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In recent years we have seen a renewed interest in Arti-
ficial Intelligence and Machine Learning in cheminfor-
matics, and the idea of collecting, structuring and making 
use of Big Data in e.g. drug discovery has become a popu-
lar topic [1, 2]. Deep Learning methods are also making 
their way into cheminformatics and drug discovery  [3, 
4], further contributing to the increased attention. Data 
sets relevant for Machine Learning in cheminformat-
ics are increasing in numbers and size, for example the 
ChEMBL database has grown from 2.4 million activity 
values in 2010 (ChEMBL version 02) to over 14 million 
activity values in 2017 (ChEMBL version 23) [5]. This has 
been propelled by the trend of organizations and compa-
nies depositing data sets in ChEMBL for public use.

An important topic of Machine Learning is quantify-
ing the uncertainty of the predictions produced by clas-
sification and regression models. Conformal Prediction 
is a methodology where predictors provide information 
about their own accuracy and reliability  [6]. In contrast 
to traditional Machine Learning that delivers point esti-
mates, Conformal Prediction yields a prediction region 
that contains the true value with probability equal to or 
higher than a predefined level of confidence. Such a pre-
diction region can be obtained under the assumption that 
the observed data is exchangeable. Conformal Prediction 
has been demonstrated in cheminformatics [7], with the 
attractive property that it offers a compelling alternative 
to the topic of applicability domain determination  [8]. 
Using Conformal Prediction, the size of the prediction 
region will be larger if the compound is ‘non-conforming’ 
to the training set.

This article collection in Journal of Cheminformatics 
features three articles on the topic of applications of Con-
formal Prediction and deep learning.

Larger datasets and demanding methods such as Deep 
Learning necessitates high-performance e-infrastruc-
tures. Ahmed et  al.  [9] present an iterative Conformal 
Prediction approach for virtual screening implemented in 
Apache Spark on cloud computing resources, and show 
how the number of docked compounds can be reduced 
significantly with a Machine Learning augmented 
approach compared to traditional dock-all strategies. 
Svensson et  al.  [10] uses Conformal Prediction to pre-
dict what strategy generates the highest gain in a high-
throughput screening setting. The authors show that by 
learning from a subset of the compound library, infer-
ences on what compounds to screen next can be made 
by predictive models, resulting in more efficient screen-
ing. De la Vega de León et al.  [11] provide insights into 
how missing data affect multitask prediction methods, 
using Deep Learning and Bayesian probabilistic matrix 
factorization.

This collection in Journal of Cheminformatics includes 
a set of extended versions of the top ranking papers pre-
sented in the 6th Symposium on Conformal and Proba-
bilistic Prediction with Applications (COPA 2017) at 
Karolinska Institutet, Stockholm, Sweden on June 14–16, 
2017. Further, the collection was open for contribution 
from other authors. All papers went through a regular 
reviewing process and were properly revised, if neces-
sary, prior to acceptance.
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