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Neuroinflammation constitutes a fundamental cellular process to signal the loss of brain
homeostasis. Glial cells play a central role in orchestrating these neuroinflammation
processes in both deleterious and beneficial ways. These cellular responses depend on
their intercellular interactions with neurons, astrocytes, the blood–brain barrier (BBB), and
infiltrated T cells in the central nervous system (CNS). However, this intercellular crosstalk
seems to be activated by specific stimuli for each different neurological scenario. This
review summarizes key studies linking neuroinflammation with certain neurodegenerative
diseases such as Alzheimer disease (AD), Parkinson disease (PD), and amyotrophic
lateral sclerosis (ALS) and for the development of better therapeutic strategies based
on immunomodulation.

Keywords: neurodegeneration, astrogliosis, microglia, proteinopathies, Alzheimer disease, Parkinson disease,
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IMMUNE RESPONSES IN NEUROLOGICAL DISORDERS

The degeneration of the central nervous system (CNS) is characterized by chronic progressive loss
of the structure and neuronal activity, resulting in functional and mental impairments (Campbell
et al., 1999). The incidence of neurodegeneration increases in mid to late adult life. As the
population ages, there is a clear need for further investigation in the causes of neurodegeneration.
So far, although causative agents of neurodegeneration have yet to be identified, the recent evidence
shows an accumulation of misfolded proteins self-aggregated at specific parts of the brain, which
are linked with significant inflammatory processes and increased oxidative stress (Figure 1). The
deregulation of protein clearance mechanisms both at the intracellular (neuronal autophagy) and
intercellular levels (interaction among neurons, astrocytes, microglia, and T cells) could be the cause
of the neural tissue degeneration.

As we can see, neurodegeneration involves a neuroinflammatory component where both
innate and adaptive immune responses play an important role. While the innate immune system
components represent the first line of defense against invading pathogens or damage-associated
molecules (DAMs), the adaptive immune system components constitute specialized leukocyte
populations such as B and T lymphocytes, which are capable of generating specialized antigen
receptors to interact with microbial pathogens.

Frontiers in Cellular Neuroscience | www.frontiersin.org 1 July 2020 | Volume 14 | Article 209

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/journals/cellular-neuroscience#editorial-board
https://www.frontiersin.org/journals/cellular-neuroscience#editorial-board
https://doi.org/10.3389/fncel.2020.00209
http://crossmark.crossref.org/dialog/?doi=10.3389/fncel.2020.00209&domain=pdf&date_stamp=2020-07-29
https://creativecommons.org/licenses/by/4.0/
mailto:anasevilla@ub.edu
https://doi.org/10.3389/fncel.2020.00209
https://www.frontiersin.org/articles/10.3389/fncel.2020.00209/full
http://loop.frontiersin.org/people/920739/overview
http://loop.frontiersin.org/people/1024639/overview
http://loop.frontiersin.org/people/919436/overview
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Bernaus et al. Glia Crosstalk in Neuroinflammatory Diseases

FIGURE 1 | Neurodegenerative diseases induced by proteinopathies. Specific gene mutations induce proteins to take abnormal structural foldings forming small
oligomeric or large fibrillary aggregates. These aggregates precipitate at the intraneuronal and extraneuronal space suffering posttranslational modifications that
impair its clearance inducing neuroinflammatory responses.

Several lines of evidence have shown that, in the presence
of DAMs or infection, one of the first line of defense of the
innate immune response is the activation of pattern recognition
receptors (PRRs) located mainly within the CNS, in the microglia
cells. These receptors are capable of recognizing patterns
expressed by both invading pathogens and virus [pathogen-
associate-molecular-patterns (PAMPs)] and damage-associated
molecular patterns (DAMPs). Among these PRRs we have,
the Toll-like receptors (TLRs) and C-type lectin receptors,
both located on the membrane surface and the inflammasome
components such as the RING-I–like receptors and nucleotide
oligomerization domain receptors or NOD-like receptors (NLRs)
located and activated inside the cytoplasm.

Engagement of these PRRs triggers downstream signaling
pathways that lead to the production of proinflammatory
cytokines. Some of these cytokines are produced in their
precursor form, which need to be matured by the multimolecular
intracellular signaling complex called the inflammasome
component, in order to become functionally active (Heneka
et al., 2018). Although there are several inflammasomes in
the CNS implicated in the progression of neurodegenerative
diseases such as NLRP1, NLRP2, NLRC4, and AIM2 (for review
see Heneka et al., 2018), we will only highlight the function of
the nucleotide-binding oligomerization domain, leucine-rich
repeat, and pyrin domain-containing 3 (NLRP3) as the key
innate immune sensor for danger signals, because it is the most
commonly studied inflammasome within the CNS.

Because both in vitro studies and animal models have
shown that many proteinopathies stimulate the innate as
well as the adaptive immune responses, much work has
been conducted to elucidate the role of microglia, astrocytes,
and T-cell activation in these disorders to develop better
therapeutic strategies focused on immunomodulation. In this
review, we will compile the latest evidences regarding the

accumulation of these misfolded proteins and the activation
of the immune response, which involves several intercellular
interactions, involving crosstalks of microglia with neurons,
astrocytes, the blood–brain barrier (BBB), and T cells, which
eventually infiltrate the CNS parenchyma.

MICROGLIA FUNCTIONS IN THE CNS

Microglia are the resident macrophages of the CNS, which
represent about 5% to 12% of total CNS cells in the healthy
brain and the spinal cord (SC). Microglia cells derived from
myeloid precursor’s cells from the yolk sac during embryogenesis
that colonize the developing brain during embryogenesis, where
they proliferate and persist throughout the individual’s lifetime
(Ginhoux et al., 2010). During this early stage, microglia presents
an active phagocytic capability pruning the excess of synapsis
formed, which is necessary for normal brain development
(Paolicelli et al., 2011).

Quite recently, microglia have been studied at the single-cell
level through scRNAseq and mass cytometry, showing a very
interesting phenotypical heterogeneity across different regions
of the mouse brain (Ko et al., 2013; Tasic et al., 2016). Both
techniques have confirmed the existence of higher numbers
of microglia cells in the cortical regions (72%) than in the
cerebellum and SC (19%) of mice. This distribution is also
conserved in both early embryonic and adult human brains
(Herculano-Houzel, 2012).

Besides the heterogeneity in the cell number at the different
brain areas, it is remarkable that these differences also involve
their capability to divide, size, density of receptors expressed,
and ramification patterns (Tan et al., 2020). Based on their
ramification patterns, microglia cells have been graded as
ramified (numerous thin processes distributed in a radial
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manner), primed (thickened processes with reduced secondary
branching and increased proliferation rate and polarity),
reactive (thickened processes and barely branching), or ameboid
(rounded soma with no branching; Tay et al., 2017).

Resting microglia presents a ramified morphology and
elongated motile cytoplasmic processes that are constantly
surveying the microenvironment and actively interact with
other neighboring cells, such as neuronal cell bodies, astrocytes,
and oligodendrocytes. Indeed, communication between neurons
and microglia is crucial for optimal regulation of behavior
and brain physiology (Figure 2). One of the ways of such
communication is driven by the fractalkine receptor (CX3CL1)
secreted from neurons and its microglial target (CX3CR1)
receptor (Paolicelli et al., 2014). The activation of this Gαi-
coupled seven transmembrane domain receptor modulates
several intracellular signaling pathways (PLC, PI3K, and ERK),
and the recruitment of transcription factors [nuclear factor κB
(NF-κB), cAMP response element-binding (CREB)] activating
specific gene expression programs (Sheridan andMurphy, 2013).
Fractalkine/CX3CR1 signaling pathway modulates microglial
activation in a broad spectrum. It participates in microglia
migration and dynamic surveillance of the brain parenchyma,
survival of developing neurons, their maturation, synapse
pruning, plasticity, and brain functional connectivity, having
a final impact in learning and memory capability (Paolicelli
et al., 2014). Disruption of this interaction, according to
several transgenic animal models of neuropathology, including
Alzheimer disease (AD), Parkinson disease (PD), amyotrophic
lateral sclerosis (ALS), and stroke, leads to increased production
of proinflammatory molecules. Concretely, interleukin 1β (IL-
1β) and reactive oxygen species (ROS) trigger a massive cell
death (Sheridan and Murphy, 2013). However, paradoxically in
two AD mouse models, CX3CR1 deficiency decreases microglia
activation and production of proinflammatory molecules such
as IL-1β, tumor necrosis factor-α (TNF-α), and monocyte
chemoattractant protein 1 (MCP-1 or CCL2), increasing its
phagocytic activity and helping the reduction of β-amyloid
protein accumulation (Lee et al., 2010). Thus, these studies
show that neuroprotective and neurotoxic functions of this
signaling pathway are dependent on the pathological context,
disease stage, and microglial activation stimuli from the
CNS microenvironment.

Another receptor studied in detail is the glycoprotein
CD200 widely found in cell membranes of neurons, astrocytes,
and oligodendrocytes (Koning et al., 2009). CD200 interacts with
microglial CD200R, to keep also microglial cells in its inactivated
or resting state (Hoek et al., 2000). In addition, another
inhibitory receptor/molecule complex is the integrin CD47,
which communicates a ‘‘do not eat me signal’’ to microglial
C172a by down-regulating phagocytosis in synaptic pruning
during the development and by increasing the synthesis of
transforming growth factor β (TGF-β) through the recruitment
of tyrosine-protein phosphatases SHP-1 and SHP-2 (Lehrman
et al., 2018). Therefore, the disruption of any of these inhibitory
interactions drives microglia activation.

Besides all these neuron–microglial communications
through receptor–ligand interactions, neurons can also

release immune-related soluble factors such as neurotrophins,
neuropeptides, neurotransmitters, anti-inflammatory cytokines,
and chemokines that bind to cognate receptors on microglia,
modulating cell functions and tissue homeostasis maintenance.
Notably, TGF-β, which is expressed in glial cells and neurons, has
been recognized as a key regulator for microglia differentiation,
promoting a more alike transcription profile and surface
structure of adult microglia (Butovsky et al., 2014). The binding
of TGF-β to its receptor induces the activation of a receptor
kinase, subsequent phosphorylation, and activation of SMAD
proteins. SMAD pathway, activated by TGF-β receptors, has
been considered as one of the main signal transduction pathways
responsible for its neuroprotective effects (Abutbul et al., 2012).
Another soluble factor released by neurons after injury is
CD22. This ligand binds CD45, a leukocyte common antigen,
constitutively expressed in microglia at moderate levels. The
binding of these two molecules leads to the negative regulation
of the Src/p44/42 MAPK cascade inhibiting microglia as well
(Tan et al., 2000).

Remarkably, in the presence of infectious agents, the
large family of microglia TLRs (TLR1–TLR9) specialized in
PAMPs including compounds derived from bacteria, virus, or
fungi are the ones that get activated (for review see Fiebich
et al., 2018). These receptors recognize molecules such as
lipopolysaccharides (LPSs), flagellin, or double-stranded RNA,
although they also have been shown to be activated in both
human and mouse brains within different neurodegenerative
diseases (Zolezzi et al., 2019). Importantly, except for TLR3,
which initiates signaling via the Toll/IL-1R domain-containing
adaptor-inducing interferon-β (IFN-β; TRIF) adapter, the rest
of the TLRs signaling pathways are dependent on myeloid
differentiation primary response 88 (MyD88)-associated protein.
Notably, TLR4 can activate signaling via both TRIF and MyD88.
The MyD88-dependent pathway triggers the recruitment of
tumor necrosis factor–receptor associated factor 6 (TRAF6) and
members of the IL-1R–associated kinases (IRAK) family. The
activation of TRAF6 permits the translocation of NF-κB into the
nucleus, activating a transcriptional program for the production
of different proinflammatory mediators such as cytokines,
inducible nitric oxide synthase (iNOS), and cyclooxygenase 2
(COX-2; Kawai and Akira, 2010). On the contrary, the MyD88-
independent pathway is more associated with the induction of
IFN-β-inducible genes (Yamamoto et al., 2003).

Toll-like receptors also participate actively in
the activation of both canonical and noncanonical
NLRP3 inflammasome. Different studies have shown that
canonical NLRP3 inflammasome activation requires a
transcriptional step first regulated by innate immune signaling,
mediated primarily by MyD88 and/or cytokine receptors,
such as the TNF receptor, which in turn activate pro–IL-1β
and NLRP3 transcription via NF-κB activation (Bauernfeind
et al., 2009). The second step results in NLRP3 inflammasome
oligomerization, leading to caspase-1 activation and, in turn,
IL-1β and IL-18 processing and release (Faustin et al., 2007).
Various stimuli associated with infection, β-amyloid fibers,
extracellular osmolarity, ATP, PH alterations, and degradation
of extracellular matrix components, increase in potassium
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FIGURE 2 | Neuron–microglia crosstalk. An amplification of neuron–microglia interactions is shown in green arrow signals. Homeostatic neurons actively produce
anti-inflammatory signals aimed at inhibiting the acquisition of the inflammatory M1-like phenotype by microglial cells. During neurodegenerative disorders or after
nervous system injury, cellular mediators associated with damage are activated (salmon arrows) triggering the M1 microglia state that releases reactive species of
oxygen and nitrogen (ROS and RNS), glutamate and TNF-α (gray arrows) Importantly, an oxidative environment favors further oxidation and self-aggregation of
proteins in damaged neurons, which promotes neuronal death that subsequently stimulates TLRs and the NLRP3 inflammasome in microglia enhancing the
production of IL-1β.

efflux, ROS, cathepsin activation, and deubiquitylation, can
promote NLRP3 inflammasome oligomerization and activation.
Additionally, caspase-1 activation promotes also, independently
from IL-1β maturation, pyroptosis, a key defense mechanism
against microbial infections, which blocks the replication of
intracellular pathogens by cytoplasmic swelling and promotes
phagocytosis of surviving bacteria (Aachoui et al., 2013).

Besides canonical NLRP3 inflammasome activation, a
noncanonical caspase-11–dependent NLRP3 activation has
been characterized (Kayagaki et al., 2011). In particular,
Gram-negative bacteria activate TLR4-MyD88 and TRIF
pathways triggering nuclear translocation of NF-κB, which in
turn promotes the transcription of IL-1β, IL-18, and NLRP3, as
well as caspase-11 gene. In particular, once activated, caspase-11
induces pyroptosis through cleavage of gasdermin, as well as
high mobility group box-1 (HMGB1) and IL-1α release, and
promotes IL-1β processing and release through activation of the
NLRP3–ASC–caspase-1 pathway.

These different NLRP3 activation processes occur
independently. However, caspase-11 enhances the canonical
caspase-1 processing and IL-1β/IL-18 production in the
presence of specific stimuli (e.g., cholerae toxin or Escherichia

coli, Kayagaki et al., 2011). In this setting, further research
needs to be done to clarify the molecular mechanisms
underlying the interplay between caspase-1 and caspase-11
in promoting the canonical and/or noncanonical NLRP3
inflammasome activation.

In summary, microglia activation seems to be a highly
regulated biological process; however, themolecularmechanisms
underlying their activation are not yet fully understood. Having a
very simplistic view of the process, we can summarize that after a
CNS injury or infection, there is an initial inflammatory response
mediated by M1-like microglia. This early activation plays a dual
beneficial role for the brain involvingmicrobicide activity against
most of the pathogens and phagocytic activity for the clearance of
cellular debris necessary for later repair of lesions. After this early
activation, M1-like microglia can be transformed into M2-like
microglia, a beneficial state that contributes to the attenuation of
the inflammation stage previously induced by M1-like microglia,
and, simultaneously, produce neurotrophic factors to repair the
affected tissue (Shechter et al., 2013). Or on the other hand,
M1-like microglia can go into an uncontrolled activation for long
periods of time, which triggers chronic inflammation releasing
neurotoxic factors, such as TNF-α, IL-6, IL-1β, IL1-α, nitric oxide
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(NO), hydrogen peroxide, superoxide anion, chemokines such as
RANTES and MCP-1, proteolytic enzymes, and glutamate, thus
ending in neuronal loss over time (Kettenmann et al., 2011).

Because of the diverse morphology of microglia and
the cytokines released, more microglia categories have been
identified than the simple M1 (proinflammatory) and M2 (anti-
inflammatory), especially in a number of disease states that we
will describe below (Deczkowska et al., 2018).

ASTROGLIA FUNCTIONS IN THE CNS

Astrocytes are not easily defined because of the notable
heterogeneity exhibited on both their morphology and function.
They constitute the principal cell type of the CNS, and the term
encompasses all those cells that do not belong to the other
classified cell types: neurons, microglia, and oligodendrocytes.
This diverse morphology allows astrocytes to carry out a wide
range of functions, which increase as more research is done
in the field. They serve as metabolic support for neurons,
establish synapses and modulate the ones that have already
been established, and are the principal modulator of the brain’s
homeostasis (Morita et al., 2019). Concurrently, astrocytes are
able to repair injuries in the brain, respond to insults, and
build a continuous crosstalk with microglia, thus playing an
important role in the brain’s immune system. Finally, astrocytes
are also components of the BBB, which determine the circulating
molecules that will reach the CNS (Kery et al., 2020).

The most classical morphological division was the one
proposed by Ramón y Cajal in 1909. He divided them into
protoplasmic (highly ramified) and fibrous astrocytes (with
longer prolongations). As more studies are being developed,
multiple evidences are pointing out that the morphology of
astrocytes varies along with their age state, brain layer location,
and brain region as we have previously described for the
microglia (Garwood et al., 2017).

The first function attributed to astrocytes was their metabolic
support of neurons (Figure 3). Astrocytes constitute the only
energy reservoir neurons can resort to, as, by themselves,
they cannot store glycogen (Pfeiffer-Guglielmi et al., 2003). In
this way, in the event of exceptional high neuronal function,
astrocytes release noradrenaline and, via β-adrenergic receptors,
activate glycogenolysis as short-term energy buffer mechanism
for the stimulated neurons (Dienel and Cruz, 2016).

Astrocytes are responsible for maintaining the homeostasis in
the whole brain environment, in every aspect: ion concentration,
pH, and neurotransmitter concentrations in synaptic interstitial
fluid, ensuring the correct environment is key for maintaining
neural function and synapses. This is done through diverse
membrane transporters such as aquaporin 4, different proton
pumps, bicarbonate transporters, and monocarboxylic acid
transporter. Furthermore, they express transporters of
neurotransmitters such as glutamate, γ-aminobutyric acid
(GABA), and glycine (Sofroniew and Vinters, 2010). Currently,
multiple evidences have been gathered on the direct role of
astrocytes in synaptic transmission. This fact has been baptized
as tripartite synapse, which comprises not only both neurons
presynaptic and postsynaptic membranes, but also the astrocytes’

contribution (Perea et al., 2009). Because the neurotransmitters
discharged from the presynaptic membrane, such as glutamate,
acetylcholine, noradrenaline, and histamine, are close enough
to the astrocyte surface, they easily interact with their receptors.
This triggers the initiation of signaling pathways that would
vary, depending on the signal emitted by the presynaptic axon,
but often leads to calcium waves by G protein–coupled receptor
activation, which can potentially be transmitted to neighboring
astrocytes through their gap junctions (Kofuji and Araque,
2020). The calcium concentration increase is usually translated
into the release of gliotransmitters and neuroactive molecules
that ensure basic synaptic activity and modulate the existing
neural synapses.

Thus, astroglia contributes to synaptic processes in a direct
and indirect manner uptaking and releasing neurotransmitters,
being highly remarkable their role in glutamate uptake and
release. Astrocytes present glutamate receptors and excitatory
amino acid transporters (EAATs) to sense the neural state,
and according to it, they can modify their metabolic pathways
for suiting the needs of neurons at every moment (Lee and
Pow, 2010). In addition, they are also key in the process
of new synapse formation and proper synaptic transmission,
because these cells also conduct elimination of aberrant or
superfluous synapses by either direct phagocytosis or via the
production of TGF-β (Diniz et al., 2017). Moreover, astrocytes
promote oligodendrocyte progenitor cell differentiation and
enhance myelination through the production of leukemia
inhibitory factor-like protein, neuregulin, gamma secretase,
ciliary neurotrophic factor, and neurotrophin-3, among others.
They promote the process on each stage from oligodendrocyte
progenitor cells to their differentiation and myelinization
(Ishibashi et al., 2006).

MICROGLIA AND ASTROCYTE
CROSSTALK IN NEUROINFLAMMATION

The relationship betweenmicroglia and astrocytes is still unclear.
However, as neuroinflammation takes a more important role in
the study of a wide range of brain pathologies and affectations, it
is becoming clearer that both cell types engage in a constant fine
and intimate crosstalk. This crosstalk is key in resting, activated,
and aged state, but it is only beginning to be understood (Liu
et al., 2012; von Bernhardi et al., 2015; Kery et al., 2020).

Microglia are the cells of the brain’s innate immune
system. They are the first cells that dynamically respond to
proinflammatory stimuli and, when the situation is resolved,
counteract for inflammation, driving astrocytes to a beneficial
profile by the secretion of IL-10. This cytokine triggers astrocyte’s
TGF-β production, which is a neuroprotective molecule
and restrains inflammation, reinforcing the noninflammatory
microglia M2 phenotype. Indeed, TGF-β protects synapses in
AD from the deleterious effect of β-amyloid deposition in
murine cultures (Diniz et al., 2017). However, if the situation
is not successfully resolved or under chronic inflammation,
microglia cells increase in number switching to the reactive
phenotype, known as microgliosis, and deliver complement
component 1q protein (C1q), TNF-α, and IL-1β into the brain
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FIGURE 3 | Neuron–astrocyte crosstalk. These neuron–astrocyte interactions are focused on providing neuronal metabolic support, maintenance of the
homeostasis through synaptic cleaning, and synaptic modulation.

environment. These molecules are sensed by astrocytes as
potent inflammation inducers and react, producing astrogliosis.
This abnormal increase in the number of astrocytes cause
secretion of even more proinflammatory stimuli and therefore
initiates the reactive loop. Remarkably, for most patients with
neurodegenerative disease, reactive astrocytes are ubiquitous in
the CNS tissues (Li et al., 2019).

One of the most proinflammatory and perhaps pernicious
cytokine produced by both microglia and astrocytes is the
TNF-α. Among the various effects, it negatively affects
oligodendrocytes and produces demyelization. For example, in
mixed glial cultures, when exposed to LPS, microglia releases
important amounts of TNF-α, which lead to systemic activation
of the immune response. TNF-α not only affects the immune
response and cytokine production, but also boosts α-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA
receptor) production while reducing that of GABA receptors,
thus enhancing the activator synapsis and causing an extreme
neural activity (Stellwagen et al., 2005).

Prostaglandin D2 (PGD2) is an important inflammatory
mediator produced by reactive microglia, through their contact
with the receptors DP1 and DP2 receptors expressed in astrocyte
membranes. When the receptors sense PGD2, they swap to
a proinflammatory phenotype, glial fibrillary acidic protein
(GFPA) production is increased, blood flow is locally increased,
antigen presentation is enhanced through the expression of the
intercellular adhesion molecule 1 in astrocytes, and chemotactic
factors are finally released (Mohri et al., 2006).

Moreover, NO production by microglia yields to an increase
of glycolytic enzymes on astrocytes, leading to ROS production
and hypoxia inducible factor 1α release (Iizumi et al., 2016).
When ROS is produced by astrocytes forming the BBB,
vasodilatation is triggered, favoring the recruitment of
monocytes (Prajeeth et al., 2017). Furthermore, in response
to NO astrocyte production, microglia enhance their IL-1β
production, which is received as a proinflammatory cytokine
by astrocytes, which will further increase NO production
(Sudo et al., 2015). As a result of all the interactions, both
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cell types acquire a dangerous extreme inflammatory state,
known as astrogliosis and microgliosis, characterized by the
up-regulation of proinflammatory molecules IL-1β, IL-6,
TNF-α, and reactive species NO and ROS, creating an unsuited
environment for neurons leading to synapse loss and neuron
death (Sedel et al., 2004). This environment of inflammatory
cytokines such as TNF-α and IL-1β has also a direct effect
on the BBB endothelial cells up-regulating the expression of
several cell surface molecules specific for T-cell infiltration.
The down-regulation of the tight junctions on the endothelial
cells of the BBB allows the entrance of the components of the
adaptive immune response. T cells infiltrate in the parenchyma
of the CNS through different mechanisms. For instance, the
expression of vascular cell adhesion molecule 1 on endothelial
cells of the BBB favors the entrance of activated lymphocytes
into the inflamed CNS by direct interaction with surface α4-
integrins (Vajkoczy et al., 2001).The surface-activated leukocyte
cell adhesion molecule induced on endothelial cells during
the inflammation of the BBB binds to CD6 expressed on
T cells, allowing their entrance into the brain parenchyma
(Cayrol et al., 2008). Besides the expression of specific receptors
for T cells, endothelial cells also secrete chemokines such as
CXCL9, CXCL10, CXCL11 (Kivisakk et al., 2002), CCL19,
CCL21, and MCP-1 (Engelhardt, 2006), which constitute
important chemoattractants for the successful recruitment
of CD4+ T cells through the BBB during neurodegenerative
diseases. The restimulation of autoreactive CD4+ T cells with
inflammatory phenotypes in the CNS parenchyma would
result in a strong production of inflammatory cytokines,
which act directly or indirectly in microglia and infiltrated
macrophages, exacerbating their M1-like inflammatory
properties. Therefore, the infiltration of inflammatory T
cells in the CNS parenchyma after an initial microglia-mediated
neuroinflammation results in a positive feedback, spreading,
and perpetuating neuroinflammatory processes involved in
neurodegenerative diseases.

NEUROINFLAMMATION IN ALZHEIMER’S
DISEASE

AD is responsible for most cases of dementia and affects a great
part of the older population. Unfortunately, even though it is
on continuous search, neither a cure nor an efficient diagnosis
method for its early stages has been found. For these reasons, new
approaches are arising with the objective of finding new ways to
ameliorate or prevent AD.

AD is a chronic neurodegenerative condition characterized by
the deposition of aberrant protein β-amyloid, the formation of
neurofibrillary tangles produced after the hyperphosphorylation
of tau. The symptoms are progressive memory decline, altered
behavior, and loss of social–emotional function. The β-amyloid
plaque is produced because of the sequential cleavage of the
amyloid precursor protein (APP), first by the γ-secretase and
then by the β-site APP cleaving enzyme 1 (BACE-1; Hampel
et al., 2020; Figure 4).The β-amyloid aggregates, in particular
their oligomeric or fibrillar forms, act as DAMPs activating the
NLRP3 inflammasome in microglia, among other effects (Halle

et al., 2008), as well as in astrocytes (Couturier et al., 2016),
enhancing the release of mature IL-1 β. This fact has been
evidenced in brains of AD patients with a substantial increase in
the expression of NLRP3 canonical signaling pathway through
caspase-1 activation (Saresella et al., 2016).

As more data are being compiled about the aged microglia
activity, it is not surprising that neuroinflammation plays an
important role in this neurodegenerative disease (Hampel et al.,
2020). In fact, under systemic inflammation conditions, the
NLRP3 inflammasome signaling pathway has been shown to be
a key mediator of detrimental microglial effects during aging
(Tejera et al., 2019). Indeed, age itself favors inflammation
in the brain, without the need of previous infections or
immune insults. Along with age, GFPA expression levels in
astrocytes also increase. The increase of GFPA induces the
acquisition of a phenotype that could resemblance that of
reactive astrocytes (Rozovsky et al., 1998). This fact is also
supported by transcriptomic data that show that age drives
changes of the whole gene expression profile of astroglia toward
a proinflammatory and senesce phenotype (Clarke et al., 2018).
Moreover, astrocytes that come from the brains of elder mice
exhibit a lower capacity of response and produce lower levels of
the cytokine IL-10, which exhibits a putative anti-inflammatory
neuroprotective effect, favoring its chronic and continuous
activation (Norden et al., 2016).

Astrocytes switch from atrophic phenotype in the early
stages of the disease to a hypertrophic one in the later
stages. This change could be triggered by the accumulation
of amyloid plaques. In fact, the deposition of β-amyloid by
itself could explain astrogliosis (Serrano-Pozo et al., 2011).
Notably, microglia cells exert a putative beneficial function at
the beginning, favoring the phagocytosis of the β-amyloid plates.
Clearance can be performed through receptors such as CD36,
the low-density lipoprotein receptor-related protein (LRP1), and
triggering receptor expressed onmyeloid cells 2 (TREM2), which
needs the participation of apolipoprotein E provided by the
astrocytes. However, when the clearance is not sufficient, the
proinflammatory profile chronifies, and then both microglia
and astrocyte acquire a new deleterious profile (for review see
Ries and Sastre, 2016). This aberrant inflammatory phenotype is
mainly characterized by the production of superoxide ions, TNF-
α, and IL-1β, which act as both autocrine and paracrine stimuli
on the other glial cell types. TNF-α favors tau phosphorylation
while also triggering the NF-κB pathway (Lattke et al., 2017),
thus leading to the production of iNOS; S100B, which leads
to tauopathy; and BACE-1 production (Chen et al., 2012). The
cytokines produced, which are IL-6, TNF-α, and IL-18, have
detrimental effects on neural progenitors causing their death
and accelerating the neurodegeneration already caused by the
fibrous depositions. The general chronic swollen state gives rise
to metabolic alterations and increases the secretion of NOS and
ROS species involved in axonal and synaptic damage, β-amyloid
nitration, neuronal apoptosis, and final cognitive impairment
(Bronzuoli et al., 2016).

In the same way, astrocytes entering in an autostimulative
circle disrupt the tripartite synapses and the correct maintenance
of the synaptic environment, decreasing the blood flow.

Frontiers in Cellular Neuroscience | www.frontiersin.org 7 July 2020 | Volume 14 | Article 209

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Bernaus et al. Glia Crosstalk in Neuroinflammatory Diseases

FIGURE 4 | Inflammatory response in Alzheimer disease (AD). Amyloid precursor protein (APP) is cleaved producing amyloid-β peptide that aggregates. These
aggregates activate microglia cells through TLRs and RAGE changing the transcriptional program of the microglia cells activating the expression of transcription
factors like AP-1 and NF-κB, which in turn trigger the production of reactive oxygen species (ROS) and inflammatory cytokines. These cytokines amplify the
proinflammatory state by the stimulation of the astrocytes that together act directly on the neuronal population (cholinergic, glutamatergic, and GABAergic neurons)
inducing neuronal cell death. Apoptosis of neurons results in release of ATP, which further activates microglia through purinergic P2X7 receptor, entering in an
autostimulatory loop inducing T-cell infiltration.

This alteration of the neuronal vascular unit could heavily
affect neurons’ oxygen supply (Kisler et al., 2017). Damaged
and dying neurons release a multitude of signals, including
cytokines, miRNAs, and apoptotic bodies that remain, capable
by themselves of triggering the astrocytic and microglia immune
response in a vicious circle. Moreover, the deposition and
accumulation of β-amyloid and fibrinogen plaques do also favor
the astrocytic activation, synapse loss, and memory alteration as
well (Bronzuoli et al., 2016).

Additionally, a number of postmortem studies have
confirmed the presence of T cells in the brains of AD patients.
Recently, it has been demonstrated the presence of CD3+

extravascular T cells, which correlate with tau pathology in the
brains of AD patients, but not with the number of β-amyloid
plaques (Merlini et al., 2018). Interestingly, polymorphisms
in genes associated with antigen presentation to T cells
were identified as susceptibility loci for AD (Lambert et al.,
2013), lending further support to the potential relevance of
T cells in AD.

Studies in the murine model AD susceptible mice, known as
5XFAD mice that express human APP and presenilin (PSEN1)
transgenes with a total of five AD-linked mutations, have shown
accelerated accumulation of β-amyloid plaques and exacerbated
neuroinflammation even though their adaptive immune system
is genetically ablated (Rag2−/−/Il2rγ−/−-5XFAD mice). Thus,
the findings suggest a protective role for adaptive immunity in
the diseased brain. Microglial cells present increased cytokine
production and reduced phagocytic capacity in these mice.
Moreover, wild-type bone marrow transplantation into these
immunodeficient mice resulted in a 47% reduction in β-amyloid
plaque volume (Marsh et al., 2016). On the contrary, another
study using APP/PS1 mice that express human transgenes
for mutations in APP and PSEN1, crossed with lymphocyte-
deficient Rag2−/− mice, showed 25% to 30% less β-amyloid
plaque pathology than the APP/PS1 mice at 8 months of age
(Spani et al., 2015).

Because the role of adaptive immunity on AD pathogenesis
remains ambiguous, depending on themousemodel used and the
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progression stage of the pathology, alternative anti-inflammatory
approaches are being tested as treatment for AD. Peroxisome
proliferator-activated receptor gamma (PPAR-γ) agonists have
been demonstrated to ameliorate the inflammatory state,
decreasing NO levels in brain murine primary cultures, as
well as proinflammatory cytokine production (Dentesano et al.,
2014). At preclinical and clinical levels, the study of cannabinoid
receptors and inflammation has shown a negative correlation,
leading to the proposal of cannabinoid receptor’s agonists as
treatment in AD (Aso et al., 2013).

A more direct approach to inflammation is being studied, and
inhibitors of proinflammatory molecules are being tested. For
instance, one approach is the inhibition of NLRP3 inflammasome
by fenamate, a class of nonsteroidal anti-inflammatory drugs
that by attenuating microglia activation reduces the cognitive
deficits in two rodent models of AD in vivo (Daniels et al., 2016).
Moreover, antibodies blocking the proinflammatory cytokines
IL-1β (Kitazawa et al., 2011) and TNF-α (Shi et al., 2011)
have shown to decrease the tau kinase activity and lessen
the deposition of fibrous aggregates, whereas the inhibition of
COX-2 and iNOS has shown to ameliorate the disease in both
in vivo and in vitro studies (Scuderi and Steardo, 2013; Scuderi
et al., 2014; Gan et al., 2015).

A more indirect onset would be, instead of blocking the
immune response, to reprogram it into a beneficial outcome.
Following this line of thought, active immunization through
the administration of glatiramer acetate or Copaxone, has
demonstrated a neuroprotective action in animal models of
Alzheimer (Butovsky et al., 2006). Glatiramer acetate decreases
the proinflammatory cytokines production through microglia
and—lymphocyte interaction promoting microglia phagocytic
activity, as well as IL-10 production and secretion (Pul et al.,
2012). Another promising immunomodulator is fingolimod
or Glienya. When administrated to microglia cells in vitro,
it reduces TNF-α, IL-6, and IL-1β culture production (Noda
et al., 2013). Ethyl pyruvate acts by lowering the levels
of microglia-produced HMGB1, a chromosomal protein of
nonhistonic nature, which has been also linked with senile
plaques (Shin et al., 2015).

Lastly, a target that is now gaining a lot of attention is glycogen
synthase kinase-3β (GSK3β), which is implicated in microglial
migration and inflammation-induced neurotoxicity through
astrocytes. These GSK3β inhibitors such as NP12 or tideglusib
reduced efficiently β-amyloid deposition and tau pathology on
AD mouse models (Onishi et al., 2011). Unfortunately, they
have shown no neuroprotection on clinical trials, but many
other small blockers of GSK3β are being developed and tested
(Lovestone et al., 2015).

NEUROINFLAMMATION IN PARKINSON’S
DISEASE

PD is the second most common neurodegenerative disease
after AD and is the most common movement disorder.
Prominent clinical features are motor symptoms (bradykinesia,
tremor, rigidity, and postural instability) besides other non-
motor-related symptoms such as olfactory deficits, autonomic

dysfunction, depression, cognitive deficits, and sleep disorders.
Currently, about 2% of the population older than 60 years is
affected. From all the PD diagnosed cases, 15% of people with
PD have a family history. Familial cases of PD have been linked
to mutations in the LRRK2, PARK7, PINK1, PRKN, or SNCA
gene, among others.

Like AD, PD is another proteinopathy. It is characterized
by the accumulation and aggregation of misfolded α-synuclein.
This protein acts as an intracellular component localized at
the presynaptic terminal (Lashuel et al., 2013). α-Synuclein is
one of the most prevalent pathological genes altered in familial
PD. Generally, the mutated forms of α-synuclein are nitrated
or oxidized and aggregated forming the Lewy body structures,
which constitute the neuropathological hallmarks used for its
diagnostic. This accumulation of misfolded protein α-synuclein
in the Lewy bodies is the cause of the final loss of dopaminergic
neurons (DA) mainly in the substantia nigra of the midbrain
but also in other brain regions (Braak et al., 2003). Postmortem
tissue from brains of PD patients have also revealed an increased
number of astroglia cells and in particular dystrophic astrocytes
(Braak et al., 2007). In this regard, various PD toxin-base mouse
models, such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP), 6-hydroxydopamine, and rotenone, as well as mutant
α-syn transgenic models of PD (M7KO, M83KO and SYNKO),
have also demonstrated microgliosis with elevated levels of
inflammatory cytokines IL-1β, IL-2, IL-4, IL-6, IFN-γ, and
TNF-α, high levels of enzymes related to inflammation such as
COX-1, COX-2, and iNOS, and reduced levels of neurotrophins,
such as nerve growth factor and brain-derived neurotrophic
factor (BDNF; Liu et al., 2019).

These early evidences have helped to study in depth
this phenomenon and demonstrate that PD has a clear
neuroinflammatory componentmainly triggered by the neuronal
signals and the release of the α-synuclein aggregates after
DA neuronal cell death. Several studies have shown that
the release of α-synuclein aggregates induce activation of
microglia cells toward M1 phenotype by directly engaging the
TLR1/2 heterodimer via the MyD88-dependent pathway, which
conducts the downstream activation ofMAPKs and translocation
of NF-κB, p38, and JNK into the nucleus. The translocation of
NF-κB into the nucleus results in production and release of
proinflammatory cytokines such as TNF-α, IL-1β, and IL-6.
These cytokines activate COX-2, iNOS, and NADPH oxidase,
leading to the production of NO, ROS, and reactive nitrogen
species (RNS; Gao et al., 2008) and inducing reactive astrocytes
(Liddelow et al., 2017; Figure 5). Likewise, TLR4 has also
been shown to mediate α-syn-dependent activation of microglia,
inducing the production of ROS and proinflammatory cytokines,
as well as the phagocytic activity (Hughes et al., 2019). Moreover,
systemic activation of NLRP3 inflammasome inducing IL-1β
production has also been observed by the release of α-synuclein
fromDA neuronal cell death. Notably, these two observations are
highly correlated with motor severity and disease progression in
PD patients (Fan et al., 2020). With respect to the noncanonical
NLRP3 inflammasome, Furuya et al. (2004) analyzed the immune
response in MPTP-injected caspase-11−/− mice and showed a
lower microglial activation of IL-1β and NOS in the substantia
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nigra compared to wild-type mice. Thus, dopaminergic neuronal
cell death in the substantia nigra may be mediated in part by
the activation of caspase-11 inflammatory signaling cascades
(Furuya et al., 2004).

In view of the multiple pathways involved in PD
neuroinflammation, a plethora of mechanisms have been studied
to either modulate the inflammatory response of microglia
or enhance the M2 phenotype, reviewed in Liu et al. (2019).
Considering that microglia-derived oxidative stress is believed
to bridge α-syn pathogenic alteration and neuroinflammation,
many therapeutic approaches have been focused on blocking
these receptors. Among them, it is noteworthy to mention
the inhibitors of TLRs such as candesartan, cilexetil, and
rifampicin; inhibitors of the JAK/STAT signaling pathway
or NF-κβ such as α-asarone; inhibitors of the NADPH
oxidase such as tanshinone and apocynin to suppress the
production of ROS among others, and MCC950, a small-
molecule inhibitor of NLRP3 inflammasome that prevents
dopaminergic degeneration. Additionally, minocycline, a
tetracycline antibiotic that selectively inhibits M1 polarization,
has prevented neurodegeneration not only in MPTP mouse
models but also has alleviated the clinical signs of early PD in a
randomized, double-blind clinical trial (Investigators, 2006).

Another strategy for an efficient therapy could be the use
of enhancers to restore the M2 microglia phenotype. In this
line, the effects of synthetic analogs of cyclic AMP, vitamin D,
PPAR-γ agonists, and iron chelators have been tested (Liu et al.,
2019). So far, although these are promising candidates for future
clinical trials in PD, their mechanisms are not fully understood
and require further investigation.

On the other hand, the participation of the adaptive immune
response has also been described in PD. T-cell activation
and infiltration of the substantia nigra and striatum have
been observed in MPTP models (Chandra et al., 2017).This
result is also supported by recent studies carried out with
T-cell receptor (TCR) β chain–deficient mice, SCID mice, and
recombination-activating-gen-1 (RAG1) knockout (Rag1−/−)
mice, which demonstrated that T-cell deficiency results in
a strong attenuation of dopaminergic neurodegeneration in
MPTP-induced PD (Brochard et al., 2009). In particular, CD4+ T
cells infiltrating the substantia nigra during MPTP-induced PD
produced high levels of IFN-γ and TNF-α. These two cytokines
act synergistically in microglia promoting the inflammatory
M1-like phenotype (Barcia et al., 2011).

Recently, genome-wide association studies meta-analysis on
data from 12,000 PD patients and 21,000 controls have revealed
changes in DNA methylation and expression levels on several
gene variants, including PARK16/1q32, GPNMB, and STX1B
[International Parkinson’s Disease Genomics Consortium
(IPDGC) (2011)]. These findings have opened the possibility
that the onset or progression of PD could be associated with
epigenetic variations such as DNA methylation or histone
modifications. The initial hypothesis suggested that reduction
of methylation levels of PD-related genes, such as SNCA
(α-synuclein), could help with an increase in their expression
levels, leading to the abnormal accumulation of α-synuclein
and the degeneration of DA (Feng et al., 2015). However,

although the regulation of the SNCA promoter by DNA
methylation has been thoroughly investigated, many findings
are inconclusive and sometimes contradictory (Guhathakurta
et al., 2017). On the other hand, data proving that microglia can
be activated to the M1 phenotype simply by reduction of the
H3K27me3 demethylase Jmjd3 and the fact that Jmjd3 seems
to be essential for M2 microglia polarization suggest that this
demethylase indeed has a pivotal role in the switch of microglia
phenotypes that may contribute to the immune pathogenesis of
PD (Tang et al., 2014).

Based on these data, epigenetic-based therapies are arising.
The most promising of these therapies is the approach of using
histone deacetylase inhibitors (HDAC inhibitors). This approach
is based on the hypothesis that accumulations of α-synuclein
may ‘‘mask’’ acetylation sites on histones proteins, thus causing
deregulation in the dynamic control of gene transcription. One
possible gene candidate to target is Sirt1, a class III HDAC
that acts via broad deacetylation at various histone residues
at loci including transcription factors, epigenetic enzymes, and
NF-κB gene, responsible for up-regulating gene products that
control cell survival (Singh et al., 2017).This observation has
opened a new approach for testing if neurodegeneration could be
attenuated by HDAC inhibitors. Among the HDAC inhibitors,
valproate (VPA) was considered to be the most promising drug
for the treatment of PD, because VPA not only increases histone
acetylation and reduces the expression of inflammatory factors,
but also induces expression of BDNF and glial cell-derived
neurotrophic factor (GDNF) for neuroprotection (Harrison
and Dexter, 2013). However, even though it was a promising
candidate, clinical trials with VPA did not alter PD features in PD
patients (Nutt et al., 1979). Conversely, a recent nonrandomized
phase I clinical trial with phenylbutyrate has successfully
shown removal of α-syn from the brain into the bloodstream
(ClinicalTrials.gov identifier: NCT02046434). Mechanistically,
this promising HDAC inhibitor can up-regulate the protein
deglycase (DJ-1). DJ-1 acts as a versatile prosurvival factor in DA
activating different protective mechanisms such as regulation of
mitochondria, antioxidative stress response, and up-regulating
total intracellular glutathione in response to a diverse range of
PD related insults (Repici and Giorgini, 2019).

NEUROINFLAMMATION IN
AMYOTROPHIC LATERAL SCLEROSIS

Amyotrophic Lateral Sclerosis (ALS) is a fatal adult paralytic
disorder caused by the death of upper and/or low motor neurons
(MNs) in the motor cortex, SC, and brain. The symptoms may
vary from one patient to another, but generally they present
disable weakness, spasticity, and loss of control of the voluntary
muscles (Valori et al., 2014). Even though it is the most common
adult-onset MN disease, with an incidence of 1–3 cases in
100,000 people worldwide (Valori et al., 2014), no effective
treatment has been yet elucidated. ALS patients live with the
terrible prognosis of 2–5 years of life expectancy, which is only
extended by a few months under the treatment of rizulone, the
only approved drug until recently for the disease. Nowadays, a
second drug has been authorized, edaravone, and its combined
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FIGURE 5 | Inflammation in Parkinson disease (PD). The hallmark of this disease is characterized by the presence of intracellular inclusions of α-synuclein
aggregates in Lewy bodies. When they are released from neurons, they activate microglia cells through a TLR-independent mechanism. This leads to the activation
of NF-κB and production of ROS and proinflammatory cytokines that simultaneously activate the astrocytes and in a combinatorial manner promote neurotoxicity.

administration have entailed a mild improvement, but the result
is yet far from satisfactory (Scott, 2017).

The vast majority of ALS cases, approximately the 90%, are
sporadic, vs. the 10% of them that are familiar cases (Pasinelli
and Brown, 2006). The most common mutation affects the
SOD-1 gene, which was the first targeted gene in ALS. More
recently, TDP-43 and OPTN have also been considered (Liu
et al., 2018; Lutz, 2018). Mechanistically, the OPTN mutation
identified in various ALS patients promotes inflammation via
NF-κB as already shown in the SOD-1 mouse models as well
(Frakes et al., 2014). This NF-κB activation, although observed in
astrocytes, is much more pronounced in microglia, which leads
to the secretion of IL-1β, IL-6, and TNF-α in both in vitro cultures
and in mouse models, giving rise to elevate nerve cell death (Liu
et al., 2018). Moreover, TDP-43 mutations seem to be able to
instigate the canonical via of NLRP3 inflammasome activation in
microglia enhancing the production of IL-1β and IL-18, through
caspase-1 activation. All these effects result in an enhancement of
the proinflammatory signaling that is detrimental to MNs (Zhao
et al., 2015). Alternatively, Kang et al. (2003) investigated the
role of knocking down the noncanonical NLPR3 inflammasome
pathway generating the caspase-11−/− SOD G93A transgenic
mice. Although mice exhibited lower caspase-1 and caspase-3,

as well as lower levels of IL-1β, the inhibition of caspase-11 was
not sufficient to prevent the disease onset and progression (Kang
et al., 2003).

Microgliosis has revealed to be a typical hallmark on ALS
disease in both ALS patients and animal models. Increased
expression of inflammatory markers such as CD45, CD11b,
IBA-1, and CD68 have been observed in most affected brain
areas. Positron emission tomography imaging studies of ALS
patients further confirm this microglial activation (Zürcher et al.,
2015). Additionally, TREM 2 is also overexpressed and correlates
negatively with patient’s prognosis, being a potential biomarker
for the disease (Cady et al., 2014). Activated microglia can
induce oxidative stress via ROS and NO and proinflammatory
cytokines such as TNF-α, IL-6, and IL-1β, which induce MN cell
death (Garbuzova-Davis et al., 2018). These cytokines activate
astrocytes, which also affect ALS onset and development by
two different approaches. On the one hand, astrocytes secrete
toxic and proinflammatory molecules capable of causing MN
death by itself; and on the other, the disregard of their functions
as neuronal supporters also compromises MN survival (Valori
et al., 2014). In this line, several observations validate the
hypothesis of astrogliosis effecting ALS. Up-regulation of GFPA,
SOD-1 protein aggregation in astrocytic soma, and increase
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FIGURE 6 | Inflammation in amyotrophic lateral sclerosis (ALS). Toxic aggregates of SOD1, TDP-43, or FUS can induce inflammatory responses and activate
microglia via TLR2 and CD14. This leads to the expression of the transcription factor NF-κB and AP1, which trigger the production of proinflammatory cytokines and
apoptosis inducers such as TNF-α and FASL. Dying motor neurons (MNs) release ATP, which further activates the purinergic receptor P2X7 expressed in microglia.

of COX-2 and iNOS expression are some examples (Norden
et al., 2016; Figure 6). Moreover, it has been observed that
the introduction of mutant SOD-1 astrocyte precursors in the
SC of wild-type mice triggered MNs’ degeneration symptoms
(Papadeas et al., 2011). Supporting these data, mutant SOD-1
astrocytes in coculture with MNs also decreased the MN survival
(Phatnani et al., 2013).

Besides the activation of the innate immune response, there
are evidences indicating that the adaptive immune system also
plays an important role regulating microglia phenotypes in the
progression of ALS. In the SOD1 mutant mouse (SOD1mt), a
model of familial ALS, lymphocyte infiltration into the CNS has
been observed, most prominently at later stages of the disease
(Alexianu et al., 2001). SOD1mt transgenic mice crossed with
Rag2 −/− mice (deficient for B and T lymphocytes) or with
a mouse model lacking T cells (TCRβ−/− mice) developed an
accelerated progression to the symptomatic stage of ALS (Beers
et al., 2008; Chiu et al., 2008). Further experiments performed
with SOD1mt crossed with CD4−/− mice (deficient of CD4+

T lymphocytes) recapitulated the same phenotype as in Rag2
−/− mice, thus attributing the neuroprotective role to CD4+ T
cells, but not to CD8+ T cells or B cells (Beers et al., 2008).

In fact, when lacking CD4+ T cells, ALS mouse microglial cells
display decreased levels of trophic factors such as insulin like
growth factor 1 (IGF-1), GDNF, and BDNF; increased levels
of proinflammatory cytokines such as IL-6 and TNF-α; and
elevated levels of NADPH-oxidase 2, which is known to enhance
microglial release of ROS (Beers et al., 2008; Chiu et al., 2008).
All these data suggest that CD4+ T cells may play a regulatory
role on microglial cells during ALS progression, providing
supportive neuroprotection by favoring the acquisition of the
M2-like phenotype by microglial cells, although further research
is still needed to develop future therapeutic strategies for ALS in
this line.

What has been further explored is the purpose of astrocytes
as therapeutic targets in ALS analyzing diverse approaches
through multiple candidates. Glutamate clearance could become
a putative solution, because the astrocyte-specific glutamate
transporter (EAAT2) is being identified as defective in human
patients and ALS mouse models, and glutamate accumulation
triggers neurodegeneration (Kim et al., 2011). Indeed, mutant
SOD-1 astrocytes present an increased production of D-serine,
capable to activate N-methyl-D-aspartate enhancing neuronal
cell death caused by glutamate accumulation (Sasabe et al.,
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2012). Similarly, neuroinflammation can be targeted directly,
switching the focus onto proinflammatory mediators. PGD2,
IFN-γ, and TGF-β produced and secreted from astrocytes have
been proposed as inducers for MN death (Phatnani et al., 2013).
Finally, another strategy would be targeting free radicals
and astrocytic mitochondrial dysfunction because ROS and
NO production is up-regulated in astrogliosis. ALS mouse
models display defective mitochondria, and human astrocytes
expressing mutant SOD-1 exhibit NOX-2 activation and ROS
hyperproduction (Cassina et al., 2008). ROS could damage lipid
and neuron’s membrane proteins, such as IGF-1 receptor, which
switch the redox state of intracellular proteins and exacerbate
the glutamate accumulation as previously mentioned (Wu et al.,
2006). Thus, proposing improving mitochondrial activity or
antioxidant molecules as a potential neuroprotective treatment
could open new possibilities for treatment.

More recently, because microglial NLRP3 inflammasome
activation is emerging as a key player in neuroinflammation
during neurodegeneration, new therapeutic approaches are
looking for NLRP3 inhibitors (Deora et al., 2020). In this regard,
the NLRP3 inflammasome inhibitor, Cyclo (His-Pro), constitutes
a potential candidate for ALS treatment and other misfolding
diseases (Grottelli et al., 2019), although further research is
still needed.

In summary, all these studies have led to the conclusion that
ALS is a noncell autonomous multifactorial disease that implies
different cell types and in which cell-to-cell interaction plays a
central role, not only in its development, but also on its onset
(Valori et al., 2014). Supporting this theory, robust activation of
microglia and astrocytes has been observed in postmortem ALS
human tissue and animal models (Tam et al., 2019), as well as
CD4+ T cells in both SOD1 mutant mice (Alexianu et al., 2001)
and in ALS human brains (Kawamata et al., 1992).

CONCLUDING REMARKS AND
PERSPECTIVES

Based on what we have described above, activation of
the neuroinflammation processes requires the orchestration
of transcriptional programs to secrete a diverse repertoire
of cytokines and neurotransmitters, which in turn activate
innate and adaptive immune response. These cytokines and
neurotransmitters served as messengers for the communication
between microglia, astrocytes, and neurons. However, our
knowledge on how all of these cytoquines and cell types
regulate and trigger the activation of each other is still limited.
What would be extremely informative is to determine the
timing and secretion levels of these cytokines coupled with the
expression of receptors by single-cell molecule analysis in all
three populations in correlation with the stimuli. Understanding
microglia and astrocyte immunomodulatory mechanisms will
be key because on one side, they served as amplifiers for
the immune response, but on the other side they are capable
to elegantly fine-tune the magnitude of this signal inhibiting
microglia activation. Therefore, some intriguing questions are
deciphering the inhibitory effect of activated astrocytes on
microglial activities, as well as the mechanisms that make

microglia cells change from their M1 proinflammatory state
to their M2 anti-inflammatory state. Unfortunately, certain
evidences show that there is a ‘‘point of no return’’ in the
neuroinflammation process where the activated astrocytes would
be unable to inhibit proinflammatory signals from the microglia,
such as the production of NO (von Bernhardi and Eugenin,
2004). In this term, the degree of the inflammatory stimuli seems
to be primordial.

Since the timing, stage, and severity of the disease are
critical determinants of microglial phenotypes, the first step
toward development of new therapeutic strategies would be the
identification, through single-cell transcriptomics, proteomics,
and functional studies, of stage- and time specific-molecular
signatures associated with each microglial–neuron–astrocyte
phenotype tailored to the different stages of each
neurodegenerative pathology. These would serve as biomarkers,
as well as offer a plethora of molecular targets for future research.

Additionally, data from knockout mice, in vitro studies
and clinical neuroimaging, will significantly enhance the
development of pharmacological immunoregulatory strategies
to attenuate inflammatory M1 monocytes/macrophages
or CD4+ T cells and to strengthen the function of
M2 monocytes/macrophages or regulatory T cells specific
for CNS antigens involved in neurodegenerative disorders.

Other important factors to take into account in these
proteinopathies are sex and age. CNS disorders such as ALS
(affect male > female) and AD (affect females > males) have
been shown to have a sex bias. Moreover, we also need to
consider that with age there is a decline in physiologic protective
processes, vital for maintaining the body homeostasis. If we sum
up the fact that there is a lower phagocytic capability to clean
the insult (either protein aggregates generated in many of these
neurodegenerative diseases or virus or pathogens) with the fact
that immune cells are in general more reactive during aging, this
favors a persistent inflammatory state or chronic inflammation
that can contribute directly or indirectly to the etiology of
the most common neurodegenerative diseases. Therefore, future
microglia-based therapeutic strategies should be developed with
caution and should address the sex bias and aged microglia
physiology seen in disorders of the CNS.

Finally, immunomodulation of microglia may be coupled
with inhibition of other signaling pathways in different cell
types (astrocytes or neurons) and such combinatorial therapies
may enhance functional outcomes. Thus, unraveling these
crosstalk mechanisms that inhibit uncontrolled inflammation
(Kery et al., 2020) would bring a more comprehensive picture
of the whole neuroinflammatory process for the development of
future treatments preventing neurodegeneration.

In this line and considering the limitations of using animal
models for neurodegenerative diseases, which in most cases
poorly recapitulate the complexity of the human disease, future
research should be focused on the generation of human
models. In this regard, human brain organoids from induced
pluripotent stem cells derived into all CNS cell components
will provide a tridimensional and more physiological and
humanized environment where we could monitor human
microglia interactions with other brain cells offering a relevant
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human model to study brain function and pathologies. The
generation of these in vitro reliable and easily reproducible
human stem cell-based models will significantly enhance our
understanding of the pathogenesis of neurodegenerative diseases
and could be extremely useful for finding and testing, at different
disease stages, efficient therapies at the preclinical stage.
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