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Abstract 
18F-FDG PET / CT is used clinically for the detection of extramedullary lesions in patients with relapsed acute 
leukemia (AL). However, the visual analysis of 18F-FDG diffuse bone marrow uptake in detecting bone marrow 
involvement (BMI) in routine clinical practice is still challenging. This study aims to improve the diagnostic 
performance of 18F-FDG PET/CT in detecting BMI for patients with suspected relapsed AL. 
Methods: Forty-one patients (35 in training group and 6 in independent validation group) with suspected 
relapsed AL were retrospectively included in this study. All patients underwent both bone marrow biopsy 
(BMB) and 18F-FDG PET/CT within one week. The BMB results were used as the gold standard or real “truth” 
for BMI. The bone marrow 18F-FDG uptake was visually diagnosed as positive and negative by three nuclear 
medicine physicians. The skeletal volumes of interest were manually drawn on PET/CT images. A total of 781 
PET and 1045 CT radiomic features were automatically extracted to provide a more comprehensive 
understanding of the embedded pattern. To select the most important and predictive features, an unsupervised 
consensus clustering method was first performed to analyze the feature correlations and then used to guide a 
random forest supervised machine learning model for feature importance analysis. Cross-validation and 
independent validation were conducted to justify the performance of our model. 
Results: The training group involved 16 BMB positive and 19 BMB negative patients. Based on the visual 
analysis of 18F-FDG PET, 3 patients had focal uptake, 8 patients had normal uptake, and 24 patients had diffuse 
uptake. The sensitivity, specificity, and accuracy of visual analysis for BMI diagnosis were 62.5%, 73.7%, and 
68.6%, respectively. With the cross-validation on the training group, the machine learning model correctly 
predicted 31 patients in BMI. The sensitivity, specificity, and accuracy of the machine learning model in BMI 
detection were 87.5%, 89.5%, and 88.6%, respectively, significantly higher than the ones in visual analysis (P < 
0.05). The evaluation on the independent validation group showed that the machine learning model could 
achieve 83.3% accuracy. 
Conclusions: 18F-FDG PET/CT radiomic analysis with machine learning model provided a quantitative, 
objective and efficient mechanism for identifying BMI in the patients with suspected relapsed AL. It is suggested 
in particular for the diagnosis of BMI in the patients with 18F-FDG diffuse uptake patterns. 
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Introduction 
Acute leukemia (AL) is a hematological malig-

nancy characterized by a rapid increase in the number 
of immature blood cells. Despite the high rates of 
initial complete remission, relapse remains a 
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formidable clinical challenge and has become a major 
cause of failure in treatment [1]. Leukemia relapse can 
occur intramedullary or extramedullary, or both. 
Patients typically undergo multiple bone marrow 
biopsy (BMB) in the follow-up to monitor the intra-
medullary relapse [2]. However, BMB is an invasive 
test and only evaluates a small proportion of the 
entire bone marrow. 18F-fluorodesoxyglucose positron 
emission tomography/computed tomography (18F- 
FDG PET/CT) has been proven to detect more extra-
medullary lesions missed by routine examinations 
[3-8].  

The diagnosis of 18F-FDG PET/CT-based leuke-
mic bone marrow involvement (BMI) has not been 
fully evaluated due to the lack of systematic and 
large-scale studies. From the available leukemic bone 
marrow studies, mostly are case reports, we could 
speculate that diffuse uptake is the major pattern 
[9-12], and its incidence is much higher than that in 
the lymphoma studies [13]. It is quite difficult to 
determine whether diffuse uptake is BMI in visual 
assessment, because the judgment depends on the 
physician's experience, and both malignant and 
benign causes may have similar appearance [11, 14, 
15]. In some lymphomatous bone marrow studies, 
diffuse uptake was considered to be BMI negative [16, 
17], while in other studies it was considered as BMI 
positive [18, 19]. Because of the relatively high 
incidence of diffuse uptake in leukemia patients, it is 
not appropriate to take diffuse uptake as positive or 
negative for BMI in patients with suspected relapsed 
AL. In summary, the clinical 18F-FDG PET/CT-based 
diagnosis of BMI in relapsed AL is still challenging.  

Radiomics extracted and mined a large number 
of medical imaging features to quantify tumor 
phenotypic characteristics and could reveal features 
of the disease that are incomprehensible to the naked 
eye. It has been used in many solid tumors [20-22], 
while rarely used in bone marrow assessment. A 
recently published study indicated that 18F-FDG 
PET-based radiomic analysis was helpful in identify-
ing BMI [23]. We hypothesize that high-dimensional, 
high-throughput radiomic features from both PET 
and CT images would provide a thorough strategy for 
extracting the pattern of BMI, and thereby would be 
helpful in improving the diagnostic power of 18F-FDG 
PET/CT in patients with suspected relapsed AL.  

Materials and Methods 
Patients 

The study has been approved by the institution 
review board, and the need for written informed 
consent was waived. This study retrospectively 
analyzed images of AL patients who underwent 
18F-FDG PET/CT at Peking University People's 

Hospital between January 2012 and February 2019. 
The inclusion criteria were as follows: 1) acute 
myeloid leukemia or acute lymphoblastic leukemia 
patients who achieved complete remission after 
induction chemotherapy, 2) Age ≥ 16, 3) clinically 
suspected recurrence, but not yet started treatment, 4) 
no chemotherapy or granulocyte stimulation-factor 
within 1 month, 5) BMB has been completed within 1 
week. The simple statistics of selected patients are 
summarized in Table 1. The patients were divided 
into two groups, i.e. 35 patients from January 2012 to 
February 2018 as training group and 6 patients from 
March 2018 to February 2019 as independent 
validation group.  

PET/CT acquisition and reconstruction 
parameters 

All patients fasted at least 6 h before scan, and 
the blood glucose level were controlled below 8.3 mM 
(range 4.7~8.0 mM). 18F-FDG (provided by Atom 
high-tech Co., Ltd., Beijing, China) was injected intra-
venously with a weight-base dose of 5.55 MBq/kg 
(0.15 mCi/kg). After 60 minutes (60 ± 5 min, range 54 
~63 min) 18F-FDG injection, the PET scan between the 
base of skull and the middle of the thigh was 
performed on a Discovery VCT (GE Healthcare, 
Milwaukee, Wisconsin, USA) with a 64-slice spiral 
CT. CT scan was firstly performed with a tube voltage 
of 140 Kev and a tube current of 80 mAs. The matrix 
size of CT was 512 × 512 with the voxel size 1.0 × 1.0 × 
3.3 mm3. The PET data were collected in 3D mode for 
2.5 min/bed and were corrected for attenuation with 
a CT-based attenuation correction method. The PET 
images were reconstructed using an iterative 
algorithm (ordered-subset expectation maximization 
with 2 iterations, 28 subsets) and 6-mm full width at 
half maximum (FWHM) of Gaussian filter. The matrix 
size of PET was 128 × 128 with the voxel size 5.5 × 5.5 
× 3.3 mm3.  
Clinical PET/CT review 

Three nuclear medicine physicians with 15, 10, 
and 10 years of PET/CT reading experiences visually 
assessed bone marrow 18F-FDG uptake in each 
patient. They were allowed to refer the corresponding 
clinical data except for the BMB results. Focal uptake, 
the presence of 18F-FDG-avid foci, which could not be 
explained by benign findings on underlying CT or 
clinical history, was considered as positive for BMI. 
Normal uptake, the uptake of bone marrow equal to 
or lower than the liver, was considered as negative for 
BMI. For the diffuse uptake, the uptake of bone 
marrow higher than liver, the physicians made their 
diagnosis based on their visual assessment in the 
18F-FDG bone marrow uptake distribution, intensity 
and apparent heterogeneity. 
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Table 1. Demographic and clinical characteristics of patients. 

Characteristics Total population BMB positive BMB negative P value 
  (n=41) (n =18) (n =23)   
Age (years), median (range) 35.2 (17~75) 38.1 (18~75) 32.9 (17~49) 0.276 
Gender (female/ male) 15/ 26 4/ 14 11/ 12 0.089 
Leukemia subtype (ALL/ AML)  17/ 24  5/ 13  12/ 11 0.116 
With extramedullary relapse/ without 24/ 17 11/ 7 13/ 10 0.767 
Laboratory parameters     
WBC (G/L), mean (SD)  6.62 (4.70) 8.19 (6.27)  5.35 (2.38)  0.092 
Hb (g/dL), mean (SD) 114.45 (23.07) 111.10 (21.53) 117.17(24.42)  0.427 
ESR (mm/h), mean (SD) 38.33 (26.45) 37.17 (22.16) 39.50 (32.32)  0.887 
CRP (mg/L), mean (SD) 13.01 (21.92) 18.32 (28.59) 7.08 (7.21)  0.199 

ALL: acute lymphoblastic leukemia, AML: acute myeloid leukemia, WBC: white blood cell, Hb: hemoglobin, ESR: erythrocyte sedimentation rate, CRP: C reaction protein 
 
In case of discrepancy, the examination was 

conjointly reviewed to reach a consensus. The BMB 
results were used as the gold standard or real “truth” 
for BMI diagnosis in the study. All the true positives 
(TP) and true negatives (TN) were recorded as 
successful diagnosis, whereas all the false positives 
(FP) and false negatives (FN) cases were recorded as 
failed diagnosis. 

PET/CT radiomic analysis with machine 
learning 

As illustrated in Figure 1, the radiomic analysis 
composed of three major stages. Firstly, based on the 
manual delineation of the volumes of interest (VOIs) 
from CT and then ascertained on PET, our model 
automatically extracted high-dimensional imaging 
features from both PET and CT VOIs; then important 
and discriminative features for pattern extraction 
were selected using harnessed correlation analysis 
and machine learning models; and finally, a machine 
learning based prediction model was validated for the 
classification of BMB cases. 

The first stage was radiomic feature extraction. A 
semi-automatic procedure for axial skeleton VOI 
definition is described in a previous study which 
shows high reproducibility [23]. A software XD3 
(Mirada Medical) was used for PET-CT image display 
and processing. The VOI including the spine and the 
pelvis was firstly determined by CT densities of 
Hounsfield units >130, and then all irrelevant bone 
areas were manually excluded. The final CT VOIs 
were then displayed on fused PET images to check if 
there were possible regions of increased 18F-FDG 
uptake near the skeleton, including extramedullary 
lesions and bladder. Areas of contiguous bone 
involvement and bone hyperplasia and sclerosis were 
also manually excluded.  

From PET/CT VOIs, in total 1826 quantitative 
features including 781 features from PET and 1045 
from CT were extracted. We extracted the radiomics 
features with the PyRadiomics package [24] (https:// 
github.com/Radiomics/pyradiomics) which is com-
pliant with the Imaging Biomarker Standardization 

Initiative [25]. From this package, we extracted the 
radiomics features from the original PET and CT 
images, filtered images with coiflet wavelet and 
Laplacian of Gaussian (LoG) respectively. The images 
were discretized with a fixed bin size of 25 HU, which 
was quite commonly used in radiomics literature 
[26-28]. The extracted features reflected the disease 
characteristics including intensity distribution, texture 
pattern, morphological information, and spatial 
locations, as well as wavelet features [24]. The 
detailed list of extracted features was provided in the 
Supplementary Materials (I. Experimental settings of 
radiomic features). Conventional PET metrics were 
also considered with equivalent features included in 
the features list. Specifically, the maximum and mean 
of the standard uptake value (SUV) were represented 
by the “Intensity Histogram” features “Maximum” 
and “Mean” from the original PET image, and the 
metabolic tumor volume (MTV) could be represented 
by “Morphology” feature “Volume”. Texture patterns 
were represented statistically by some common 
matrix, such as gray level co-occurrence matrix 
(GLCM), gray level size zone matrix (GLSZM), and 
gray level run length matrix (GLRLM). In addition, 
features from LoG and wavelet images were able to 
depict subtle texture features at different coarseness 
levels and frequency domains.  

The second stage was important feature selection 
with model construction. To reduce the high 
dimensionality of features, our selection strategy 
incorporated both intrinsic and statistical feature 
relationship as well as an outcome-driven machine 
learning model. To ensure that the feature-set was 
accurately clustered, we first repeated consensus 
cluster sampling for n=50 times to achieve the most 
stable groups. And then, to select the most important 
features, our selection process included: 1) from each 
cluster, the most representative features were selected 
based on random forest [29] tree importance 
(importance ≥ 0.01), 2) key features were selected from 
the representative features by univariate random 
forest using the area under the curve (AUC ≥ 0.7), 3) 
to further eliminate the remaining redundant features, 
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we then utilized the pairwise Pearson correlation 
matrix, 4) recursive feature elimination [30] was 
adopted to select the most important features to form 
radiomic pattern. Thereby, the machine learning 
prediction model could be constructed only with the 
selected important features using Random Forest 
algorithm. The detailed settings of Random Forest are 
provided in the Supplementary Materials (II. 
Parameters setting of the Random Forest prediction 
model). 

The last stage was model validation. The 
machine learning model was trained by a Stratified 
ten-fold cross-validation on the training dataset, and 
the proportion of the positive-negative sample ratio in 
training and testing sets were approximately the same 
as in the original data set. To validate the robustness 
and stability of the machine learning model, we 
utilized both cross-validations and independent 
validations to assess the performance of the model. 
Ten-fold cross-validations were performed within the 
training group. As to the independent validations, the 
model was trained with the entire training group and 
then evaluated on the independent validation group. 
Feature importance ranking were adopted in the 
random forest model to evaluate the representative 
value of selected features. The feature-set was contin-
uously and randomly permuted and scored, and the 
importance scores of the variable were obtained.  

The performance of the pattern in this model 
was evaluated using receiver operating characteristic 
(ROC) curve. Wilcoxon test was utilized for feature P 

values (P ≤ 0.05) selection for both continuous and 
classification variables. The sensitivity, specificity, 
accuracy, positive predictive value (PPV) and nega-
tive predictive value (NPV) were also computed by 
Confusion matrix-derived metrics. Statistical analyses 
were performed “scikit-learn”, “scipy”, “math” 
packages in Python programming language. 

Results  
Clinical visual analysis 

The visual analysis was performed on the 
patients of training group with 16 BMB positive and 
19 BMB negative patients. According to the visual 
analysis, 3 patients were classified as focal uptake, 8 
as normal uptake and 24 patients were classified as 
diffuse uptake. Visual analysis correctly diagnosed all 
focal uptake patients and 7 out of 8 normal uptake 
patients. However, as to the diffuse uptake cases, 
visual analysis correctly diagnosed 14 cases, with 7 TP 
and 7 TN, failed in 10 cases with 5 FP and 5 FN. In 
summary, visual analysis achieved a successful 
diagnosis in 68.6% (24/35) of patients. The AUC of the 
visual analysis was 0.681 (95% confidence interval 
was 0.502-0.828). Its sensitivity, specificity, accuracy, 
PPV and NPV was 62.5%, 73.7%, 68.6%, 66.7% and 
70.0%, respectively. 

Feature selection and machine learning model 
Feature selection procedure and results are 

illustrated as Figure 2. It could be observed that 

 

 
Figure 1. The flow chart of radiomic features extraction and selection. 
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although Morphology features were extracted from 
images, these features were eliminated due to their 
statistical insignificance by statistical analysis. The 
texture features from original CT image were all 
eliminated due to their less importance determined by 
the Random Forest algorithm. The following feature 
univariate random forest selection showed that the 
features from original PET and CT images were less 
predictive in comparison with the features from LoG 
filtered and Wavelet decomposed images. Finally, 
after recursive feature elimination process, the 
machine learning model consisted of two PET and one 
CT features (Table 2). It could be observed that the 
three selected features were all from the wavelet 
decomposed images capturing the textural 
information with low pass filters applied to the first 
two dimensions and high pass filter applied to the last 
dimension. The feature values extracted from the 
experimental dataset are normalized and summarized 
in Table 3. These values were assigned different 
weights when performing the model prediction.  

The model was evaluated with both cross- 
validation and independent validation. In the cross- 
validation, the model correctly predicted 31 patients 
with 14 TP and 17 TN, incorrectly predicted 4 (2 FP 
and 2 FN) patients of 18F-FDG diffuse uptake. The 
machine learning model achieved a successful 
diagnosis in 88.6% (31/35) of patients, which was 
significantly higher than that of visual analysis by 
using Pearson Chi-square test (P=0.041). The AUC of 
the model was 0.885 (95% confidence interval was 
0.732-0.968), which was significantly higher than that 
of visual analysis (P=0.046). Its sensitivity, specificity, 
accuracy, PPV and NPV was 87.5%, 89.5%, 88.6%, 
87.5% and 89.5%, respectively. As to the independent 
validations, the prediction model could achieve 83.3% 
(5/6) accuracy on the independent validation dataset. 
Among the six patients, one (out of two) focal uptake 

patient was incorrectly predicted as FN, while all the 
diffuse uptake and normal uptake patients were 
correctly predicted. 

Results analysis and interpretation 
Results from the study show that the differences 

between the two methods mainly existed in the 
diagnosis of the patients with diffuse uptake. The 
machine learning model achieved 83.3% (20/24) 
prediction accuracy, in comparison with 58.3% 
(14/24) accuracy from visual analysis. Among the 10 
visually failed diffuse uptake cases, the machine 
learning model correctly predicted 9 of them. Visual 
analysis correctly diagnosed the other three cases in 
which the machine learning model failed. 

Two representative cases from visual analysis 
and machine learning model are illustrated by Figure 
3. As shown in Figure 4 for the distribution histogram 
of the three normalized features among all 
experimental data, there existed BMB positive and 
BMB negative patients sharing same feature value 
ranges. Therefore, BMB positive and negative patients 
could not be discriminated from an individual feature 
(with mean accuracy of 70.8%, 72.7% and 76.7% 
respectively for Kurtosis, RunEntropy and SRHGLE 
features). As to the case 3A, according to the first and 
third features, since there were more BMB negative 
patients than positive ones exhibiting the same 
feature value, these two features would suggest that 
the patient was more probably to be BMI negative. 
However, the distribution of the second feature was 
against this negative suggestion. As to the case 3B, 
although all three features were suggesting that the 
patient was more likely to be negative, the possibility 
of a positive case could not be eliminated, given that a 
few positive cases were exhibiting the same feature 
values.  

 

 
Figure 2. The results of feature reductions. 
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Table 2. The features selected from the trained machine learning model and their meanings. 

Feature name Feature definition and meaning 
Wavelet-LLH_GLRLM_R
unEntropy_PET 

Formula:  

 𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟.𝑟𝑟𝑟𝑟.𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟 =  ��𝑝𝑝𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙2𝑝𝑝𝑖𝑖𝑖𝑖

𝑁𝑁𝑟𝑟

𝑖𝑖=1

𝑁𝑁𝑔𝑔

𝑖𝑖=1

 

Where 𝑁𝑁𝑔𝑔 is the number of discretized grey level intensity in the mask of VOI, 𝑁𝑁𝑟𝑟 is the maximal possible run length in the mage. 𝑝𝑝𝑖𝑖𝑖𝑖 is 
normalized the run length matrix. 𝑖𝑖 is a discretized grey level and 𝑗𝑗 is occurrences of runs with length in matrix. 
Measuring the distribution of gray levels randomness from an image filter by a mid-frequency wavelet. The higher the value, the stronger the 
heterogeneity in the texture patterns. 

Wavelet-LLH_firstorder 
_kurtosis _PET 

Formula: 

𝐹𝐹𝑘𝑘𝑘𝑘𝑟𝑟𝑒𝑒 =

1
𝑁𝑁𝑣𝑣

𝛴𝛴𝑘𝑘=1
𝑁𝑁𝑣𝑣 (𝑋𝑋𝑑𝑑,𝑘𝑘 − 𝜇𝜇)4

( 1
𝑁𝑁𝑣𝑣

𝛴𝛴𝑘𝑘=1
𝑁𝑁𝑣𝑣 (𝑋𝑋𝑑𝑑,𝑘𝑘 − 𝜇𝜇)2)2

 

Where 𝑁𝑁𝑣𝑣 is the intensities set included in the ROI intensity mask denoted as {𝑋𝑋𝑑𝑑,1,𝑋𝑋𝑑𝑑,2 , … ,𝑋𝑋𝑑𝑑,𝑁𝑁𝑣𝑣}. 𝜇𝜇 is average gray level intensity within the VOI, 
Measuring the peak of image VOI pixel value distribution in a mid-decomposition domain by using wavelet filter. The lower the value implies 
the mass of distribution concentrated towards a peak close to the mean value, vice versa.  

Wavelet-LLH_GLRLM_S
RHGLE _CT 

Formula: 

𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟.𝑠𝑠𝑟𝑟𝑟𝑟𝑔𝑔𝑒𝑒 =  
1

NS
��

𝑖𝑖2𝑟𝑟𝑖𝑖𝑖𝑖(𝜃𝜃)

𝑗𝑗2

𝑁𝑁𝑟𝑟

𝑖𝑖=1

𝑁𝑁𝑔𝑔

𝑖𝑖=1

 

Where 𝑁𝑁𝑔𝑔 is the number of discretized grey level intensity in the mask of VOI, 𝑁𝑁𝑟𝑟 is the maximal possible run length in the mage. 𝑟𝑟𝑖𝑖𝑖𝑖 be the run 
length matrix for an arbitrary direction 𝜃𝜃. NS = ∑ ∑ 𝑟𝑟𝑖𝑖𝑖𝑖

𝑁𝑁𝑟𝑟
𝑖𝑖=1

𝑁𝑁𝑔𝑔
𝑖𝑖=1  be the number of runs in the image along angle 𝜃𝜃. 𝑖𝑖 is a discretized grey level and 𝑗𝑗 is 

occurrences of runs with length in matrix. 
Measuring the distribution of homogeneity by measuring the short run length distribution of higher gray values after mid-pass wavelet filter. 

GLRLM: gray level run length matrix, LLH: low, low, and high frequency, SRHGLE: short run high gray level emphasis 
 
 

 
Figure 3. The patient displayed on panel (A) was BMB negative. The machine learning model correctly predicted it. The value of three features were -0.03, -0.57 and -0.23, 
respectively. The visual diagnosis was false positive. The patient displayed on panel (B) was BMB positive. The machine learning model correctly predicted it. The value of the three 
features were -0.48, -0.34 and -0.28, respectively. The visual diagnosis was false negative. From left to right, coronal PET, CT, fusion image and the approximated features weights 
from LIME interpretation. 
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Table 3. The mean± standard (SD), range and P value of the features of the BMB positive and negative patients. 

 BMB positive  BMB negative P value 
 Mean± SD Range  Mean± SD Range 
Wavelet-LLH _GLRLM_RunEntropy_PET 0.453±1.190 -1.02~3.09  -0.381±0.528 -1.26 ~0.81 0.022 
Wavelet - LLH _firstorder_kurtosis _PET -0.443±0.320 -0.62~0.72  0.375±1.183 -0.61~3.21 0.008 
Wavelet-LLH_ GLRLM_SRHGLE_ CT -0.404±0.273 -0.93~-0.04  0.34 ±1.24 -0.69~5.21 0.001 

GLRLM: gray level run length matrix, LLH: low, low, and high frequency, SRHGLE: short run high gray level emphasis 
 

 
Figure 4. Distribution histograms (feature values as x-axis, and value frequency in the dataset as y-axis) of the 3 radiomic features selected by the trained machine learning model 
with the corresponding feature values of the 2 representative cases (red crosses for case 3A, and black spots for case 3B). The zoomed and scaled views of the distributions are 
indicated with dashed frames (BMB=0 for bone marrow biopsy negative, and BMB=1 for bone marrow biopsy positive). 

 

The machine learning model quantitatively 
combined these features for the final prediction while 
considering their diverse contributions. The contribu-
tions of features could be explained by the weighting 
coefficients derived from Local Interpretable Model- 
agnostic Explanations (LIME) model which is a local 
linear approximation of the trained prediction model 
[31]. The LIME model perturbed the feature values 
and observed the resulted changes in prediction. The 
features, which the prediction was more sensitive to, 
would be assigned higher weight values. Positive 
weights indicated that the increase in the 
corresponding features would be more supporting a 
positive prediction, while negative weights would 
indicate the changes supporting a negative prediction. 
The right column of Figure 3 shows the features 
weights employed in the prediction of the two 
representative cases, and the predictions were derived 
from the linear combinations of the features weights 
and features values.  

Discussion 
To tackle the well-recognized difficulties of 

visual analysis of BMI, we developed a 18F-FDG 
PET/CT radiomic analysis in the patients with 
suspected relapsed AL. To the best of our knowledge, 
there have been no previous studies using radiomic 
features with machine learning methods to assess 
leukemic bone marrow uptake, and it is a relatively 
large-scale bone marrow18F-FDG PET/CT study.  

Considering the sample size, we employed the 
Random Forest prediction model in our study. As 
evaluated by Gunduz et al [32], the random forest 
model substantially outperformed other techniques 

on both real life and simulated data regarding the task 
of robust classification in the high dimension low 
sample size context. Floares et al [33] further justified 
that the Random Forest method would derive 
accurate and robust model from omics data of small 
sample size. Such characteristic made random forest 
model more suitable to our study where radiomic 
pattern would be derived from high dimensional data 
(a total of 1826 features for each patient) of limited 
number of sample studies. Additionally, according to 
the theory of Chalkidou et al [34], 10 to 15 patients are 
minimally required to test one radiomic feature, our 
model reduced the number of features to 3 features 
and would be valid to minimize false detection rates 
regarding the sample size in our study. The intra- and 
inter-observer variabilities and their influence on the 
performance of our prediction model was also 
evaluated in the study in Supplementary Materials 
(III: Influence of intra- and inter-observer variability 
on prediction).  

The first finding of this study is that the machine 
learning model achieved a high accuracy for detecting 
the BMI, outperforming that of visual analysis, and 
was particularly excellent in analyzing diffuse uptake 
patterns. The diagnostic value of machine learning 
model statistically outperformed visual analysis in 
terms of AUC (0.885 vs. 0.681, P=0.046), and the 
successful diagnosis rate of machine learning model 
was significantly higher than that of visual analysis 
(88.6% vs. 68.6%, P=0.041). For the diffuse uptake 
patients, the machine learning model achieved 83.3% 
(20/24) prediction accuracy, in comparison with 
58.3% (14/24) accuracy from visual analysis. The 
independent validation further justified the excellence 
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of the machine learning model for diffuse uptake 
pattern. To the best of our knowledge, this is the first 
study to apply artificial intelligence technology to 
improve the 18F-FDG PET/CT-based clinical diagno-
sis of BMI in the patients with suspected relapsed AL. 
A comparable radiomic analysis result was reported 
in the patients with diffuse large B cell lymphoma, 
where the AUC of a first-order Skewness feature in 
detecting BMI was 0.821, and its sensitivity and 
specificity was 81.8% and 81.7%, respectively [23]. The 
Skewness feature and its variants were also extracted 
in our experiments, and their performances (mean 
accuracy of 52%, range 34.7%~67.2%) were all lower 
than that of the individual three features we selected, 
and thereby also lower than the performance of our 
radiomic pattern (Supplementary Materials IV. 
Comparison of Skewness features with selected 
features).  

Another finding is that this study provided an 
interpretable insight into the output of BMI from the 
machine learning model. Due to the complexity and 
opacity of algorithms, machine learning methods are 
often criticized as black boxes. We attempted to 
interpret the results of model predictions based on the 
LIME model. LIME approximated the machine 
learning model as a local linear model which is a 
linear combination of the feature values and the 
corresponding relative weighting coefficients. With 
the derived weights of features, the driving factors of 
the machine learning model prediction could be 
extracted. A more detailed explanation is in the 
results section.  

Interestingly, a CT feature became an integral 
part of the model in the present study. Although the 
value of features extracted from unenhanced low- 
dose CT has been demonstrated in the studies of 
non-small cell lung cancer [35], lymphoma [36] and 
esophageal cancer [37], there are no such published 
studies on bone marrow. Based on the experience of 
visual analysis, CT is suitable to visualize cortical and 
trabecular bone, while not a routine method for bone 
marrow assessment [38,39]. In the present study, the 
CT feature contributed with a relatively high weight 
in some patients. However, the value of CT features 
on BMI requires a larger number of research samples 
for further confirmation.  

In addition, in comparison to the PET 
conventional metrics (SUVmax, SUVmean, MTV and 
TLG), our selected radiomics features possessed much 
stronger correlations with BMB. The equivalent 
features to the three conventional metrics, i.e. 
SUVmax, SUVmean and MTV, were initially included 
in the extracted radiomics set. However, these three 
equivalent features were excluded automatically by 
our feature selection procedure on the basis of their 

discriminative contributions. We calculated another 
conventional metric, TLG=MTV*SUVmean [40]. The 
prediction accuracy for these four individual 
conventional metrics were 53.9%, 44.2%, 50.5% and 
51.5% respectively. Further comparison analysis on 
the correlations with BMB was performed between 
PET conventional metrics and our three selected 
radiomics features (Table 4). The comparison showed 
that the BMB correlation values of our selected 
radiomics features were 0.42, -0.41 and -0.38 while the 
correlation values of the four PET conventional 
metrics were -2.33E-01, 0.19, 0.22 and 0.29. 

 

Table 4. The correlation matrix of selected features, PET 
conventional metrics and BMB. 

Features SUVmax SUVmean MTV TLG BMB 
Wavelet-LLH_GLRLM_RunEntropy_PET -6.63E-02 0.85 0.24 0.89 0.42 
Wavelet-LLH_firstorder_Kurtosis_PET 6.00E-01 -0.24 -0.16 -0.22 -0.41 
Wavelet-LLH_GLRLM_SRHGLE_CT -2.70E-03 0.04 -0.45 0.1 -0.38 
BMB -2.33E-01 0.19 0.22 0.29 1 

 
The last finding is that our automated radiomic 

analysis method could serve as a non-invasive test 
option complementing the visual analysis for the 
diagnosis of suspected relapsed AL. For the 11 failed 
cases in visual analysis, our machine learning model 
correctly predicted 10 of them by analyzing the 
radiomic features purely based on the PET/CT scans. 
And that would suggest our model being an eligible 
non-invasive test option complementing the visual 
analysis for a more comprehensive and accurate 
diagnosis.  

For the next stage, we will be performing 
translational research by 1) harnessing automated 
bone segmentation software with machine learning 
based prediction model for automated processing and 
analysis platform, and 2) installing the software 
platform in our collaborative hospitals for multi- 
center study for standardization of the imaging 
biomarkers for BMB.  

Conclusion 
18F-FDG PET/CT radiomic analysis with 

machine learning model provided an objective and 
efficient mechanism for identifying the BMI in 
suspected relapsed AL, and could serve as a 
non-invasive test option complementing the visual 
analysis to derive a more comprehensive, confident 
and accurate diagnosis. It is suggested in particular 
for the diagnosis of BMI in the patients with diffuse 
uptake.  

Abbreviations 
AL: acute leukemia; ALL: acute lymphoblastic 

leukemia; AML: acute myeloid leukemia; AUC: area 
under the curve; BMB: bone marrow biopsy; BMI: 
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bone marrow involvement; CRP: C reaction protein; 
ESR: erythrocyte sedimentation rate; 18F-FDG PET/ 
CT: 18F-fluorodesoxyglucose positron emission tomo-
graphy/computed tomography; FN: false negative; 
FP: false positive; GLCM: gray level co-occurrence 
matrix; GLRLM: gray level run length matrix; 
GLSZM: gray level size zone matrix; LoG: Laplacian 
of Gaussian; LIME: local interpretable model-agnostic 
explanations; MTV: metabolic tumor volume; NPV: 
negative predictive value; PPV: positive predictive 
value; RBC: red blood cell; ROC: receiver operating 
characteristic; SUV: standard uptake value; TN: true 
negative; TP: true positive; VOI: volume of interest; 
WBC: white blood cell. 
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