce Nanoscience, Ames, IA) for 30 min and 
stored in air. His-tag-capturing sensors were uses as received and regenerated by 5 mM CuSO4. Gold-coated sub-
strates were employed as received and not re-used.

Surface functionalization.  Preparation of surfaces for anchorage of biotin-tagged hyaluronan and proteins.  
Di-end functional oligo(ethylene glycols) (OEGs) were purchased from Polypure (Oslo, Norway), one made of 
two EG7 with hydroxyl groups on one end and connected by a disulfide on the other (OEG disulfide), and the 
other containing EG10 with biotin on one end and a thiol on the other (b-OEG thiol). Gold-coated planar sub-
strates or AFM cantilevers were conditioned by exposure to UV/ozone for 30 min, and then immersed overnight 
at 4 °C in an ethanolic solution (purity 99.9%; Scharlab S.L.) of OEG disulfide and b-OEG thiol (molar ratio 
500:1) at a total concentration of 1 mM. Prior to use, the functionalized substrates were rinsed with ethanol and 
blow-dried with N2. This procedure provides a monolayer of OEG that is inert to non-specific binding of proteins 
and GAGs; it permits the formation of a monolayer of SAv that serves as a ‘molecular breadboard’ for the con-
trolled anchorage of biotin-tagged molecules24,25.

Preparation of surfaces for anchorage of polyhistidine tagged proteins.  His10-tagged CD44 was directly immo-
bilized on His-tag-capturing QCM-D sensors. This sensor surface features a passivating layer of poly(ethyl-
ene glycol) (PEG) and exposes divalent metal ions for capturing polyhistidine tagged molecules. Alternatively, 
SLBs containing Ni2+-loaded tris-NTA moieties were used to anchor polyhistidine tagged proteins. To this end, 
silica-coated substrates were conditioned by exposure to UV/ozone for 30 min prior to use, and SLBs were formed 
from SUVs by the method of vesicle spreading, as described previously57.

For anchorage of HA and proteins, the surfaces were incubated with the appropriate molecule (biotin or His 
tagged) at ambient conditions in working buffer at the required concentration. To obtain receptor monolayers of 
‘low’ (~0.07 pmol/cm2) and ‘high’ (~1.8 pmol/cm2; Supplementary Fig. S3) density, respectively, CD44 was incu-
bated in still solution for 30 min at 0.25 μ​g/ml and 6.5 μ​g/ml.

Quartz crystal microbalance (QCM-D).  QCM-D measures the changes in resonance frequency, ∆​f, and 
dissipation, ∆​D, of a sensor crystal upon molecular adsorption on its surface. The QCM-D response is sensi-
tive to the areal mass density (including hydrodynamically coupled water) and the mechanical properties of the 
surface-bound layer. To a first approximation, a decrease in frequency (∆f) corresponds to increased mass, while a 
low (high) response in dissipation (∆D) corresponds to rigid (soft) films. QCM-D measurements were carried out 
with a Q-Sense E4 system equipped with Flow Modules (Biolin Scientific AB, Västra Frölunda, Sweden) with flow 
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rates of 5 to 20 μ​l/min at a working temperature of 23 °C. ∆​f and ∆​D were collected at six overtones (i =​ 3, 5, 7, 9, 
11, 13). Changes in dissipation, ∆​D, and normalized frequencies, ∆​f =​ ∆​fi/i, for i =​ 3 are presented. All overtones 
provided similar information. All experiments were carried out in duplicate; numbers in the manuscript text 
represent the mean ±​ variations around the mean.

For dense monolayers of globular proteins, the film thickness was estimated from d =​ −​C/ρ​ ×​ Δ​f, where the 
density ρ​ =​ 1.2 g/cm3 represents the protein film density to within an error of less than 20% and C =​ 18.1 ng/cm2/Hz  
the sensor’s mass sensitivity constant58.

Force spectroscopy.  AFM experiments were performed on a NanoWizard II system (JPK, Berlin, Germany) 
in working buffer at ambient conditions, using gold-coated cantilevers with nominal spring constants of 30 or 
6 pN/nm (Biolevers), and 60 pN/nm (NPG-10; both from Bruker AFM Probes, USA). The real spring constants 
were determined by the thermal noise method59. Force curves were acquired at selected approach and retract 
velocities with a maximal applied load of 600 pN and minimal surface dwell time (i.e. 0 ms), except otherwise 
stated. For a given set of AFM probe, surface and interaction settings, several hundreds to thousands of individual 
force curves were acquired to sample stochastic variations in the interactions. All experiments were performed at 
least twice with distinct yet identically prepared AFM probes and surfaces.

Force curves were analyzed with JPK data processing software. For quantitative analysis of the stretching of 
individual HA chains and to extract HA·CD44 bond rupture forces, force-separation curves were fitted to the 
WLC model60. Unless otherwise stated, both persistence length and contour length were adjustable parameters, 
and only rupture events occurring at tip-sample distances larger than 200 nm were considered, to avoid bias by 
non-specific tip-sample interactions. Instantaneous loading rates r were computed from the effective spring con-
stant keff, corresponding to the slope of the WLC best-fit curve close to the rupture (Fig. 3a, inset), and the retract 
velocity v as r =​ keffv. The kinetic parameters koff and xβ were determined by non-linear regression analysis with 
OriginPro software (OriginLab, Northampton, MA) of mean rupture force vs. instantaneous loading rate data 
with the Bell-Evans model13,38, where the standard error of the mean rupture force was considered to compute 
confidence intervals for the kinetic parameters.
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