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Summary

The Janus kinase (Jak) family is one of ten recognized families of non-receptor tyrosine kinases.
Mammals have four members of this family, Jak1, Jak2, Jak3 and Tyrosine kinase 2 (Tyk2). Birds,
fish and insects also have Jaks. Each protein has a kinase domain and a catalytically inactive
pseudo-kinase domain, and they each bind cytokine receptors through amino-terminal FERM
(Band-4.1, ezrin, radixin, moesin) domains. Upon binding of cytokines to their receptors, Jaks are
activated and phosphorylate the receptors, creating docking sites for signaling molecules,
especially members of the signal transducer and activator of transcription (Stat) family. Mutations
of the Drosophila Jak (Hopscotch) have revealed developmental defects, and constitutive
activation of Jaks in flies and humans is associated with leukemia-like syndromes. Through the
generation of Jak-deficient cell lines and gene-targeted mice, the essential, nonredundant
functions of Jaks in cytokine signaling have been established. Importantly, deficiency of Jak3 is the
basis of human autosomal recessive severe combined immunodeficiency (SCID); accordingly, a
selective Jak3 inhibitor has been developed, forming a new class of immunosuppressive drugs.

Published: 30 November 2004

Genome Biology 2004, 5:253

The electronic version of this article is the complete one and can be
found online at http://genomebiology.com/2004/5/12/253

© 2004 BioMed Central Ltd 

Gene organization and evolutionary history 
Janus kinases (Jaks) are non-receptor tyrosine kinases and

were discovered in searches for novel protein tyrosine

kinases using PCR-based strategies or low-stringency

hybridization [1-6]. In mammals, the family has four

members, Jak1, Jak2, Jak3 and Tyrosine kinase 2 (Tyk2). In

humans, the Jak1 gene is located on chromosome 1p31.3 and

Jak2 is on 9p24; the Jak3 and Tyk2 genes are clustered

together on chromosome 19p13.1 and 19p13.2, respectively.

The murine genes are located on chromosomes 4 (Jak1), 19

(Jak2) and 8 (Jak3 and Tyk2). Since the sequencing of other

vertebrate genomes has been completed, we know that there

are four Jak family members in mammals, birds and fish

(see the Additional data files available with the online

version of this article for alignments). 

Jaks have been identified in the primitive chordate Ciona; it

is unclear, however, whether this species only has a single

Jak or whether more will be found with further sequencing

(see Additional data files). In Drosophila there is only one

Jak kinase, Hopscotch (Hop) [7,8]. The ancestral Jak must

therefore have arisen before the divergence of vertebrates

and invertebrates. Nematode worms and slime molds lack

the family, however, but they do express members of the

signal transducer and activator of transcription (Stat) family

of transcription factors - which in vertebrates interact with

Jaks, among other proteins - suggesting that the Stats arose

in evolution before the Jaks. It is of interest that the expan-

sion of the Jak kinases in higher animals occurred at the

same time as the evolution of innate and adaptive immune

cells in fish; this is consistent with the multiple roles of Jaks



in immune cells (see below). Thus, cytokine receptors acting

via Jaks appear to have co-opted the Stat pathway for a variety

of purposes, especially for host defense. The proximity of the

Jak3 and Tyk2 genes suggests that one may have arisen from

the other by gene duplication, but it is difficult to conclude

which is the more ancestral. Jaks have approximately 20

exons; alternatively spliced forms of Jaks have been described

but their functional significance is not known. 

Characteristic structural features 
The three-dimensional structure of the Jaks is at present

unknown. This is no doubt partly because they are relatively

large proteins of more than 1,100 amino acids, with apparent

molecular masses of 120-140 kDa; expressing and purifying

them has been problematic. From the primary structure,

putative domain structures have been recognized that are

conserved between mammalian, avian, teleost and insect

Jaks. Seven Jak homology (JH) domains have been identi-

fied, numbered from the carboxyl to the amino terminus

(Figure 1). The JH1 domain at the carboxyl terminus has all

the features of a typical eukaryotic tyrosine kinase domain.

Interestingly, this domain is most closely related to the kinase

domains of the epidermal growth factor family of receptor

tyrosine kinases, suggesting that the Jak family may have

arisen from this larger family of protein kinases [9]. Adjacent

to the JH1 domain is a catalytically inactive pseudokinase or

kinase-like domain (JH2), which is distantly related to other

tyrosine kinase domains [9]. This tandem architecture of

kinase domains is the hallmark of Jak kinases and gives them

their name; just like the Roman god Janus, they are two-faced

with respect to these domains. Although the pseudokinase

domain lacks catalytic activity, it has an essential regulatory

function. A number of patient-derived and artificial muta-

tions within this domain abrogate kinase activity, underscor-

ing its critical function [10,11]. Conversely, a mutation within

this domain in Drosophila Hop activates the kinase and leads

to transformation (discussed below) [12-14]. In mammalian

Jak2, experimentally introduced mutations in this domain

can also increase basal activity, but they abrogate ligand-

dependent activation [11,15].

The amino terminus of Jaks contains an SH2-like domain

(JH3-JH4) and a Band-4.1, ezrin, radixin, moesin (FERM)

homology domain (JH6-JH7). The FERM domain is 300

amino acids long and is implicated in mediating interactions

with transmembrane proteins such as cytokine receptors; for

some but not all cytokines, Jaks appear to be important in

regulating cell-surface expression of the cognate receptors

[16,17]. In addition, the FERM domain binds the kinase

domain and positively regulates catalytic activity [18].

Unfortunately, the lack of crystal structures severely limits

the understanding of the intramolecular interactions that

involve Jaks. Binding partners for the Jak SH2 domain have

not been identified.

Localization and function  
In mammals Jak1, Jak2 and Tyk2 are ubiquitously

expressed. In contrast, the expression of Jak3 is more

restricted; it is predominantly expressed in hematopoietic

cells and is highly regulated with cell development and acti-

vation [6,19,20]. At the cellular level, Jaks can be found in

the cytosol when they are experimentally expressed in the

absence of cytokine receptors, but, because of their intimate

association with cytokine receptors, they ordinarily localize

to endosomes and the plasma membrane, along with their

cognate receptors [21,22]. The link between Jaks and

cytokine signaling was first made using mutant cell lines that

lacked responsiveness to interferon (IFN). One such cell line

was shown to lack Tyk2, and adding back this kinase

restored IFN signaling [16]. Shortly thereafter other Jaks

were shown to be associated with various cytokine receptors

[23-26], and subsequently Jak knockout mice have illus-

trated their essential and specific functions (see Table 1). 

A large number of cytokines are dependent upon Jak1,

including a family that use a shared receptor subunit called

common � chain (�c), which includes interleukin (IL)-2,

IL-4, IL-7, IL-9, IL-15 and IL-21. These cytokines are also

dependent upon Jak3, because Jak3 binds �c. Jak1 is also

essential for another family that uses the shared receptor

subunit gp130 (IL-6, IL-11, oncostatin M, leukemia

inhibitory factor (LIF), ciliary neurotrophic factor (CNF)) as

well as granulocyte colony-stimulating factor (G-CSF) and

IFNs. Jak2 is essential for the hormone-like cytokines such

as growth hormone (GH), prolactin (PRL), erythropoietin

(EPO), thrombopoietin (TPO) and the family of cytokines

that signal through the IL-3 receptor (IL-3, IL-5 and

granulocyte-macrophage colony-stimulating factor, GM-CSF).

Jak2 is also important for cytokines that use the gp130

receptor and for some IFNs. 

253.2 Genome Biology 2004, Volume 5, Issue 12, Article 253 Yamaoka et al.                                                 http://genomebiology.com/2004/5/12/253

Genome Biology 2004, 5:253

Figure 1
A schematic representation of the primary structure of Janus kinases
(Jaks), which are made up of FERM, SH2-like, pseudokinase and kinase
domains. An alternative nomenclature for the putative domains is as a
series of Janus homology (JH) domains. The FERM domain mediates
binding to cytokine receptors. Both the FERM and the pseudokinase
domains regulate catalytic activity and appear to interact with the kinase
domain. Jaks autophosphorylate at multiple sites (P), including two in the
activation loop of the kinase domain, but the precise function of these
modifications is just beginning to be understood. 
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Tyk2 was the first Jak to be implicated in IFN signaling, but

subsequent studies indicate that Tyk2 is essential for IL-12

signaling but not for IFN-��� signaling or for cytokines that

use gp130 [27,28]. Tyk2-/- mice also have defective

responses to lipopolysaccharide (LPS, a component of the

outer membrane of Gram-negative bacteria), but whether

this is a direct or indirect effect has not been defined. In par-

ticular, a role for Tyk2 in signaling through the Toll receptor,

which mediates the response to LPS, has not been estab-

lished [29,30]. 

Jak1 knockout mice have a perinatal lethal phenotype, prob-

ably related to the neurological defects that prevent them

from suckling [30] (Table 1). These mice also have defective

lymphoid development and function as a result of defective

signaling by cytokines through Jak1. Jak2 deficiency results

in embryonic lethality at embryonic day 12.5 as a result of a

failure in definitive erythropoiesis [31,32]. Interestingly,

Jak3 deficiency was first identified in humans with autoso-

mal recessive severe combined immunodeficiency (SCID)

[33,34]. We now know that Jak3 binds to �c and that defi-

ciency of either Jak3 or �c abrogates signaling by the family

of cytokines using this receptor subunit. Not surprisingly,

this has devastating consequences in terms of immune-cell

development and function. Together, mutations in the

receptor for IL-7, �c and Jak3 account for two-thirds to

three-quarters of cases of SCID [35]. Jak3-/- mice were sub-

sequently generated, and they too exhibit SCID but notably

do not have non-immune defects [36-38]; this is notable

because it suggests that an inhibitor of Jak3 would have

restricted effects in vivo ([35]; see below). 

The Jak/Stat pathway has been extensively studied in

Drosophila and has been demonstrated to be involved in

stem-cell maintenance, ovarian-cell migration and sex deter-

mination [13,39]. In development, this pathway is important

for embryonic segmentation and larval hematopoiesis as

well as for development of the eye, wing, trachea, hindgut

and limb [14,40-44]. A gain-of-function mutation in Hop

has been identified that results in a leukemia-like phenotype

in the affected flies; this is designated tumorous lethal

(Hoptum-l) [12,45,46]. In human leukemias, chromosomal

translocations result in fusion proteins of the Tel transcrip-

tion factor with Jaks. This creates a constitutively active Jak,

which has also been documented to be transforming [47,48].

In human cells transformed with T-cell leukemia virus-1,

Jak3 and Stat5 are constitutively activated [49]. Constitutive

activation of Stats is very common in many other types of

tumors, although the mechanisms underlying this activation

have yet to be defined. 

Jaks are constitutively associated with the membrane-proxi-

mal regions of cytokine receptors, although in some cases

interaction between the Jak and the receptor is increased

upon ligand binding (Figure 2). It has been proposed that

ligand binding promotes a conformational change in the

receptor, which promotes Jak activation through reciprocal

interaction of two juxtapositioned Jak kinases and auto-

and/or trans-phosphorylation of tyrosine residues on the

activation loop of the Jak kinase domain.

Like other tyrosine kinases, Jaks undergo autophosphoryla-

tion, but the importance of this modification in Jak-dependent

signaling is not very well understood. Autophosphorylation

within the activation loop positively regulates kinase activity; in

Jak3, however, phosphorylation in this region can enhance or

inhibit catalytic activity, depending upon the site of phosphory-

lation [50] (Figure 1). Other sites of autophosphorylation have

recently been identified. For instance, a conserved residue in

Jak2 and Jak3 that resides in the hinge region between JH1

and JH2 is a prominent site of autophosphorylation (Tyr813 in

Jak2 and Tyr785 in Jak3) [51]. This site serves to recruit the

adapter protein SH2-B�, which positively regulates Jak2 activ-

ity. Other sites of autophosphorylation in Jak2 include Tyr221

and Tyr570 [52]. 

Frontiers 
Despite intensive studies during the past decade that have

generated the model shown in Figure 2, the exact molecular
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Table 1

Functions of Jaks 

Gene Phenotype of mouse knockout Cytokines whose signaling requires this Jak

Jak1 Viable but early postnatal lethal owing to neurological deficits; SCID Families of receptor with the shared subunits �c or gp130; IFNs

Jak2 Embryonic lethal owing to a defect of erythropoiesis IL-3; family of receptors with the shared subunit gp130; IFN-�; 
hormone-like cytokines (EPO, GH, PRL, TPO)

Jak3 SCID, viable and fertile Family of receptor with the shared subunit �c

Tyk2 Viable and fertile; susceptible to parasite infection; resistant to LPS; IL-12; LPS
resistant to collagen-induced arthritis

Abbreviations: EPO, erythropoietin; �c, common � chain; GH, growth hormone; IFN, interferon; IL, interleukin; LPS, bacterial lipopolysaccharide; 
PRL, prolactin; SCID, severe combined immunodeficiency; TPO, thrombopoietin.



mechanisms of Jak activation have largely remained elusive.

It is clear that much more detailed structural information

pertaining to Jaks and the Jak-cytokine-receptor complex is

needed to enhance our understanding of the mechanism of

Jak activation. Also, the exact mechanism and functional rel-

evance of autophosphorylation at different sites in Jaks is

not known but will be an interesting area for future research. 

Another important topic for future studies is to define the

mechanisms of crosstalk between Jaks and other pathways.

For instance, the receptor Notch has been reported to

promote Stat3 activation, and the Notch effectors Hes1 and

Hes5 have been found to associate directly with Jak2 and

Stat3 [53]. Evidence for cooperation between the Jak/Stat

and Notch pathways has also been provided by work from

Drosophila [54] and genetic screens in Drosophila have

identified additional potential modifiers of the Jak/Stat

pathway [55]. Jaks have also been reported to be activated

by a variety of structurally diverse receptors, beyond the

cytokine receptors. Examples include receptor tyrosine

kinases, death receptors (such as CD40) and G-protein-

coupled receptors (such as chemokine receptors). Many of

the studies have employed overexpression or putatively spe-

cific inhibitors to implicate the Jaks, but we now know that

these inhibitors are not specific, so the essential function of

Jaks for non-cytokine receptors remains uncertain. This is

clearly another critical area for future work. 

Finally, because of the crucial role of Jak3 in cytokine signal-

ing through �c and because of its limited tissue expression,

the inhibition of Jak3 activity has emerged as a promising

strategy for immunosuppression. A highly selective and

potent Jak3 inhibitor (CP-690,550) has recently been devel-

oped that has nanomolar potency against Jak3 in vitro, with

much less potency against other Jak family members. Conse-

quently, CP-690,550 was both very efficacious and well-toler-

ated in animal models of organ transplantation [56]. One

might anticipate that this drug will help to overcome the

unwarranted side effects often seen in patients under current

immunosuppressive therapy. Thus, the drug could be useful

in blocking transplant rejection and in the treatment of

autoimmune diseases. Conceivably, it might also be useful in

treating those hematological malignancies that exhibit consti-

tutive Jak3 activation. Targeting Tyk2 with specific drugs

would also be logical, given its restricted role; presumably a

Tyk2 inhibitor would be useful in some immune-mediated

diseases. Whether a Jak2 inhibitor would be useful in malig-

nancies is also worthy of consideration. 

Additional data files 
Protein sequence alignments in text and jpeg format are

available with the online version of this article for orthologs

of Jak1 (Additional data files 1 and 6), Jak2 (Additional data

files 2 and 7), Jak3 (Additional data files 3 and8), Tyk2

(Additional data files 4 and 9), and undefined members of

the family (Additional data files 5 and 10), and a key for the

alignments (Additional data file 11). 
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