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Multiple molecular mechanisms have
been identified that are responsible

for the deregulation of the quantitative
aspects of JAK-STAT signaling. These
mechanisms enhance the extent and the
duration of, e.g., STAT3 activation and
have profound consequences on the
phenotypes of the affected cells. The fine
tuning of STAT3 signaling is required to
maintain its physiological functions and
its deregulation is associated with diverse
pathological states. Deregulation can be
exerted by the gain of function of
components mediating the activation of
STAT3 or the loss of function of
molecules involved in the deactivation
steps of STAT3. Gain of function muta-
tions can involve tyrosine kinases that
phosphorylate STAT3, mutations in
cytokine and growth factor receptors
causing their ligand independent activa-
tion, mutations in STAT3 that enhance
and prolong its tyrosine phosphorylation
and the autocrine or paracrine production
and secretion of cytokines, most notably
IL-6. Diminished deactivation of phos-
phorylated STAT3 can be due to the
reduced expression of tyrosine phospha-
tases, inactivating mutations in these
enzymes, silencing or functional inactiva-
tion of SOCS molecules, post-transcrip-
tional inhibition of PIAS3 expression or
deletion mutations in the lymphocyte
adaptor protein, LNK. STAT3 variants
that exhibit autonomous transactivation
potential have been detected in 40% of
patients with T-cell large granular lym-
phocytic leukemia in clonally expanded
CD8+ T cells. These patients also were
preferentially affected by neutropenia and
rheumatoid disorders and the results
suggest that activating STAT3 mutations

in T lymphocytes could be a cause of
autoimmune diseases.

Extent and Duration
of STAT3 Activation

STAT3 is a transcription factor that is
activated by extracellular ligands, e.g., the
cytokines IL-6, IL-10, IL-21, IL-27, G-
CSF and leptin, but also by the growth
factors EGF and HGF, through specific
binding to transmembrane receptors and
the induction of receptor associated and
cytoplasmic tyrosine kinases.1 STAT3
activation can be observed in multiple
organs and cell types, e.g., in immune
cells, mammary epithelial cells, adipocytes,
neural cells, cardiomyocytes, hepatocytes,
stem cells and tumor cells, and is corre-
lated with such diverse cellular phenotypes
as differentiation, proliferation, apoptosis
regulation, angiogenesis, malignant trans-
formation, metastasis formation and drug
responsiveness.2 How can a single tran-
scription factor influence so many differ-
ent functions? The cellular contexts,
defined by the activity of interacting
signaling pathways and the epigenetic
state3,4 most likely play determining roles,
but the discrete levels and the duration of
STAT3 signaling also cooperate and
contribute to the manifestation of distinct
cellular outcomes. In skeletal muscle cells
for example, the induction of STAT3 by
exogeneously supplied IL-6 is rapid and
transient. It reaches a maximum after
about 1 h of cytokine stimulation and
dampening mechanisms cause a return of
activated STAT3 to basal levels within
about 2 h.5 In tumor cells, a different
activation pattern can be observed and
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strong activation of STAT3 is being
maintained over long periods of time.6

Persisting and high levels of STAT3
signaling seem to be associated with
cellular proliferation and transformation.2,7

Since the strength of STAT3 signaling and
the duration of its activation appear as
central determinants of the phenotypic
cellular functions of this transcription
factor, these parameters are tightly con-
trolled. Several mechanisms have been
described that regulate these parameters
and either affect the activation step of
STAT3 or the subsequent deactivation
events.

Mechanisms and Components
Affecting STAT3 Activation

and Deactivation

The diversity of the molecular mechanisms
contributing to the finetuning of STAT3
signaling probably reflects the importance
of the quantitative aspects of this signaling
pathway for the cellular physiology, but
also provides vulnerability and possibilities
for disturbance. Infringement with the
finetuning of STAT3 activation is fre-
quently associated with pathological states.
Enhanced STAT3 signaling output can be
traced to two basic steps in the regulation
of extent and duration of STAT3 activa-
tion: (1) Mechanisms that enhance the
activation step. They can be based on
genetic alterations in molecular compo-
nents that result in intracellular “gains of
function” or effects on intercellular com-
munication events that result in the
exposure of cells to high levels of kinase
activating signals. Both mechanisms cause
higher rates of tyrosine phosphorylation of
STAT3. (2) Mechanisms and mutations
that impede the negative regulation of
STAT3, i.e., alterations that result in a
“loss of function” of molecular compo-
nents that are involved in the down-
regulation, e.g., the dephosphorylation or
intracellular utilization, of activated
STAT3.

The enhancement of STAT3 upregula-
tion can be attributed to mutational events
that directly alter known pathway
components:

(1) c-Src is a non-receptor tyrosine
kinase closely related to v-Src, an oncogene
encoded by the Rous sarcoma virus. v-Src

lacks the regulatory C-terminal domain of
c-Src that, together with several point
mutations, results in a constitutively active
kinase molecule with high transforming
activity. v-Src expression causes the tyro-
sine phosphorylation of several cellular
proteins including STAT3.8 Phosphoryla-
tion of STAT3 has also been observed
in cells upon the expression of a several
other oncoproteins.9

(2) A somatic mutation in the JAK2
tyrosine kinase (V617F) is present in most
patients with myeloproliferative neo-
plasms, like polycythemia vera (PV),
essential thrombocythemia (ET) and
chronic idiopathic myelofibrosis. The
mutation causes a gain of kinase function,
and JAK2 V617F induces, for example,
the expansion of erythroid progenitors
accompanied by activation of STAT3,
STAT5, Akt and Erk signaling10-12 in an
erythropoietin-independent manner.

(3) Small deletions in the IL-6 binding
site of the gp130 subunit of the IL-6
receptor have been found in cells of
inflammatory hepatocellular adenomas.
This results in a gain of function, IL-6
independent receptor activation and
STAT3 signaling.13

(4) Mutations have been detected in the
STAT3 gene itself. About 12% of inflam-
matory hepatocellular adenomas express a
STAT variant that is constitutively acti-
vated, independently of IL-6 stimulation of
the cells. The mutation at position Y640
occurs in the dimerization domain of
STAT3 and promotes its activation status.14

A similar observation has been made in T-
cell large granular lymphocytic leukemia
cells.15 This lymphoproliferative disorder is
characterized by a high percentage of clonal
CD3+CD8+ cytotoxic T lymphocytes
(CTLs) and is associated with autoimmune
disorders and immune-mediated cytope-
nias. Forty percent of the patients with
large granular lymphocytic leukemia express
constitutively activated STAT3 variants
with mutations in the dimerization of
STAT3 and aberrant activation.15

The inappropriate activation of STAT3,
however, can also be explained by the
deregulation of linked signaling events that
are not directly attributable to distinct
mutations in components of the JAK
STAT pathway, but by deregulated expres-
sion levels of accessory protein.

(1) G-CSF receptor activation controls
survival, proliferation and differentiation
of myeloid progenitor cells via JAKs. JAKs
in turn control the levels of cytokine
receptor expression and increased JAK
expression can confer growth factor inde-
pendent STAT3 activation and hemato-
poietic cell transformation.16

(2) Elevated expression of sphingosine-
1-phosphate receptor-1 (S1PR1), a G
protein-coupled receptor for the lysopho-
spholipid sphingosine-1-phosphate (S1P),
has been found in tumors with activated
STAT3.17 STAT3 induces the transcrip-
tion of the S1pr1 gene and enhanced
S1pr1 expression activates STAT3 and IL-
6 expression. These reciprocal regulatory
events are thought to maintain the
persistent activation STAT3 in cancer
cells.

(3) Autocrine and paracrine mechan-
isms, especially the secretion of IL-6 by
tumor cells and cells of the tumor
microenvironment, contribute to STAT3
activation.18 Ras activation, e.g., induces
the secretion of IL-6 and can act in a
paracrine fashion to promote angiogenesis
and tumor growth.19 Similarly, EGFR
activation in lung carcinoma cells causes
IL-6 expression and secretion, and thus the
paracrine and autocrine stimulation of
STAT3 in cells of the tumor micro-
environment.20,21 Finally, STAT3 activa-
tion induces IL-6 gene transcription and
thus establishes a positive feedback loop in
tumor cells in vitro and tumor tissues in
vivo.22

Mechanisms resulting in the enhance-
ment of STAT3 signaling are not restricted
to the activation steps, but can also be
founded in the molecular events governing
the downregulation of activated STAT3
and the cessation of signaling. These
events are based on diverse components
and their loss of function can result in the
maintenance of the activated state and the
persistence of STAT3 signaling.

(1) The direct reversion of STAT3
activation can be accomplished by protein
tyrosine phosphatases, PTP. At least three
of them have been identified that can
catalyze STAT3 dephosphorylation, TC-
PTP, SHP1 and SHP2.23 The loss of PTP
function has been observed in tumor cells
with inappropriately activated STAT3.
The receptor protein tyrosine phosphatase
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delta (PTPRD), for example, is frequently
inactivated in glioblastoma multiforme
(GBM), head and neck squamous cell
carcinomas and lung cancer. The inactiva-
tion of the PTP can be the result of
intragenic deletions or of epigenetic silen-
cing by promoter methylation.24

(2) Direct negative feedback is being
used to regulate STAT3 signaling. The
suppressor of cytokine signaling (SOCS) 1
and 3 genes are STAT3 targets and their
products bind to JAK or cytokine recep-
tors, thereby suppressing further signaling.
SOCS-1 and SOCS-3 are strong inhibitors
of JAKs, with kinase inhibitory regions at
their N-terminus.25 Hypermethylation of
the SOCS-3 promoter and transcriptional
silencing was frequently detected in lung
and breast cancer and mesotheliomas.
Restoration of SOCS-3 expression in lung
cancer cells resulted in the downregulation
of activated STAT3, induction of apopto-
sis and growth suppression.26

(3) Bacterial proteins can affect STAT3
activation. Pasteurella multocida toxin
(PMT) is a highly mitogenic protein that
affects cellular signaling through its modu-
lation of heterotrimeric G proteins. It also
activates STAT signaling in a persistent
fashion. Enhanced STAT3 activity seems
to be promoted by the induction of the
serine/threonine kinase Pim-1, which in
turn phosphorylates SOCS-1. This modi-
fication disrupts the interaction with the
elongin BC complex, which normally
allows the SOCS proteins to shuttle
activating components of STAT signaling
to the proteasome.27 The negative regula-
tory function of SOCS-1 is subverted by
Pim-1 dependent phosphorylation and
results in the sustained activity of
STAT3.28

(4) A small family of proteins, most
descriptively named Pias (protein inhibi-
tors of activated STAT), directly interacts
with their targets, and Pias3 has shown
specificity for STAT3 recognition. This
interaction results in the inhibition of
STAT3 mediated gene activation most
likely by blocking the DNA binding
activity.29 The expression of Pias3 corre-
lates with STAT3 activation, and Pias3
controls the extent and the duration of
STAT3 activity in normal cells. In cancer
cells, the expression of the Pias3 protein
is post-transcriptionally suppressed and

promotes the oncogenic effects of activated
STAT3.6

(5) The lymphocyte adaptor protein
(LNK) is a negative regulator of thrombo-
poietin and erythropoietin mediated JAK2
activation. Deletion mutations in this gene
were observed in patients with myelopro-
liferative neoplasms (MPNs). These LNK
mutants caused augmented and sustained
thrombopoietin dependent signaling and
STAT3 activation due to the loss of LNK
negative feedback regulation.30

A Hyperactive STAT3 Variant
in T-Cell Large Granular

Lymphocytic Leukemia Cells

Advanced DNA sequencing technology
allows the comparison of the genomes of
normal cells and tumor cells and bioinfor-
matic analysis the determination and
interpretation of mutations consistently
associated with cellular transformation.31,32

The investigation of DNA derived from
77 patients with T-cell large granular
lymphocytic leukemia, a lymphoprolifera-
tive disorder characterized by the presence
of a large fraction of clonal CD3+CD8+

cytotoxic T lymphocytes (CTLs), revealed
that in 40% of the cases mutations in the
STAT3 gene could be detected.15 The
mutations were all clustered in exon 21
encoding the SH2 domain of STAT3 and
resulted in a more hydrophobic dimeriza-
tion domain. The most frequent mutation
found was Y640F in 17% of the cases,
followed by D661V in 9%, D661Y in 9%
and N647I 4%. The mutant STAT3
molecules were preferentially phosphory-
lated on tyrosine 705 and present in the
nucleus of the leukemic cells. The Y640F
and D661V variants were further analyzed
and exhibited enhanced transactivation
potential for known STAT3 target genes.
These observations assign a “gain of
function” phenotype to these molecules.
The mutation at position 661 is very
reminiscent of the STAT3 variant, which
was originally obtained in mutagenesis
experiments and defined STAT3 as an
oncogene.33

Why would the expansion of CD8+

T cells be affected by inappropriately
strong STAT3 signaling? Non-redundant
functions in the immune system and
development of lymphocytes have been

assigned to STAT signaling. They influ-
ence cell fate decisions of differentiating
naive T cells and regulate the intensity and
duration of inflammatory responses. T
helper cell differentiation, Th1, Th2,
Th17 and Treg, requires the functions of
STAT1, STAT3, STAT4, STAT5 and
STAT634,35 and STAT3 determines the
differentiation of naive T cells into the
regulatory (Treg) or inflammatory (Th17)
T cell lineages. Th17 cells produce IL-17,
act in the host defense against bacteria and
fungi and contribute to autoimmune
diseases. STAT3 also regulates cell growth,
apoptosis and the transcription of inflam-
matory genes and contributes to the
development of chronic inflammatory
diseases and malignant and neuro-
degenerative diseases.36 It promotes pro-
oncogenic inflammation and suppresses
anti-oncogenic Th1 immune responses.2

Targeted deletion of the STAT3 gene in
the CD4+ T cell compartment of mice
impaired the experimental induction of
autoimmune conditions, for example,
uveoretinitis or encephalomyelitis, most
likely because of a reduction in the
expression of activated a4/β1 integrins
on CD4+ T cells.37

Insights into the role of STAT3 signal-
ing in CD8+ T cells have recently be
gained from studies in mice and humans38

in which STAT3 signaling was negatively
impaired through genetic manipulation of
mice39 or a STAT3 gene mutation in
human patients.40 CD8+ T cells can be
distinguishes into short lived effector
CD8+ T cells important for immediate
pathogen control and memory CD8+ T
cells, which can self-renew, persist and
provide for long-term immunity. STAT3
activation, through the cytokines IL-10
and IL-21, seems to be directly involved in
the cell fate decision of activated T cells,
their differentiation into functional CD8+

memory T cells and the maintenance of
this cell pool. These conclusions were
derived from experiments in a mouse
model in which the STAT3 gene had
been conditionally deleted in activated
CD8+ T cells.39 They were corroborated
by observations in a cohort of patients
with autosomal dominant hyper IgE
syndrome (AD-HIES) in which a
dominant negative mutation in the
STAT3 gene has been detected.40 These

www.landesbioscience.com JAK-STAT 213



patients show a reduced number of central
memory CD4+ and CD8+ T cells when
compared with healthy controls and a
decreased ability to control bacterial and
viral infections.

Although the systems employed to
arrive at the conclusion that STAT3 is a
central signaling factor in the establish-
ment and maintenance of memory CD8+

T cells both rely on diminished STAT3
signaling, they complement the observa-
tions reported by Koskela et al.15

Enhanced and prolonged STAT3 signal-
ing, emanating from the mutated STAT3
variant, seems to mimic the functions of
IL-10 and IL-21 and result in the expan-
sion of a stable CD8+ memory T cell pool.
This may eventually lead to T cell large
granular lymphocytic leukemia, a clonal
disorder of large granular lymphocytes.
The observation that patients with activ-

ating STAT3 mutations frequently also
suffered from neutropenia and rheumatoid
disorders indicate that the expansion of
the CD8+ T cell population can trigger
adverse autoimmune reactions.

Conclusions

The summary of the molecular mechan-
isms responsible for the enhanced activa-
tion and the diminished deactivation of
STAT3, shown in Tables 1 and 2,
indicates that the fine tuning of the extent
and duration of STAT3 activation can
easily be derailed and that this deregula-
tion is associated with diverse pathological
states. The variants that have been
detected in the STAT3 gene in T-cell
large granular lymphocytic leukemia15 and
in inflammatory hepatocellular adeno-
mas14 gene have been designated as

“constitutively active” and the ones found
in the autosomal dominant hyper IgE
syndrome (AD-HIES) as “dominant nega-
tive.”40 This description is probably too
apodictic. The “constitutively active” vari-
ant is probably still partially regulated by
cytokine signaling and affected by the
deactivation mechanisms; similarly, the
“dominant negative” variant is probably
not entirely inactive and still has some
residual activity. They are deregulated in
extent and duration of signaling. Such
observations have also been made with
hyperactive and muted variants of
STAT541,42 and emphasize the quantitative
aspects of STAT regulation. The presence
of an inappropriately strong STAT3 signal
is sufficient to trigger the clonal expansion
of CD8+ T cells, the emergence of large
granular lymphocytic leukemia and the
occurrence of autoimmune disorders.

Table 1. Molecular alterations resulting in the enhanced activation of STAT3 signaling

Components and mechanisms Cells and phenotypes References

v-src, activated oncogenic version of the tyrosine kinase c-src Fibroblast transformation 8 and 9

JAK2 (V617F), activating mutation in the tyrosine kinase domain Myeloproliferative neoplasms 10, 11 and 12

gp 130, activating deletion of the ligand binding site in the IL-6 coreceptor Inflammatory hepatocellular adenoma 13

STAT3 (Y640F and D661V), activating mutations in the dimerization domain Hepatocellular adenoma, T cell large granular
lymphocytic leukemia

14 and 15

G-CSF receptor activation through increased JAK2 expression Hematopoietic cell transformation 16

Sphingosine 1 phosphate receptor overexpression, auxilliary in IL-6
dependent STAT3 activation

B16 mouse melanoma cells, human breast cancer 17

EGF receptor, mutation in the kinase domain, induces IL-6 secretion Human lung adenocarcinomas 20

Ras, oncogenic mutation induces IL-6 secretion Pancreatic cancer 19

IL-6, autoregulation, autocrine induction of IL-6 secretion Lung adenocarcinoma cells 22

Table 2. Molecular alterations resulting in the diminished deactivation of STAT3

Components and mechanisms Cells and phenotypes References

PTP, protein tyrosine phosphatases, transcriptional silencing,
deletion mutations

Glioblastoma multiforme, head and neck squamous
cell carcinoma, lung cancer

2

SOCS, suppressors of cytokine signaling, promoter methylation
and transcriptional silencing

Lung and breast cancer, mesotheliomas 26

SOCS-1, PMT-induced expression of Pim-1, inhibition of SOCS-mediated
E3 ubiquitin ligase activity

Rat-1 fibroblasts, enhanced cell proliferation 28 and 27

PIAS, protein inhibitors of activated STAT, post-transcriptional silencing Glioblastoma and breast cancer 6

LNK, lymphocyte adaptor protein, deletion mutations Myeloproliferative diseases 30
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