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ABSTRACT
Background Providers have been reluctant to disclose
patient data for public-health purposes. Even if patient
privacy is ensured, the desire to protect provider
confidentiality has been an important driver of this
reluctance.
Methods Six requirements for a surveillance protocol
were defined that satisfy the confidentiality needs of
providers and ensure utility to public health. The authors
developed a secure multi-party computation protocol
using the Paillier cryptosystem to allow the disclosure
of stratified case counts and denominators to meet
these requirements. The authors evaluated the protocol
in a simulated environment on its computation
performance and ability to detect disease outbreak
clusters.
Results Theoretical and empirical assessments
demonstrate that all requirements are met by the
protocol. A system implementing the protocol scales
linearly in terms of computation time as the number of
providers is increased. The absolute time to perform the
computations was 12.5 s for data from 3000 practices.
This is acceptable performance, given that the reporting
would normally be done at 24 h intervals. The accuracy
of detection disease outbreak cluster was unchanged
compared with a non-secure distributed surveillance
protocol, with an F-score higher than 0.92 for outbreaks
involving 500 or more cases.
Conclusion The protocol and associated software
provide a practical method for providers to disclose
patient data for sentinel, syndromic or other indicator-
based surveillance while protecting patient privacy and
the identity of individual providers.

INTRODUCTION
Provider reporting of diseases to public-health
authorities is common.1 2 However, often there is
under-reporting by physicians and hospitals,
including for notifiable diseases and frequently by
wide margins.3e24 One causal factor for this under-
reporting has been provider concerns about patient
privacy.8 9 11 13 15 19 21e23 25e28 Such a reluctance to
disclose information has been noted in the past,29 30

and exists despite the US Health Insurance Porta-
bility and Accountability Act Privacy Rule permit-
ting disclosures of personal health information
for public-health purposes without patient autho-
rization.27 29 31e34 Canadian privacy legislation
in multiple jurisdictions also permits health-infor-
mation custodians to disclose personal health
information without consent for a broad array of

public-health purposes, including chronic disease and
syndromic surveillance.35 Concerns about disclosing
data are somewhat justified; however, as there have
been documented breaches of patient data from
public-health information custodians.36e42

One way to address patient privacy concerns is
to de-identify the individual-level data before
disclosure to public health, with the possibility of
re-identification if an investigation or contact
tracing is required.31 42 43 However, even if patient
privacy concerns are addressed, there have been
other concerns about risks to physicians when
patient information is disclosed,13 and specifically
disclosures for public-health purposes (unpublished
data). At least five types of risks have been noted:
1. Legal exposure. Disclosures without individual

patient consent have resulted in tortious or
contractual claims of invasion of privacy, breach
of confidentiality or implied statutory viola-
tions under state law,44 and the increasing
collection and disclosure of electronic infor-
mation raises physicians’ malpractice liability
exposure.45

2. Compliance exposure. Physicians have concerns
about information being used to evaluate
compliance with clinical practice guidelines and
compliance with pay for performance
programs.46 This concern increases with the
amount of detail in the information that is
collected.

3. Intrusive marketing. Providers do not want to be
targeted by marketers who gain access to their
patient information.46 47

4. Inference or disclosure of income data. Physi-
cians and their professional associations consider
the disclosure of income information a serious
privacy breach.46 48

5. Inference or disclosure of performance or
competitive data. It has been noted that
‘[h]ealthcare providers compete fiercely,’
making it difficult to establish adequate trust
for the exchange of health information among
health information custodians.49 Furthermore,
some data sources for disease surveillance are
proprietary, such that they may have reserva-
tions about data sharing. For example, schools
may not want their absenteeism levels known
to avoid political repercussions, and commercial
pharmacies would be concerned about their sales
data becoming known to potential investors and
competitors.27 50 51 Such custodians may not be
willing to disclose information without their
identity being masked.50
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A distributed architecture for syndromic or other indicator-
based surveillance can mask the identity of providers.29 30 52e54

The sources provide count data to independent hubs; these data
are aggregated and possibly analyzed by the hubs, and then
forwarded to the public-health unit. However, the hubs need to
be fully trusted to protect the identity of data sources. This
means that if a hub is compromised, corrupted, or compelled to
disclose information, then the raw data would reveal the iden-
tity of the data sources. Therefore, stronger protections than
currently afforded by distributed architectures are needed to
alleviate the data-sharing concerns noted above.

In this paper, we present a practical surveillance protocol for
the secure multi-party computation of counts. The protocol also
follows a distributed model, but it only requires semi-trusted
parties. This protects the identity of data sources under different
plausible threats. By addressing such concerns, we remove
another barrier to the collection of data for disease surveillance.

METHODS
In the following narrative, we assume that the data sources are
physician practices. This is for the purposes of illustration and
ease of presentation. The descriptions, and our proposed
protocol itself, would be applicable if the providers were, say,
hospitals, pharmacies, or schools.

Trusted versus semi-trusted parties
With distributed surveillance protocols, individual practices send
count data to hubs.29 The hubs then aggregate the counts,
perform additional analyses, and forward summaries or alerts to
the public-health units. The hubs are considered trusted third
parties because they will know the identity and counts of each
practice. There are three challenges with having a trusted third
party: (a) disclosures if a hub is compromised or corrupted, (b)
compelled disclosures, and (c) all providers must trust the hub(s).

The first challenge is that if a hub’s security is compromised,
the adversary will have access to the identity of practices and
their corresponding counts. A compromise can be due to either
insiders or outsiders. A compromise can be as simple as a ‘change
your password’ phishing attack to obtain the credentials of an
employee of the hub. Many social-engineering techniques
exist,55e57 and have been used to obtain passwords and very
personal information from individuals and organizations (as
well as to commit more dramatic crimes such as bank
robberies).58 59 A recent review of data breaches indicated that
12% of data breach incidents involved deceit and social-engi-
neering techniques.60 Corruption can occur if an individual with
access to the raw data within the hub is bribed or blackmailed to
reveal information.

Second, a hub could be compelled to disclose personal health
information, for example, in the context of litigation. For
research, the National Institutes of Health can issue certificates
of confidentiality to protect identifiable participant information
from compelled disclosure, and allow researchers to refuse to
disclose identifying information in any civil, criminal, adminis-
trative, legislative or other proceeding, whether at the federal,
state or local level.61 However, these would not be applicable to
non-research projects or to projects that are not approved by an
IRB, and most public-health surveillance programs would be in
that excluded category. Furthermore, such certificates do not
exist outside the USA.

Third, the hub must be trusted by all of the practices
supplying data. This creates potential obstacles to the exchange
of data across municipal, provincial/state, and international

jurisdictions. To avoid sending data across jurisdictional
boundaries, many regional hubs would need to be created.
However, this will result in a proliferation of hubs and the
replication of the exact infrastructure multiple times.
To address these challenges, we propose a distributed protocol

with the weaker requirement of having only semi-trusted third
parties. A semi-trusted third party would not be able to access
any of the raw data, even if it wanted to. This means that if
there is a security compromise, staff corruption, or a compelled
disclosure, there is no additional risk of identifying practices. A
protocol with semi-trusted third parties also overcomes the
requirement of practices having to completely trust the hub.
This allows us to set up a single infrastructure for a large
number of practices across multiple jurisdictions. The only
requirement on a semi-trusted third party is that it follow the
protocol faithfully.

Context
The basic scenario we will use consists of the physician practices
providing count data to a public-health unit. There are two
types of counts disclosed over the reporting period: cases and all
patients seen (denominators). We assume a 24 h reporting
period, although our protocol would work with any interval,
and that the counts are stratified by syndrome and age. The
syndromes are influenza-like-illness (ILI) and gastrointestinal
(GI). Ages are grouped similar to the CDC syndromic surveil-
lance system62 as <2, 2e4, 5e17, 18e27, 28e44, 45e64, 65+.
Therefore, from each practice, we have a report containing 14
case counts for each age by syndrome stratum, and a total
patient count for each age stratum for the previous 24 h. This
makes a total of 21 counts per practice per reporting period.

Requirements for secure disease surveillance
The following are the requirements for a protocol that will allow
meaningful reporting to a public-health unit while masking the
identity of the reporting practices:
< R1. It should not be possible for any single adversarial party

to know the true counts for any practice. This should hold
even if a third party involved in the protocol is compromised,
compelled to disclose its data, or corrupted.

< R2. The protocol should allow for technology failures. In
a real-world setting, any distributed reporting system will
have failures due to machine or connectivity breakdowns.
The protocol should have inherent redundancy.

< R3. It must be possible to verify if a practice did submit data
or did not submit data. This ensures data integrity and
provides the basis for potentially compensating practices.

< R4. The computational requirements for the protocol should
make it feasible to report at 24 h intervals.

< R5. It should be possible to identify practices with unusual
spikes so that the public-health unit can obtain patient
identities and initiate contact with them when necessary.

< R6. The ability to effectively detect disease outbreak clusters
must not deteriorate with the secure protocol.
These requirements were constructed based on the authors’

experiences and discussions with computer science and public-
health professionals. They represent what are considered
necessary conditions to protect the identity of patients and to
allow public health to perform their surveillance and investiga-
tion functions effectively. The first four requirements address
the trustworthiness of the protocol from the perspective of the
patients, practices, and public-health units. The latter two
requirements address the practical utility of the protocol to
public health. Trustworthiness and practical utility are both
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important, as they will increase the likelihood of initial adoption
of the protocol and ongoing use.

Homomorphic cryptosystems
An important technique used in our protocol is homomorphic
encryption. Utilizing a homomorphic cryptosystem, mathe-
matical operations can be performed on the encrypted values
(ciphertext) that produce the correct result when decrypted
(plaintext). An example is additive homomorphic encryption
introduced by Paillier,63 in which, conceptually, the summation
of two messages is equal to the decryption of the product of
their corresponding ciphertexts:

DðEðm1; eÞ5Eðm2; eÞ;dÞ ¼m1 þ m2 (1)

In this equation m1 and m2 are the two plaintext messages, E
is the encryption function, D is the decryption function, e is the
public encryption key, and d is the private decryption key. More
details of the exact computation are provided in the appendix.

It is also possible to compute the product of a ciphertext with
a constant q:

DðEðm1; eÞq;dÞ ¼m13q (2)

For example, if we want to convert the sign of a number, we
would raise the power of the ciphertext to q¼�1.

Another property of Paillier encryption is that it is probabi-
listic. This means that it uses randomness in its encryption
algorithm so that when encrypting the same message several
times, it will, in general, yield different ciphertexts. This prop-
erty is important to ensure that an adversary would not be able
to compare an encrypted message with all possible counts from
zero onwards and ascertain the encrypted value.

A threshold version of the Paillier cryptosystem requires t out
of l parties to decrypt a message.64 For example, if we have
a (2,3) threshold cryptosystem, we would need any two parties
out of three to decrypt the message. No single party can decrypt
the message.

Secure protocol for disease surveillance
The two phases of our secure protocol are illustrated in figures 1
and 2. Data would be aggregated into groups of at least k prac-
tices, where we set k¼5 for illustrative purposes below. This

means that itwill not be possible for anyone but the practice itself
to know the actual counts for any practice. The public-health
unit will only be able to know the total count for groups of five
practices or more.

Roles in our protocol
There are six roles in the protocol: (a) the practicesdin the
illustration we have only two practices, but this can be a much
larger number; (b) the key generator (KG) issues the public and
private keys for use by the various parties; (c) the aggregators are
semi-trusted third-parties who perform the group- and stratum-
specific sums of counts, (d) the key holders (KH) are semi-
trusted third parties who decrypt the sums; (e) the mixer is
a semitrusted third party who combines the results from at least
two out of three key holders; and (f) the public-health unit
(PHU) itself. A single physical entity can play multiple roles. An
instance of a role will be referred to as a node.
The two aggregators are fully redundant in that the protocol

can be implemented with a single aggregator. The primary
purpose for redundancy is to ensure that the aggregation oper-
ations are performed even if a single aggregator fails or is not
accessible. There are three KHs to ensure that there is redun-
dancy built into the system. This means that any single KH can
fail, but the overall results can still be computed. For additional
robustness, it is also possible to extend the protocol to have t>2
and/or l>3 key holders (eg, 2 out of 4) to be able to decrypt the
counts. A minimalist implementation of the protocol with no
redundancy would have only one aggregator and two KHs.
The exact configuration in figures 1 and 2 is the one we have

used in our demonstration system. The protocol has two main
phases described below.

Set-up phase of our protocol
At the outset, the KG generates a public key and the corre-
sponding partial private keys. The public key is given to all of
the participating practices when they register. The partial
private keys are sent to each of the three KHs. The KG then
destroys its copies of the partial private keys after their
successful transmission.
During set-up, each practice registers with the KG to indicate

that it wishes to participate in the protocol. Registration
means downloading the client software and a configuration file.
When a practice registers, they also provide a physical address
which can be used to identify the other geographically
closest registered practices. The configuration file contains the
public key as well as the regional grouping of the closest
registered practices. The provider installs the client software
and is ready to submit count data. The KG informs the aggre-
gators about each practice that has registered and its regional
grouping.
For the sake of example, we will assume that we have two

regional groupings of practices: Ottawa and Montreal. More
formally:
< Assume there are P strata, M practices, N aggregators, T KHs,

and R regional groups. In our example, we have 21 strata, two
aggregators, three KHs, and two groups.

< KG generates the public key PK and the T partial private keys
SKt where t˛{1.T}, and sends PK to each new practice
when it joins the protocol, and sends the SKt to each of the
KHs.

< Each new practice has a unique ID. All aggregators are
informed of each practice’s unique ID and group when they
join. The PHU is informed of all practices within a group.

Figure 1 Set-up phase of the secure computation protocol assuming
only two practices are submitting data.
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Operation phase of our protocol
At the end of the 24 h period, each practice computes the counts
for the 21 strata, each of which is encrypted using PK. The
encrypted counts are sent by each practice to all of the aggre-
gators. Within each group, an aggregator will sum the encrypted
counts only if they come from at least k practices. For example, if
the Ottawa region only submitted the counts from four practices,
the aggregator would produce a ‘NO DATA’ result for Ottawa.

If at least k encrypted values for a group have been received by
an aggregator, the aggregator computes the sums within each
stratum across all of the practices within each group. The
aggregator does not know what the original values from each
practice are, and does not know what the sums are because all of
these values are encrypted. The aggregator then sends the
encrypted P group sums for the R groups to each KH (except for
the groups with ‘NO DATA’ status).

Each KH uses its partial private key to decrypt the sums it
receives, which are subsequently sent to the mixer. The KHs
ignore regions with no data.

The Mixer selects any two KH values and computes the
decrypted values of the P group sums for the R groups with data,
which is forwarded to the PHU. More formally:
1. Each practice computes Eij where i˛{1,.,P} and j˛{1,.,M}

as: Eij¼E(Cij, PK) where Cij is the count for stratum i for
practice j.

2. The P3Eij values for each practice are then sent to all of the
aggregators.

3. Each aggregator sums (which is equivalent to a multiplication
of encrypted values as in equation 1) the values within each
stratum within each group: Sir ¼ Q

j in group r
Eij where r˛{1,.,

R}.
4. The sums are sent by the aggregator to each of the KHs. The

KHs decrypt the sums using their partial decryption key:
sirt¼D(Sir, SKt), which are sent along with their validity
proofs to the mixer.

5. The mixer verifies the partial KH decryptions using their
proofs (see the appendix). It then selects any two valid
decryption results and combines their results to obtain the
final count: sir.
At the end of these steps, the PHU has the plaintext counts

for each group for each stratum.

MEETING THE REQUIREMENTS
Security analysis (R1)
The security analysis for this protocol is provided in the
appendix. This demonstrates that no party will know the

practice identities and their counts under plausible compromises
or corruption of individual nodes and collusions among nodes.

Node failures (R2)
Our protocol has multiple points of redundancy, making
allowances for real-world failures of nodes. This meets require-
ment number 2. A simulation of node failures is presented in the
appendix. This demonstrates that with two aggregators, if any
aggregator has a failure rate as high as 20%, there will still
be at least one aggregator operating around 98% of the time.
With a KH node failure rate of 15%, at least two nodes will be
operating around 95% of the time.

Detecting practices providing and not providing data (R3)
An important element of a real-world deployment is the use of
digital signatures. Digital signatures will ensure that the senders
of messages are who they say they are (authenticity), that the
messages cannot be modified in transit without the tampering
being discovered (integrity), and that the senders cannot claim
that they did not send the messages (non-repudiation). Digital
signatures will make it possible to ensure that data are indeed
coming from the practices and that practices cannot deny that
they submitted counts. Digital signatures and their application
in our protocol are described in the appendix.
There will be situations when the PHU needs to detect if any

practices are consistently not providing data but claiming that
they are. In a sense, the PHU needs to detect ‘free riding’ practices
whose lack of contribution of counts is hidden within the prac-
tice group total. Such free riding may be deliberate or accidental.
For example, a practice may insist that it is providing data and
that the aggregator is ‘losing it.’ A proof of data submission
would be particularly important if practices are compensated
financially for providing data. In such a case, the PHU would
need to verify which practices have been contributing counts. For
example, if there were eight practices in a group and only five
provided data, and the remaining three insist that their systems
are working and sending data, the PHU can verify whether the
three missing practices did indeed provide their counts. In the
appendix, we provide an extension to the protocol that can be
used by the PHU to verify which practices have provided data in
their group. The approach checks membership using a commu-
tative hash function,65 and makes it impossible for a practice to
misrepresent that it provided a count in a total.

Computation performance (R4)
A critical concern with protocols utilizing secure multi-party
computation is their performance under realistic situations. We

Figure 2 Actual operation of the
protocol to securely compute counts.
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conducted a performance evaluation of the surveillance protocol
to determine how it scales as the number of practices and groups
increases. Performance is defined in terms of the amount of
communication and time taken to perform the computations.
The assessment in the appendix shows that only a handful of
messages need to be communicated among nodes, and the
absolute time to perform the computations was 12.5 s for data
from 3000 practices.

Contacting patients (R5)
If full identifying information about cases is sent to the PHU, it
can contact the patients directly if an investigation needs to be
initiated. However, under our protocol, only count data about
patient encounters are sent to the PHU. For sentinel surveillance
programs, this is generally not problematic because contacting
patients is not usually done. However, for other types of indi-
cator-based surveillance, the PHU may want to contact patients
under certain circumstances.

The PHU would first need to find out which practices have
unusually high counts that require investigation. Subsequently,
these practices are contacted and asked to identify the cases.
Each practice has access to a line list of the individual level
records that make up each stratum count, and therefore can
respond with more detailed information about specific patients.
The PHU only needs to determine which practice(s) have
unusual spikes.

We present a protocol extension in the appendix for identi-
fying the N practices with the largest counts within a regional
group. This protocol does not reveal the actual counts from any
of these practices, only that they have the largest counts in their
group. The PHU can then identify the practice(s) with the
highest counts and contact them for additional details. These
details could include detailed line listings of the patients who
made up specific strata.

Detecting disease outbreaks (R6)
The ability to detect spatial clusters is important for disease
surveillance. We consider two scenarios.

For the first scenario, the counts are stratified by some
geographic area, such as the census tract. This would indicate
the counts of patients in each area aggregated across practices. It
would be necessary to ensure that the areas are large enough to
protect patient identifiability, however.66 67 Since our protocol
would not affect these counts, the ability to detect clusters will
be the same as current distributed surveillance protocols.

In the second scenario, the strata sent to the PHU do not
contain patient-specific location information. Therefore, the
PHU could perform clustering on the practices themselves to
detect geographically adjacent practices with unusually high
cases. The question is whether the grouping of practices masks
the ability to detect such practice clusters. In the appendix, we
present the results of a simulation demonstrating that, for
practice groups of size 5 and 10, the accuracy of cluster detection
is quite high (F-scores greater than 0.95 and 0.92 respectively)
and similar to when the practices are not grouped.

DEPLOYMENT CONSIDERATIONS
For deployment, two aggregators and KH pairs can coexist in the
same physical node/site, since collusion between them would
not reveal any new information. In addition, the mixer and the
public-health unit can exist on the same physical node/site. This
is illustrated in figure 3, which shows that only four nodes/sites
would be needed to implement the protocol as described. The

same nodes can support multiple local and national surveillance
initiatives. Additional practical deployment considerations are
provided in the appendix.
It would be important to convince providers to participate in

such a surveillance protocol. A recent study examining family
doctor attitudes toward the disclosure of patient data for public-
health purposes determined that an endorsement by their
professional college would be a key factor in their willingness to
participate in disclosures of data to public health (unpublished
data). The reasoning would be that the college would be an
independent and trusted party that would provide an objective
opinion regarding the trustworthiness of the protocol. There-
fore, as an initial step for implementation, it will be important
to engage with the professional colleges and work with them to
transition such a protocol into practice.
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