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ABSTRACT
Glioblastoma multiforme (GBM) is the most common primary intracranial malignancy in adults. 
Owing to individual tolerance and tumor heterogeneity, the therapy methods for young adults do 
not apply to older adults. The present study aimed to identify specific biomarkers for GBM in older 
adults using weighted gene co-expression network analysis (WGCNA). Gene expression profiles of 
older adults with GBM were downloaded from The Cancer Genome Atlas (TCGA) and set as 
a discovery cohort to construct WGCNA. Core genes of clinically significant modules were used to 
perform functional enrichment, protein-protein interaction, and Pearson correlation analyses. 
Gene expression profiles of young in TCGA and older GBM patients from our research group 
were set as verification cohorts for hub gene expression and diagnostic value. Four significant 
gene modules associated clinically with older adults with GBM were identified, whereas 251 genes 
were core genes with module membership>0.8 and gene significance>0.2. Ermin (ERMN), myelin- 
associated oligodendrocyte basic protein (MOBP), proteolipid protein 1 (PLP1), and oligodendro-
cytic myelin paranodal and inner loop protein (OPALIN) genes had significant relationships with 
the Karnofsky score (KPS) in older GBM patients. ERMN, MOBP, PLP1, and OPALIN had no relation-
ship with KPS in young GBM patients. These genes were upregulated in GBM tissues from older 
patients with low but not high KPS and had high diagnostic value. In conclusion, ERMN, MOBP, 
PLP1, and OPALIN may serve as specific biomarkers for the progression of GBM in older adults.
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Introduction

Glioblastoma multiforme (GBM) is the most com-
mon primary intracranial malignancy in adults, 
accounting for approximately 70% of all intracra-
nial malignancies [1]. According to various clinical 
studies, the average overall survival time is less 
than 15 months. The 2-year survival rate of 
young GBM patients (age less than 70 years) is 
22.2%, whereas it was only 8.3% in older GBM 
patients (age more than 70 years) [2]. Some studies 
have shown that the molecular mechanisms 
involved in the progression of GBM in older adults 
are inconsistent with those in young adults [3]. 
Furthermore, because of the poor overall tolerance 

of the elderly, multiple organ injuries commonly 
occur during therapy [4]. Therefore, identifying 
novel biomarkers for GBM in older adults may 
aid in diagnosis and clinical therapy.

Microarrays and high-throughput sequencing 
are key technologies for uncovering the landscape 
of the tumor genome. Bioinformatics analysis of 
microarray data and high-throughput sequencing 
data can uncover several novel biomarkers that 
can aid in clinical diagnosis and therapy [5,6]. In 
previous studies, numerous valuable mRNAs, 
miRNAs, and circRNAs, which can contribute to 
the diagnosis of GBM, have been identified. Zhao 
et al. demonstrated that the ALG13 UDP- 
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N-acetylglucosaminyltransferase subunit gene was 
dysregulated in GBM, involved in the progression 
of GBM, and associated with secondary temozolo-
mide-resistance according to microarray data ana-
lysis [7]. By analyzing the miRNA microarray, 
Candido et al. showed that miR-29 c was 
decreased in GBM tissues and could regulate the 
AKT serine/threonine kinase 3 gene, which is 
involved in the progression of GBM [8]. 
Similarly, by analyzing serum circRNA expression 
profile, Stella et al. showed that circ-homeodomain 
interacting protein kinase 3 had a high diagnostic 
value for distinguishing GBM tissues from normal 
tissues [9]. Furthermore, by analyzing gene expres-
sion profiles, Zhou et al. demonstrated that genes 
involved in the calcium signaling pathway are 
associated with the development of GBM [10].

Weighted gene co-expression network analysis 
(WGCNA) is a valid method for identifying core 
genes associated with clinical traits and has been 
widely used to explore biomarkers for cancers in 
previous studies [11]. In the WGCNA network, 
genes with high correlations are clustered into 
a module, and the relationships between gene mod-
ules and clinical traits are determined to identify 
significant modules. The central nodes of the sig-
nificant modules are regarded as core genes that 
could play a core role in disease progression. In 
previous studies, a series of biomarkers were identi-
fied via the WGCNA method [12,13]. For example, 
through WGCNA, Qi Yang et al. revealed that six 
genes (copine 6, hyaluronan and proteoglycan link 
protein 2, CKLF-like MARVEL transmembrane 
domain containing 3, N-myc and STAT interactor, 
capping actin protein gelsolin-like, and proteasome 
20S subunit beta 8) were associated with the inflam-
matory response involved in the progression of 
GBM [14]. Similarly, Lin et al. showed that four 
genes (transgelin 2, podoplanin, TIMP metallopep-
tidase inhibitor 1, and epithelial membrane pro-
tein 3) are significantly associated with tumor 
immunology and play key roles in the progression 
of GBM via WGCNA [15]. However, the latent 
mechanisms of young and older GBM subtypes are 
inconsistent; therefore, the feasibility and specificity 
of the majority of biomarkers identified in previous 
studies were limited to older GBM patients.

In the present study, we combined WGCNA 
analysis and related experimental analyses to 

explore novel biomarkers for GBM in older adults. 
It was revealed that Ermin (ERMN), myelin- 
associated oligodendrocyte basic protein (MOBP), 
proteolipid protein 1 (PLP1), and oligodendrocytic 
myelin paranodal and inner loop protein 
(OPALIN) were present in the modules associated 
with Karnofsky performance status (KPS) score 
and upregulated in the GBM tissues provided by 
older patients with low KPS scores. This evidence 
indicates that these four genes could serve as 
potential biomarkers for GBM in older adults.

Materials and methods

Data processing

The gene expression matrix and corresponding 
clinical characteristics, including survival time, 
vital status, and KPS score of GBM tissues, were 
obtained from the Cancer Genome Atlas (TCGA; 
URL: https://portal.gdc.cancer.gov/) [16]. Patients 
aged ≥ 70 years were classified as older GBM 
patients, whereas patients aged <70 years were 
selected as young GBM patients in the present 
study. Therefore, the gene expression profiles of 
38 GBM tissues provided by older adults were 
used as the discovery cohort. After annotating 
probes, removing null probes and low abundance 
genes, and normalization, 17,851 genes in these 38 
tissues were used to construct the WGCNA.

WGCNA

After checking whether outliers existed via 
a sample dendrogram, the WGCNA was per-
formed in the R environment (URL: https://www. 
r-project.org/) [17]. After performing Pearson’s 
correlation analysis for all gene pairs, a similarity 
matrix was constructed according to the result. 
The matrix of similarity was constructed based 
on appropriate soft power to produce a scale-free 
co-expression network, which could ensure scale 
independence ≥ 0.85 and a mean connectivity 
degree close to 0. The adjacency matrix was then 
transformed into a topological overlap matrix 
(TOM). Finally, median linkage hierarchical clus-
tering was analyzed using the TOM-based dissim-
ilarity measure with a minimum size of 50, and the 

6644 Y. YANG ET AL.

https://portal.gdc.cancer.gov/
https://www.r-project.org/
https://www.r-project.org/


adjacency gene modules with similarity < 0.2 were 
merged.

Identification of significant modules and core 
genes

The relationship between gene modules clustered 
by WGCNA and the clinical traits of older GBM 
patients were analyzed. These traits included sur-
vival days, vital (dead or alive), and KPS. The 
thresholds to determine significant module were 
correlation (R) ≥ 0.3 and P-value < 0.05. In sig-
nificant modules, gene significance (GS) was 
determined using associations between the indivi-
dual genes and the clinical characteristics of inter-
est, along with the module membership (MM), 
which was determined using the correlation 
between the module eigengenes and the gene 
expression profiles. Genes with GS > 0.2 and 
MM > 0.8 were set as core genes in significant 
modules for further study.

Functional enrichment analysis

Functional enrichment analyses of core genes, 
including Gene Oncology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
analysis, were performed using the online tool 
Functional Annotation Bioinformatics Microarray 
Analysis (DAVID; URL: https://david.ncifcrf.gov/) 
[18]. The terms of enrichment analyses were con-
sidered significant at P <0.05.

Protein-protein interaction (PPI) network

The information on proteins coded by core genes 
was imported into the STRING database (https:// 
string-db.org/) [19] to obtain their interaction infor-
mation, and their interaction information was ana-
lyzed using Cytoscape software [20]. Nodes in PPI 
mean proteins and lines indicated the relationship 
between them. The degree score was an index to 
reflect the relationship between proteins and was 
calculated using the Cytohub plug-in (version 1.0; 
http://github.com/cytoscape/appstore) [21]. Genes 
with a top 10-degree score were set as hub genes.

Pearson’s correlation analysis between the hub 
genes and KPS of GBM patients

The relationship between the hub genes and KPS 
of GBM patients was further analyzed using 
Pearson’s correlation analysis in SPSS software 
(version 20.0). Genes with high correlation 
(R >0.3 and P <0.05) with KPS of GBM patients 
were set as real hub genes and used for further 
analysis.

Specimen collection

A total of 43 GBM tissues from older patients 
(years ≥ 70) were obtained from the Pathology 
Department of the Affiliated Hospital of Guizhou 
Medical University. Older GBM patients with KPS 
scores ≥ 60 (n = 28) were classified as the high 
KPS group, whereas patients with KPS scores < 60 
(n = 15) were classified as the low KPS group. 
None of the patients in the present study under-
went chemotherapy or radiation before tissue col-
lection, and all patients provided samples signed 
written informed consent. The study was approved 
by the Human Trait Ethics Committee of the 
Guizhou Medical University.

Immumohistochemical (IHC) staining

Paraffin-embedded GBM tissues provided by older 
patients were sectioned at a thickness of 4 μm. All 
sections were dewaxed and dehydrated using 
graded concentrations of xylene and alcohol, 
respectively. After antigen retrieval using citrate 
buffer (pH 6.0; Zsbio, Beijing, China), the sections 
were blocked with 5% BSA (Boster, Wuhan, 
China) and 0.3% H2O2 to decrease nonspecific 
binding. The primary antibodies including 
ERMN (1:200; Cat No. 66,605-1-Ig, Proteintech, 
Wuhan, China), MOBP (1:100; Cat No.12472- 
1-AP, Proteintech, Wuhan, China), PLP1 (1:100; 
Cat No. A20009, Abconal, Wuhan, China) and 
OPALIN (1:300; Cat. ab121425, Abcam, China), 
were added to the sections and incubated over-
night at 4°C, followed by incubation with anti- 
mouse (1:2000; cat. no. BM3895) and anti-rabbit 
(1:2000; cat. no. BM3894) horseradish peroxidase- 
conjugated goat secondary antibodies (Boster, 
Wuhan, China) after washing three times with 

BIOENGINEERED 6645

https://david.ncifcrf.gov/
https://string-db.org/
https://string-db.org/
http://github.com/cytoscape/appstore


PBS. The sections were then stained with hema-
toxylin and diaminobenzidine at room tempera-
ture. Finally, the images of the sections were 
obtained using a light orthophoto microscope 
(magnification ×100). The expression levels of tar-
get proteins were evaluated by the sum of the 
proportion of positively stained cells (0, <1%; 1, 
1%–33%; 2, 34%–66%; and 3, 67%–100%) and 
stain depth (0, no staining; 1, weakly positive; 2, 
moderately positive; and 3, strongly positive).

Receiver operating characteristic curve (ROC)

The diagnostic value of real hub genes to distin-
guish high and low KPS score tissues provided by 
older adults with GBM was determined using SPSS 
software via ROC based on the expression score 
obtained from IHC. Genes with an area under the 
curve (AUC)>0.7 were considered to possess diag-
nostic value.

Results

A total of 23 co-expressed modules were identified 
in the WGCNA based on data from the TCGA 
database. Four (cyan, green, lightcyan, and orange) 
were positively associated with clinical traits, 
whereas MM was significantly associated with 
GS. A total of 97, 128, 15, and 11 core genes 
with MM>0.8 and GS>0.2 were in cyan, green, 
orange, and lightcyan modules, respectively. 
These genes were enriched in a series of GO 
terms and KEGG pathway terms, including vesicle 
coat and ether lipid metabolism. Among these core 
genes, ERMN, MOBP, PLP1, and OPALIN had 

a high score in the PPI network and were nega-
tively associated with the KPS score in older adults 
with GBM. Interestingly, ERMN, MOBP, PLP1, 
and OPALIN had no relationship with KPS scores 
in young adults with GBM. Furthermore, we 
found that ERMN, MOBP, PLP1, and OPALIN 
were also highly expressed in GBM tissues 
obtained from older adults with lower KPS scores 
compared to those with high KPS scores and had 
a high diagnostic value in distinguishing the tis-
sues provided from older GBM tissues with high 
and low KPS scores.

Constructing the WGCNA

A sample dendrogram demonstrated that no out-
liers existed in the GBM tissues provided by older 
patients in TCGA, and the total gene expression 
profile of 38 GBM tissues provided by older adults 
and corresponding traits were used to construct 
the WGCNA (Figure 1a). As shown in the results 
(Figure 1b-c), while the soft power β was 6, the 
scale independence of the topology network 
reached >0.85, and the mean connectivity was ~ 
0. Therefore, the soft power of β = 6 was set as the 
soft threshold to perform subsequent analyses.

Significant modules and module core genes were 
identified in WGCNA

As shown in the results, genes were clustered in 23 
co-expressed modules (yellow, greenyellow, sal-
mon, lightyellow, midnightblue, darkgrey, tur-
quoise, green, grey60, red, darkturquoise, brown, 
blue, cyan, black, tan, darkgreen, darkred, pink, 

Figure 1. Structuring WGCNA. (a) Sample tree clustering and clinical traits (Survival days; vital: white = alive, red = dead, gray = 
missing value; KPS) heat map of 38 GBM tissues in older adults. (b) Scale independence of various soft-threshold values. (c) Mean 
connectivity of various soft-threshold values.
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lightcyan, orange, purple, and royalblue), whereas 
genes that were not co-expressed were all clustered 
in the gray module (Figure 2a). Among these gene 
modules, the cyan and green modules were nega-
tively associated with KPS in older adults with 
GBM (R = −0.63 and R = −0.39, respectively); 
the orange and lightcyan modules were positively 
associated with survival days in older adults with 

GBM (R = 0.42 and R = 0.36, respectively), 
whereas genes in darkgreen were negatively asso-
ciated with vital status in older adults with GBM 
(R = −0.33) (Figure 2b). Then, correlations 
between GS and MM were calculated for these 
five modules. We found that the MM of genes in 
the cyan and green modules were significantly 
associated with their GS for KPS (cor = 0.62, 

Figure 2. Module clusters and relationships with clinical traits. (a) Clustering dendrograms of all genes with dissimilarity based 
on topological overlap, together with assigned module colors. (b) Identification of significant modules associated with clinical traits 
(survival days, vital, and KPS). Each cell in the heat map contains the corresponding correlation score and P-value. Red indicates 
a positive correlation, whereas green indicates a negative correlation.

Figure 3. Relationship between gene significance (GS) and module membership (MM) in significant modules.

BIOENGINEERED 6647



P <0.05; cor = 0.32, P <0.05). MM of genes in the 
orange and lightcyan modules were significantly 
associated with their GS for survival days 
(cor = 0.43, P <0.05; cor = 0.37, P <0.05). 
However, the MM of genes in the darkgreen mod-
ule was not significantly associated with their GS 
for vital status (cor = 0.078, P >0.05) (Figure 3). 
Therefore, cyan, green, orange, and lightcyan were 
set as significant modules were chosen because the 
thresholds for MM>0.8 and GS>0.2, and there 
were 97, 128, 15, and 11 in the cyan, green, orange, 
and lightcyan modules that were selected as core 
genes. Details of the core genes in each module are 
shown in Table 1.contributing to predicting KPS 
change.

Functional enrichment analysis of module core 
genes

GO analysis for the 251 module core genes showed 
that these genes were enriched in ‘vesicle coat,’ 
‘transcription factor binding,’ ‘substantia nigra 
development,’ ‘constituent of myelin sheath,’ ‘sar-
comere organization,’ ‘respiratory gaseous 
exchange,’ ‘cell projection organization,’ ‘serine/ 
threonine kinase activity,’ ‘protein phosphoryla-
tion,’ ‘protein kinase activity,’ ‘perinuclear region 
of cytoplasm,’ ‘oligodendrocyte differentiation,’ 
‘myelination,’ ‘myelin sheath,’ ‘microtubule motor 
activity,’ ‘microtubule,’ ‘lysophospholipase activ-
ity,’ ‘lipid metabolic process,’ ‘internode region of 
axon,’ ‘galactosyl ceramide biosynthetic process,’ 
‘dynein complex,’ ‘cyclin-dependent protein activ-
ity,’ ‘central nervous system myelination,’ ‘central 
nervous system development,’ ‘brain development’ 
and ‘axon ensheathment’ (Figure 4). KEGG analy-
sis of the 251 module core genes showed that these 
genes were enriched in ‘ether lipid metabolism’ 
and ‘cell adhesion molecules’ pathways.

PPI network construction

A total of 251 module core genes were imported 
into STRING to construct the PPI network 
(Figure 5a). The analysis showed that genes 
[OPALIN, PLP1, myelin-associated glycoprotein 
(MAG), MOBP, myelin basic protein (MBP), SRY- 
box transcription factor 10 (SOX10), myelin oligo-
dendrocyte glycoprotein (MOG), ERMN, hyaluro-
nan and proteoglycan link protein 2 (HAPLN2), 
and fatty acid 2-hydroxylase (FA2H)] had a top 10 
degree score. Therefore, they were identified as 
hub genes (Figure 5b). Interestingly, these 10 
genes were all cyan module genes associated 
with KPS.

Pearson correlation analysis for the expression of 
hub genes and KPS

We then used Pearson correlation analysis for the 
expression of hub genes and KPS in older GBM 
patients in TCGA. The results showed that expres-
sion of ERMN (R = −0.32, P <0.05), MOBP 
(R = −0.32, P <0.05), PLP1 (R = −0.37, P <0.05), 
and OPALIN (R = −0.35, P <0.05) were 

Table 1. Detail of hub genes in each significant module.
Module Hub gene

Cyan PPP1R14A DBNDD2 DNAH17 OPALIN HHATL FCHO1 
FAM19A4 CLCA4 KIAA1598 ROGDI CAPN3 PLEKHH1 
LANCL1 PTGDS S1PR5 LDB3 CD22 TMEM144 CARNS1 
TPPP KCNQ1DN LIPE SRCIN1 SPOCK3 SEC14L5 ERMN 
SLC5A11 MAL SFTPC ADAP1 BOK MBP TMEM63A 
SLC45A3 CNTN2 AATK ZFP57 CNDP1 NKX6-2 PEX5L 
CNTNAP4 HAPLN2 CYTH1 LOC283999 KANK4 PLP1 
C9orf122 LGI3 TMCC2 GJB1 NKAIN2 QDPR PLCL1 ST18 
GPR62 PLCH2 MOBP PCSK6 ENPP2 SEMA4D EDIL3 
TMEM151A MAG HCN2 LOC100128675 LOC150622 
GJC2 CNP SH3GL3 TMEM125 CDK18 TUBB4 LRP2 
SHISA2 LHPP PPP1R16B FA2H MOG C11orf9 C7orf41 
KLK6 TMEM88B BCAS1 GAL3ST1 TF RAB40B ZNF536 
ZNF488 FAM107B RAB11FIP4 UGT8 CHADL SOX10 
GREM1 HOXD1 CLDN11 SLC7A14

Green DNAH1 HGFAC TRPV1 TFAP2E ATG16L2 JMJD7-PLA2G4B 
SULT1A3 AGER FAM193B ACCN3 NKTR SCNN1D 
SGK494 LOC646471 LOC100128288 KAT2A C17orf56 
AGAP5 LENG8 DNASE1 C16orf79 PRICKLE4 APBB3 
SEC31B KIAA1875 L3MBTL ARID3B SLC26A1 NPIP 
MYH3 CRIPAK RHOT2 SDHAP3 CEACAM19 STRC 
NCRNA00176 OSBPL7 NRBP2 HAUS5 PVRIG ATXN7L2 
CUL9 TBC1D3B ANKS3 ULK3 FLJ45340 GDPD3 MZF1 
CDK5RAP3 TNRC6A KIFC2 SRRM2 PABPC1L PILRB 
PDXDC2 FAM13AOS TTLL3 ZNF692 TRO LY6G5B LRDD 
UCKL1AS LOC100132287 CCDC78 CROCCL2 RPL32P3 
CRAMP1L YJEFN3 CDK3 NCRNA00107 DND1 ANKRD23 
PRDM15 CCDC84 ?|155,060 FBXL6 KLHL17 CSAD 
WDR90 ?|645,851 LOC100133331 ANKRD36 CCNL2 
MSH5 AGAP6 LOC91316 POGZ GSDMB LOC100272228 
UCP3 WASH7P DNHD1 PKD1 LOC200030 TTC21A 
TAF1C C8ORFK29 SPDYE8P CCDC57 GIGYF1 ERAS 
NCRNA00201 KIAA0895 L UNC5CL ZNF337 
NCRNA00105 GNRH1 ASB16 KIAA0907 AFG3L1 ING5 
LOC100240726 CDK10 LOC100128842 ANKZF1 
LOC349114 HOOK2 STK36 ZNF767 LOC338799 ZNF471 
FAM156A LOC150776 AKR7L INE1 FAM71F2 CLK2 
TRIM52

Lightcyan SP3 NEDD1 SAPS3 NUP107 PRPF40A RBM27 NAA15 
TMEM194A POLK PRPF4B CDC27

Orange RC3H2 PAFAH1B2 GTF2A1 SLC30A4 LMBRD2 SBNO1 
CCNT1 CRK ETV3 TAOK1 IL6ST NCOA2 LOC284232 
MAN1A2 UHMK1
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significantly and negatively associated with KPS in 
older GBM patients in TCGA, whereas the expres-
sion of other hub genes had no significant rela-
tionship with KPS in older GBM patients in TCGA 
(Figure 6). Interestingly, we found that these genes 
had no significant relationship with KPS in young 
GBM patients, except for FA2H (Figure 7). 
Therefore, these four genes (ERMN, MOBP, 
PLP1, and OPALIN) were set as real hub genes 
and could have specific functions to predict the 
KPS in older GBM patients but not in young GBM 
patients.

ERMN, MOBP, PLP1, and OPALIN showed 
high diagnostic value to predict the change of 
KPS in older GBM patients

We then analyzed the expression of the real hub 
genes (ERMN, MOBP, PLP1, and OPALIN) in our 
verification cohort (43 GBM tissues provided by 
older patients). IHC results showed that all were 
upregulated in the GBM tissues provided by the 
patients with low KPS compared with those pro-
vided by the patients with high KPS (Figure 8a). 
The detailed score of genes in the samples is 

shown in Table 2. Furthermore, based on the 
protein level score, we performed ROC analysis, 
and the results demonstrated that ERMN 
(AUC = 0.86), MOBP (AUC = 0.846), PLP1 
(AUC = 0.88), and OPALIN (AUC = 0.89) all 
showed high diagnostic value for distinguishing 
GBM tissues provided from older patients with 
high and low KPS (Figure 8b).

Discussion

Elderly patients with GBM are a unique popula-
tion. Compared with young patients with GBM, 
older patients showed a lower overall survival rate 
and more complications after radiotherapy and 
chemotherapy [3]. Although various efforts for 
GBM have been made, there is still no specific 
treatment method for the elderly population. 
Therefore, there is an urgent need to uncover the 
latent mechanism of GBM in older adults and 
explore novel biomarkers.

In the present study, through the WGCNA in 
GBM tissues provided from older patients in 

Figure 4. GO analysis for the module core genes.

Figure 5. Selecting hub genes in GBM. (a) Module core genes used to construct protein-protein interaction network. Nodes 
indicate genes, lines indicate interactions. (b) Genes with top 10 degree score are shown.
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TCGA, a total of 23 co-expressed modules were 
clustered. Among them, the cyan and green modules 
were negatively associated with KPS, whereas the 
MM of genes in these modules also correlated with 
GS for KPS; orange and lightcyan modules were 
positively associated with survival days, and the 
MM of genes in these two modules also correlated 
with GS for survival days. A total of 251 core genes 
were identified in these four modules. Following 
a series of bioinformatics analyses, including func-
tional enrichment analysis, PPI network construc-
tion, and Pearson correlation analysis, four core 
genes (ERMN, MOBP, PLP1, and OPALIN) with 
high degree scores and high correlation with KPS 
were identified as real hub genes for elderly GBM. 
Interestingly, these four genes had no significant 
relationship with KPS in young patients with GBM.

The KPS is a systematic score that evaluates the 
overall function of a GBM patient [22]. During the 
progression of GBM, the KPS of patients typically 

gradually decreases. Furthermore, the treatment 
options available to patients are increasingly lim-
ited [23]. To further analyze the relationship 
between the four genes (ERMN, MOBP, PLP1, 
and OPALIN) and KPS in older adults with 
GBM, 28 GBM tissues were provided by older 
adults with GBM with KPS ≥ 60 and 15 GBM 
tissues provided by older adults with GBM with 
KPS < 60 were set as the verification cohort. Our 
results indicated that all four genes were upregu-
lated in the tissues provided by low KPS group 
patients and had high diagnostic value to distin-
guish the GBM tissues provided from older 
patients with high and low KPS. This is the first 
evidence that ERMN, MOBP, PLP1, and OPALIN 
may be novel biomarkers for GBM in older adults, 
which may also have the potential to predict 
changes in KPS.

The ERMN-encoded protein is a cytoplasmic 
protein located in the outer tongue of the myelin 

Figure 6. Relationship between the expression of hub genes and KPS score in older patients with GBM.
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sheath and the paranodal loops of oligodendro-
cytes. It plays a key role in the formation of 
myelin sheaths [24]. ERMN expression is dysre-
gulated in a series of nervous system diseases, 
including multiple sclerosis [25] and neurodegen-
erative disorders [26]. Similarly, a previous study 

demonstrated that ERMN was highly expressed in 
the microenvironment of prostate adenocarci-
noma and had the potential to regulate the 
tumor immune response [27]. This evidence sug-
gested that ERMN affected the KPS score in elder 
patients with GBM via regulating tumor immune 

Figure 7. Relationship between the expression of hub genes and KPS score in young patients with GBM.

Figure 8. ERMN, MOBP, PLP1 and OPALIN were highly expressed in the GBM tissues provided by the older patients with 
lower KPS scores. (a) IHC stain determined the expression of ERMN, MOBP, PLP1 and OPALIN in GBM tissues provided by the older 
patients with low and high KPS scores. (b) ROC analysis was performed to determine the diagnostic value of ERMN, MOBP, PLP1 and 
OPALIN to distinguish the GBM tissues provided by the older patients with low and high KPS scores.
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response. MOBP is also a component of the mye-
lin sheath, which can stabilize the myelin sheath 
by binding the negatively charged acidic phos-
pholipids of the cytoplasmic membrane [28]. 
High MOBP expression is significantly associated 
with the occurrence of encephalomyelitis [29]. 
Interestingly, MOBP was upregulated in male 
smokers with lung cancer [30]. However, the 
molecular mechanism of MOBP in cancers, 
including GBM, remains unknown. PLP1 
encodes a protein with 276 amino acids, which 
is the most abundant myelin protein in the brain 
and can regulate myelin lamellar spacing/com-
paction and maintain axonal integrity via oligo-
dendrocyte-axonal interactions [31]. Previous 
studies revealed that overexpression of PLP1 
enhanced the accumulation of lipids in the mye-
lin sheath, thereby promoting the progression of 
diseases in the central nervous system, such as 
Pelizaeus-Merzbacher disease [32,33]. 
Furthermore, PLP1 has the potential to inhibit 
the endoplasmic reticulum [34]. Given the evi-
dence that the endoplasmic reticulum is a key 
process that can induce cell apoptosis in GBM 
[35], we consider that PLP1 is involved in the 
progression of elderly patients with GBM by inhi-
biting the processes of the endoplasmic reticu-
lum. OPALIN-encoded protein is 
a transmembrane sialoglycoprotein located in 
the myelin paranodal loop membrane [36]. 
OPALIN induces oligodendrocyte differentiation 
[37]. OPALIN decreased the progression of her-
editary spastic paraplegia [38]. OPALIN is also 
involved in cerebral neuroprotection during dox-
orubicin chemotherapy by decreasing the rate of 
drugs crossing the blood-brain barrier [39]. We 
speculated that OPALIN might be involved in the 

process of patients with GBM via these effects. 
However, until now, there has been no evidence 
revealing the role of OPALIN in GBM. 
Furthermore, although we showed that ERMN, 
MOBP, PLP1, and OPALIN might be novel bio-
markers for GBM in older adults via the 
WGCNA and relative experiments, their molecu-
lar mechanisms in GBM in older adults should be 
determined with additional experiments.

Conclusions

In summary, through WGCNA and relative experi-
ments, we showed that ERMN, MOBP, PLP1, and 
OPALIN were core genes in the modules signifi-
cantly associated with KPS in elderly GBM patients. 
High expression of ERMN, MOBP, PLP1, and 
OPALIN was associated with low KPS in elderly 
patients with GBM. However, ERMN, MOBP, 
PLP1, and OPALIN had no significant relationship 
with KPS in young patients with GBM. They were all 
upregulated in the tissues provided by the low KPS 
group of older GBM patients compared with that 
provided by the high KPS group and had high diag-
nostic value to distinguish the GBM tissues provided 
from older patients with high and low KPS. ERMN, 
MOBP, PLP1, and OPALIN may be novel and spe-
cific biomarkers for GBM in older adults,

Research highlights

● Twenty-three co-expressed modules were 
identified in GBM tissues from the elderly

● Four gene modules were positively associated 
with clinical traits

● ERMN, MOBP, PLP1, and OPALIN were 
associated with KPS scores in older GBM 
patients

● ERMN, MOBP, PLP1, and OPALIN were not 
related to KPS scores in young GBM patients

● ERMN, MOBP, PLP1, and OPALIN related to 
elderly patients and had diagnostic value

Acknowledgements

We appreciate the staff who participated in the daily main-
tenance and update of the TCGA database.

Table 2. Detail IHC score of ERMN, MOBP, PLP1 and OPALIN in 
GBM tissues provided by the elder patients with low KPS score 
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Target Group

IHC score

0 1 2 3 4 5 6
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KPS high 1 17 6 2 1 1 0
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