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Abstract

We propose an original approach to describe the scientific progress in a quantitative way.

Using innovative Machine Learning techniques we create a vector representation for the

PACS codes and we use them to represent the relative movements of the various domains

of Physics in a multi-dimensional space. This methodology unveils about 25 years of scien-

tific trends, enables us to predict innovative couplings of fields, and illustrates how Nobel

Prize papers and APS milestones drive the future convergence of previously unrelated

fields.

1 Introduction

We aim at building a quantitative framework to describe the time evolution of scientific fields

and to make predictions about their relative dynamics. Scientific progress [1] has been already

investigated from multiple points of view [2], that range from the study of scientific careers

and the evolution of single scientific fields to the mutual impacts between science and society.

This latter issue is greatly influenced by the availability of prediction models. For instance,

Martinez et al. investigate the impact on education and labour of technological and scientific

progress and on the feedbacks which in turn are given from education and labour market to

science and technology [3]. Börner et al., instead, discuss the importance of having reliable

predictive models in science, technology and economics paired with an easily readable data

visualization procedure to help policy makers in their activity [4]. As we will show in the fol-

lowing, our methodology allows for concrete predictions about the time evolution of scientific

fields.

Another successfull field of research investigates the scientific careers. Shneiderman dis-

cusses in details the best strategies for producing highly successful scientific researches balanc-

ing between the exploration of new ideas and the exploitation of established works [5]. Ma

et al. [6] and Sinatra et al. [7] both focus on the individual impact of scientists, the former by

analyzing the collaboration network of scientific-prize-winners, the latter focusing on the eval-

uation of the activity of scientists. Jia et al. [8] have introduced a random walk based model to
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investigate the interest change in scientific careers and how they evolve together with the scien-

tific progress. All these studies could benefit from a comprehensive representation of the space

in which such careers take place. Indeed, others scientists have contributed to shed light on

some of the fundamental mechanisms and underlying rules of the scientific progress: which

are the successful strategies to conduct a scientific project, how much the scientific progress is

shaped by citations and collaborations networks, see [9–14]. In this respect, a key element is to

be able to efficiently project the dynamics of science in a suitable space, to obtain both a visuali-

zation and, if possible, a prediction of what will happen in the future. Many authors have tack-

led this issue employing the instruments provided by network theory. Gerlach et al. [15] for

example developed an innovative topic model that exploits community detection techniques,

Herrera et al. [16] focused on building a network of PACS that they use to study the established

communities of fields and their evolution, Sun et al. [17] adopted a network based approach

which exploits co-occurrences of authors, Pugliese et al. grounded their analysis on the co-

occurrences of sectors in countries [18]. In a recent paper, Chinazzi et al. [19], intruduce a

knowledge map of PACS produced by a general-purpose embedding algorithm, StarSpace

[20]. They rely on the publication patterns of authors to define a metric of similarity between

PACS, and use it to analyze the spatial distribution over different cities of the scientific activity

and how it relates with the standard socioeconomic indicators provided by World Bank.

Here we propose a framework which is, instead, well suited to highlight the dynamic of sci-

entific progress. In our analysis, in a way similar to [19], we move from traditional topological

spaces, such as networks of PACS or authors, to a continuous space where it is possible to

introduce quantitative measures of proximity between scientific topics and most importantly,

track their evolution through time. In particular, we represent PACS as multidimensional vec-

tors, leveraging on the methodology discussed in [21] and on Natural Language Processing

techniques [22, 23]. The key idea is to draw a parallel between PACS and words, i.e. PACS are

the words of what we call scientific language. A direct consequence of this novel way to look at

PACS is to consider scientific articles as sentences, i.e. contexts which subsume the underlying

rules of the scientific language as much as a sentence subsumes the underlying syntactic rules

of the natural language in which it is formulated. This assumption allows to create a similarity

metric between scientific fields, that we call context similarity. While in [21] this approach was

introduced and used to forecast new combinations of the technological codes to make predic-

tion on the future patenting activity, here we aim to quantitatively measure scientific trends in

the Physics literature by looking at the dynamics PACS codes. This enables us not only to pre-

dict new combinations of fields but also to assess the impact of extra-ordinary contributions

such as Nobel Prize papers and APS milestones.

The rest of this paper is organized as follows. We first show how the mere representation of

PACS dynamics in a low dimensional space gives a series of insights about how research in

Physics clusterize and how scientific fields move one with respect to the others. Then we use

these relative movements to forecast the appearance of innovative couplings. We also show

that the publication of recognized papers is followed by an approach of the relative PACS. In

the last section, we discuss in more detail the database and the methodology we used to build

our representation of PACS from the data.

2 Results

2.1 Low dimensional representation

The vector representations of PACS, which we call embeddings, live in a high dimensional

space, and this prevents a direct inspection of the resulting structures. In the Methods Section

we provide more details on the algorithm that constructs them staring from the raw data. For
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the purpose of understanding the results presented here, it suffices to know that the position of

these high-dimensional vectors in the space of PACS is optimized so that each of them has as

neighbours the most similar ones given the global scientific activity (the concept of similarity

is quantified through the scalar product between vectors, see Methods for more details). A sim-

ple visualization of these representations and their time evolution is required to shed light on

the dynamics underlying the scientific activity in Physics. For this reason we rely on a standard

dimensionality reduction technique that allows us to generate a two dimensional representa-

tions of our embeddings. We use the t-SNE algorithm (t-distributed Stochastic Neighbor

Embedding) [24] and its modification that takes into account time-ordered input data,

Dynamic t-SNE [25]. Dynamic t-SNE requires the different instances of the high dimensional

space to contain the same embeddings, because it keeps track of them to preserve temporal

coherence between consecutive projections. In this way, the 2-dimensional projection at time

t + 1, not only depends on the high dimensional configuration of the embeddings at the same

time, but also on the 2-dimensional projection at time t. In particular, the projections at time t
are used as the initial conditions for projections at time t + 1 in order to reconstruct coherent

trajectories. For this reason, we have restricted the number of PACS by selecting only those

present into the whole time range under investigation, i.e. 1985-2009, for a total of about 300

PACS.

The result of the dimensional reduction is shown in Fig 1 where we have added the ellipses

to stress the cluster structure. As expected, most of the PACS are clusterized respecting the

hierarchy of the classification (see the Data and methods section), that is represented by the

different colors of the PACS trajectories. The relative position of the clusters is in very good

agreement with intuition: Nuclear Physics is close to Elementary Particles and fields, the two

Condensed Matter clusters are also close, while the General and interdisciplinary sectors are

not clearly localized. In some interesting cases some PACS are not localized into their original

cluster coming from the PACS classification. We name some of these noteworthy exceptions:

Fig 1. Two dimensional representation of the PACS embeddings. The dynamical evolution of the scientific domains

of Physics follows only partially the hierarchical classification. See the text for details.

https://doi.org/10.1371/journal.pone.0233997.g001
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• Quantum Electrodynamics(Orange) Its trajectory starts in 1985 from its Elementary Parti-

cle Fields cluster (Orange) and arrives in 2009 in the Atomic and Molecular Physics cluster

(Red).

• Stellar Characteristics and Properties (Sky Blue) It starts from the Nuclear Physics cluster

(Green) and arrives in its cluster Geophysics and Astrophysics (Sky Blue).

• Properties and Dynamics of the Atmosphere, Meteorology (Sky Blue) and Physical

Oceanography 92.10 (Sky Blue) Both fields can be found within the Electromagnetism,

Optics, Classical Mechanics and Fluid Dynamics cluster (Violet).

• Macro-molecules and Polymer Molecules (Red) It moves inside the Condensed Matter

cluster (Purple)

• Physical Properties of Rocks and Minerals (Sky Blue) It is inside the cluster Condensed

Matter: Mechanical and Thermal Properties (Purple).

All the previous examples show PACS whose use and dynamics does not reflect their

classification.

We believe that this representation can have a number of practical applications. For

instance, it could be used to update and redesign the classification of research domains and to

improve the synergies among researches of (supposedly) different areas.

2.2 Prediction of new PACS pairs

Context similarity is a metric introduced in [21] which we have specifically adapted to measure

the proximity of two PACS given the current scientific production: it mirrors and summarizes

the relationship between their respective scientific areas in a given time window. It is therefore

natural to use it to estimate the likelihood that a pair of PACS, which has never appeared in a

paper before, will occur in the same paper in the future. In our opinion this kind of events can

be regarded as an innovation in the field of Physics: following the seminal ideas of B.W.

Arthur, an innovation is defined as a previously unseen combination of existing elements [26].

In this section we make systematic predictions for the appearance of new PACS pairs and we

confirm the goodness of our approach using both the Receiver Operating Characteristic curve

(ROC) and its integral (AUC), and the best F1-score, both of them standard tools in statistical

analysis [28–30]. As discussed in the Methods sections, scientific articles are grouped in

5-years-long training sets. In order to test the predictive power of context similarity we repeat

our analysis on 10-years-long time windows formed by joining together two consequent non-

overlapping time intervals, e.g. 1985-1989 for training and 1990-1994 for testing. The idea is to

test whether the context similarity of PACS couples is connected to the likelihood that a previ-

ously unseen couple will appear in the testing set. In each 10-years window, we proceed as

follows:

1. We use the training set to calculate the embeddings for the 500 most frequent PACS and

identify all couples that have never been published together up to the last year of the train-

ing set.

2. We check whether couples of PACS selected in the training set are published in at least one

paper of the testing set or not. We classify the testing set couples of PACS in two separate

classes accordingly: class 0 if they appear together in at least one paper, class 1 otherwise.

3. We evaluate the effectiveness of context similarity to forecast unseen PACS couples using

standard performance metrics such as the ROC-AUC and the best F1-score.
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We test our metric against a null model that takes into account the relative growth of each

field relative to the others. To realize this null model we make use of the curveball algorithm

introduced in [27] to create randomized bipartite networks that preserve the number of con-

nections of each node. In other words, each article gets a random set of PACS in such a way

that the following conditions are true:

• All articles in the randomized articles-PACS network have the same number of PACS as

they have in the original bipartite network.

• All PACS in the randomized articles-PACS network appear in the same number of articles

as they do in the original bipartite network.

We then calculate the embeddings and the context similarity over the randomized database.

In this way we can test the prediction power of context similarity against a null model that, on

one side, keeps tracks of the growth of each scientific field through the frequency with which

PACS are employed, while on the other, it randomizes all information about the semantic rela-

tions between PACS. Due to the long computation time required to calculate the context simi-
larity between PACS of the randomized articles-PACS network in every decade, which we

refer to as null model for simplicity, we have done it only once for the whole dataset. Results

are shown in Fig 2 where we display the ROC AUC and the best F1 score. Regarding the AUC

Fig 2. Context similarity (continuous lines) outperforms the null model (dashed lines) in predicting innovations

in Physics, i.e. new pairs of PACS used for the first time in a paper. The two metrics are evaluated by the ROC AUC

(blue lines) and the Best F1 score (red lines), and the plot show that context similarity scores higher in both cases. The

database is organized in 10-years-long sliding windows, the first five years of each window form the training set where

we calculate the two metrics, while the second five years form the testing set where we evaluate them. On the x axis we

report the first and the last year of each testing set. The null model proposed in this plot assign to each paper a random

set of PACS in such a way that each article has the same number of PACS and each PACS appears in the same number

of articles. The dashed grey line represent the ROC AUC of a random guess.

https://doi.org/10.1371/journal.pone.0233997.g002
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metric, context similarity outperforms the null model proposed and scores well above a ran-

dom classifier. Indeed, it can be proven that a random classifier would be characterized by a

AUC score of 0.5 regardless of the class imbalance ratio of the system under observation [28–

30]. Regarding the best F1 score, it can not be directly compared with a random guess, being

an harmonic mean of the Precision and Recall mesures [30], but we can compare it against the

null model that we have built, and it is evident that context similarity still performs better. In

summary, context similarity captures more information than what can be understood looking

just at the frequency of PACS, and therefore, not only it successfully grasps the relation

between PACS induced by the global scientific activity, but it is also able to predict innovations

in the field of Physics over the years with a constant good performance.

2.3 Quantifying the impact of milestones and Nobel prize winners

In Fig 3, we have focused our attention on one illustrative example of PACS dynamics influ-

encing and being influenced by scientific papers to show the effectiveness of the proposed

framework to study the evolution of the relation between different fields of research.

Highlighted in blue, there are the trajectories of two PACS:Matter Waves and Quantum Statis-
tical Mechanics: these are the PACS of the Nobel prize article on the Bose-Einstein condensa-

tion [31], published in 1995. The publication of this fundamental paper is associated, in the

plot, to its PACS converging towards a closer position.

In the following we will study more examples of the effect of both APS milestones (see

description of the data for the definition of milestones, and Nobel prize winners on the space

of PACS). Each PACS is added to papers by the authors at the time of submission. Under the

reasonable assumption that authors follow the order of relevance of the topics, we consider

only the first two PACS, i.e. the two main topics of a paper. In total there are 36 of such special

articles, however only 20 of them have the first two PACS different at our level of aggregation

(4 digits): we calculate the value of context similarity for each of them. The aim is to compare

the relative variations in context similarity of these pairs with the average variations of all

Fig 3. Dynamics of the first two PACS of the Davis et al. [31] paper, that led to a Nobel prize in 2001 during the

time interval 1990-1999. It is evident how the Matter Waves field moves towards the cluster that contains Quantum

Statistical Mechanics.

https://doi.org/10.1371/journal.pone.0233997.g003
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PACS through the years to spot a possible peculiar behavior of Nobels and milestones. In par-

ticular, we calculate such variations using as a starting point the value computed in the five

years intervals having the publication year as the fifth, and last, year. The final value is com-

puted at three different stages. The first one is set one year into the future after the date of pub-

lication, the second one five years into the future, and third one ten years into the future.

Results are shown in Fig 4 together with the value of context similarity of all Nobel prize win-

ners and milestones at the time of publication (top-left panel). In the remaining panels, each

point corresponds to the variation of the PACS context similarity of these fundamental papers,

while the horizontal lines correspond to median, the 10th percentile and the 90th percentile of

distribution of the variation of all the other PACS pairs present in the same five-year period. In

the short term, (top-right panel), there is a positive variation of context similarity for almost all

Fig 4. Dynamics of the first two PACS of notable papers: On a longer time scale they seem to converge to a closer position. The top-left panel shows the value of

context similarity for PACS pairs of Nobel Prize winners and APS milestones calculated in the five years before their publication. The dashed lines represents,

respectively, the 10th percentile, the median, and the 90th percentile of the context similarity distribution. The top-right panel and both bottom panels show the variation

of context similarity of said pairs of PACS compared to the percentiles of the distribution of context similarity variations at different stages after the publication: one year,

five years, and ten years in the future.

https://doi.org/10.1371/journal.pone.0233997.g004
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the articles. In the medium term (bottom-left panel) the situation is more mixed up: some arti-

cles experience a variation of context similarity which is outside the region delimited by the

10th and 90th percentile, while others experience an arrest. In the long term (bottom-right

panel), we see that for almost all the Nobel prize winners and milestones, the variation tends to

be at the tails of the distribution of context similarity variation. The conclusion we draw from

Fig 4 is that the publication such as Milestones or Nobel, has a mixed impact on their PACS in

the short and medium term, however, in the long term, with only one exception, they all expe-

rience an high increase. The fact that some pairs of PACS show negative trends for the varia-

tion of context similarity can be explained by them starting with high values at the time of

publication that prevents the possibility to reach higher values. The interpretation we give to

this situation is that such papers combine already strongly related PACS, while the others are

pioneers in creating bridges between previously unrelated scientific areas.

In Fig 5, we show the average variation of context similarity of all these fundamental articles

as a function of the number of years after their publication (red points). The error bars for

each point represent the standard error relative to the average. Each point can be compared

with the median and 10th and 90th percentiles of the variation of all the other PACS pairs of

every article in the same time interval. The plot also shows the number of papers on which the

average was carried out at each time (in green), which is decreasing with time due to the

decrease of available papers on longer time spans. The plot shows that the context similarity
undergoes a positive variation over the years after publication, which indicates that the main

topics in these articles, identified by the first two PACS, are getting closer. This can be inter-

preted as an increase of interest in some fields of Physics related to the publication of those

articles which have greatly influenced modern research. The negative trend in the last points

Fig 5. We show an increase of the average similarity of the first two PACS of fundamental papers of Physics. The

trend of the mean value of the percentiles of all context similarity variations in Nobel prize papers and APS milestones,

as a function of the year after publications (blue points), is positive up to several years after publication. Each point is

represented with its standard error (vertical red lines). The highlighted percentiles (dashed grey lines), from top to

bottom are 90th percentile, median, 10th percentile. The green line represents the number of papers available for the

calculation of each blue point.

https://doi.org/10.1371/journal.pone.0233997.g005

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0233997 June 18, 2020 8 / 16

https://doi.org/10.1371/journal.pone.0233997.g005
https://doi.org/10.1371/journal.pone.0233997


can be explained by noting that the value of the context similarity is now high enough not to

undergo any further substantial changes. Moreover, in these points there is greater uncertainty

of calculation due to the fact that the numbers of articles available is significantly reduced with

respect to previous years.

Let us now focus on some specific examples. In Fig 6 we show the time evolution of context
similarity of the first two PACS of four fundamental papers:

• K.B. Davis et al. (1995): Bose-Einstein condensation in a gas of sodium atoms. [31]

• J.B. Pendry (2000): Negative Refraction Makes a Perfect Lens. [32]

• J. Reichert et al (2000): Phase Coherent Vacuum-Ultraviolet to Radio Frequency Compari-

son with a Mode-Locked Laser. [33]

• C. Jarzynski (1997): Nonequilibrium Equality for Free Energy Differences. [34]

The vertical line represents the publication year.

Fig 6. We show the trend in time of the vaule of context similarity for the first two PACS of four fundamental papers in Physics expressed as percentile in the

context similarity distribution. The red vertical line indicates the publication year while the dashed gray line represents the 90th, the median, and the 10th percentile. In

most cases, PACS with a value of context similarity close to the median of its distribution before the publication year, experience a steady growth. There are exceptions,

such as Jarzynski (1997) [34], where the context similarity decreases after the publication, probably because the scientific interest moved towards different topics.

https://doi.org/10.1371/journal.pone.0233997.g006
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We notice different behaviors: in three out of four examples, context similarity experiences

a steady long-term growth after the publication. In the top right panel such growth is also

anticipating the publication, a behavior similar to the one discussed in the previous section

about the possibility to predict innovative combinations of scientific fields. In the bottom left

panel, instead, context similarity decreases. As already discussed, we interpret these two differ-

ent cases as the paper being either a pioneer in the field, thus paving the way to further

research, or at the peak of research, from which it is only possible to climb down.

3 Conclusions

Describing and predicting the scientific progress is a challenging task. In this paper we use the

APS database of physics articles to build a multi-dimensional space to investigate the relative

motion of scientific fields, as defined by the PACS codes. Our machine learning methodology

is based on Natural Language Processing techniques, which are able to extract the context simi-
larity between words and, in our case, between scientific topics, starting from their presence in

the APS articles. This vector representation permits to visualize in a clear way the trajectories

in time of Physics topics and to predict innovations in Physics, as defined by the appearance of

new combinations of PACS codes in APS articles. Finally, we observe that APS Milestones and

Nobel winner papers have an effect in bringing together previously unrelated topics.

This work is a proof of concept that it is possible to go beyond standard network methodol-

ogies and build a space which is not only well suited to represent the dynamic of science, by it

also allows to introduce metrics to make quantitative analysis and predictions. We believe that

this research opens up a number of further developments, for example, this framework can be

applied to study more extensive database, including not only Physics but also other scientific

sectors and to investigate their mutual influence. Furthermore, it is an instrument that can be

used to introduce more precise definition of scientific success such as one that links citations

to the ability to affect the space of PACS: in future investigations for example, we plan to draw

a comparison between sector’s trajectories and the time evolution of citations.

4 Data and methods

4.1 Description of the data

The APS data-set (website: journals.aps.org/datasets) is a citation network data-set that is com-

posed by papers in the field of physics organized by the American Physical Society. It contains

449935 papers in physics and related fields from 1977 to 2009. Among them, the high-impact

papers used as evaluation benchmarks are derived from 78 milestone papers that experts from

the American Physical Society have selected as outstanding contributions to the development

of physics over the past 50 years. The PACS are alphanumerical strings hierarchically orga-

nized that are ascribed to scientific papers by authors at the time of publication and represent

the domain of Physics the specific paper belongs to, for example the PACS 02.10.Yn indicates

Matrix theory. The classification can be found in the supplementary information as a down-

loadable file.

4.2 Creation of pacs embeddings

PACS embeddings are created adapting the well-known algorithm of Word2Vec (in its Skip-

Gram version) to our case of study [23, 36]. The code producing the results discussed is imple-

mented in tensorflow [35], an open access deep learning library published by Google, that we

adapted to process scientific papers and PACS. We refer to the literature for a detailed descrip-

tions of the procedure behind Word2Vec [23, 36]. The key assumption is that there is a strong
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parallel with Natural Language Processing: articles can be viewed as sentences, i.e. contexts,

and PACS as words. Each PACS is initialized with a random vector (embedding) and the posi-

tions of such vectors are adjusted during the training in order to maximize the similarity

between PACS belonging to the same context.

More into the details, each PACS is represented through a one-hot-encoded vector. This

representation depends on the number of PACS to embed (the vocabulary size, in the language

of [23, 36]): at 4 digits precision 500 PACS per training set. The one-hot-encoded vector corre-

sponding to a PACS is a binary vector which has all zeros except for a single one in the position

that the PACS under analysis occupies in the list of all PACS: the first code is represented by

[1, 0, 0, . . .], the second code by [0, 1, 0, . . .] and so on. In this regard, a scientific paper is noth-

ing else but a collection of PACS, i.e. a collection one-hot-encoded vectors.

To understand how Word2Vec works, we need to introduce two elements: an embedding

matrix E of size V × N, where V is the number of PACS to embed and N the dimension of the

embedding representation, a decoding matrix D of size N × V. Word2Vec is an iterative algo-

rithm, at each steps a random batch of scientific papers is extracted from the training set and

from each scientific paper in the batch, a random PACS is singled out as input and the remain-

ing ones form the target context.

Let hi be the embedding vector of a given input PACS pi. Let P be the set of all the PACS pj
forming the target context. The decoding matrix allows to calculate the score between the

input PACS pi and all the words pj in the target context P. Let us call uji the score for the jth
PACS in the target context P, uji is defined by:

uji ¼ Dj � hi; ð1Þ

whereDj is the jth column of the decoding matrix, obtained applying the the transposed matrix

DT to the one-hot-encoded representation of the PACS pj. Each score passes through a softmax
function to become the posterior probability for the context PACS pj given the input PACS pi:

PðpjjpiÞ ¼
exp ðujiÞ

PV
k¼1

exp ðukiÞ
ð2Þ

The posterior probability to predict the whole context given the input PACS is the product

of all posterior probabilities for each PACS in the context.

Pðpj1 ; pj2 ; � � � ; pjP jpiÞ ¼
Y

j2P

PðpjjpiÞ ð3Þ

The Skip Gram model aims to maximize this probability at each step of the training for

each input-context couple. However it is computationally more efficient to transform such

maximization problem into the minimization of the following loss function:

L ¼ � log ðPðpj1 ; pj2 ; � � � ; pjC jpiÞÞ ð4Þ

At each step, Skip Gram is trained over a random batch of input-context couples therefore

the total loss over the batch is the average of all the single losses L.

L ¼ hLi ð5Þ

The training set is sampled in random batches at each training steps, this allows to effi-

ciently process large quantities of data because parameter updates for Word2Vec are calculated

only on subsets, i.e. only on those vectors present in the sample. At the end of the training, the
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position of each codes mimics what the algorithm has learnt on the scientific language and

allows to quantify the similarity between PACS given the global scientific production.

Word2Vec is trained through a variation of Stochastic Gradient Descent, therefore the

embedding vectors will be different every time we run the algorithm, [37–39]. In particular,

they can differ for two reasons: they can occupy different position in the space of PACS, and

they can be randomly rotated with respect to the origin of the space in which they are defined.

However, rotation invariant quantities, like the scalar product, can be still calculated and are

not effected by rotations of the embeddings. We adopt the definition proposed by [21] of con-
text similarity CSij between PACS i and j as the average over 30 runs of the scalar product

among the embeddings:

CSi;j ¼
XNrun

k

Skij
Nrun

; ð6Þ

where Skij is the scalar product between the embeddings of PACS i and j in the kth training

instance. Taking the average over different runs offers two important advantages: on one

hand, it allows us to check if the algorithm is learning to represent PACS correctly, by looking

at the distribution of their scalar product, and on the other hand, it is a better proxy of the true

context similarity between PACS.

The database at our disposal covers 25 years of scientific papers, from 1985 to 2009, we

group them in 5-year-long overlapping intervals, from 1985-1989 up to 2005-2009, for a total

of 21 time windows. We have empirically found that before 1985 there are not enough articles

to make a statistically valid analysis. There are no a-priori instructions to identify the minimal

size of the data-set required to have a good performance of the algorithm because this value

depends on the database, the vocabulary size, and the aim of the training. As a general guide-

line, however, the documents used for training should make enough use of all the words in the

vocabulary size. We have checked that if trained with too few papers, the embeddings of some

of the PACS were randomly put in the space of PACS in multiple instances of the training. In

other words, in order to create a reliable vector representation of PACS, the algorithm requires

a sufficiently large training set, and this criterion is not met before 1985. This is due to the fact

that before 1985 there are less than 2500 articles per year, while after 1985 this number jumps

to 7500 and keeps growing to more than 15000 in 2009. Consequently, papers before 1985 are

discarded and papers after 1985 are grouped in 5-years-long windows to have enough data in

each sliding window to successfully train the model and produce reliable results. This choice is

also theoretically motivated by the assumption that the time scale of the dynamics that shape

the scientific research is longer than 5 years.

In each 5 years time interval we create a vector representations for the 500 more frequent

4-digit PACS. It has been empirically observed in [21, 22] that the algorithm is not able to cre-

ate reliable vector representations for words that are too rare. We have verified that this num-

ber is a good compromise between having a wide spectrum of topics covered and the level of

accuracy of the embeddings in terms of prediction power. This choice leaves out of out analysis

around 40 PACS (with multiplicity less than 2) in the first sliding windows and around 150

PACS (with multiplicity less than 10) in the last sliding windows. The increase in the number

of PACS left out and in their multiplicity is due to the positive trend in the number of pub-

lished papers per year.

The embedding dimension chosen for this analysis is 8, i.e. PACS embeddings live in a

8-dimensional euclidean space. The optimal dimensionality, depending on the complexity of

the problem under exam, and in particular on the size of the dataset and the vocabulary, is usu-

ally determined by a trial and error procedure, [23, 36], and our tests suggest that 8 is a good
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compromise between efficiency and accuracy. The reader can find the code used to produce

the embeddings at the following link: https://github.com/Andrea-Napoletano/WyFiG.
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