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Background: Lung adenocarcinoma (LUAD) is associated with high morbidity and mortality rates. 
Increasing evidence indicates that neutrophil extracellular traps (NETs) play a critical role in tumor 
progression, metastasis and immunosuppression in the LUAD tumor microenvironment (TME). 
Nevertheless, the use of NET formation-related genes (NFRGs) to predict LUAD patient survival and 
response to immunotherapy has not been explored. Therefore, this study aimed to construct a NFRGs-based 
prognostic signature for stratifying LUAD patients and informing individualized management strategies.
Methods: The cell composition of the LUAD TME was investigated using the single-cell sequencing data 
in Single-Cell Lung Cancer Atlas (LuCA). NFRGs were identified to construct a prognostic signature based 
on The Cancer Genome Atlas (TCGA) cohort which was validated in the Gene Expression Omnibus (GEO) 
dataset. The univariate Cox and least absolute shrinkage and selection operator (LASSO) Cox regression 
models, receiver operating characteristic (ROC) and Brier Score were applied to assess the prognostic 
model. A nomogram was established to facilitate the clinical application of the risk score. The Estimation of 
STromal and Immune cells in MAlignant Tumor tissues (ESTIMATE) and Tumor Immune Dysfunction and 
Exclusion (TIDE) algorithm were utilized to assess the TME and predict immunotherapy response. Reverse 
transcription-quantitative polymerase chain reaction (RT-qPCR) was applied to quantify the expression 
levels of four NFRGs in LUAD paired tissue samples.
Results: Single-cell RNA sequence analysis showed the importance of neutrophils in LUAD TME. We 
developed and validated a 4-NFRG (CAT, CTSG, ENO1, TLR2) prognostic signature based on TCGA 
and GEO cohorts, which stratified patients into high-risk and low-risk groups. Univariate and multivariate 
analyses showed that our risk model could independently predict the survival of LUAD patients. Patients 
in the low-risk group exhibited a more active immune microenvironment, lower TIDE scores, lower half-
maximal inhibitory concentration (IC50) values and higher immune checkpoint molecule expression. Our 
risk signature could serve as a biomarker for predicting immunotherapeutic benefits.
Conclusions: We developed a novel prognostic signature for LUAD patients based on NFRGs and 
emphasized the critical role of this signature in predicting LUAD patient survival and immunotherapy 
response.
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Introduction

Lung cancer is highly aggressive and heterogeneous, 
with a distinct mutation load and histological status, and 
is the leading cause of cancer-related death (1,2). Lung 
adenocarcinoma (LUAD) is the most common type of 
lung cancer, accounting for 40% of all lung cancer types 
and approximately 55% of non-small cell lung cancers 
(NSCLCs). In addition to driving tumor progression and 
evolution, genetic heterogeneity helps shape the tumor 
microenvironment (TME). With advances in high-
throughput sequencing technology, researchers have gained 
new insights into the composition and function of the TME 
in LUAD (3-6).

Solid tumors accumulate a complex set of innate and 
acquired immune inflammatory cells in the TME. It 
is generally believed that tumors are heavily infiltrated 
with neutrophils and that the prognosis is relatively poor. 
Neutrophils represent 50–70% of circulating leukocytes 
in humans and are considered the “soldiers” of the innate 
immune system with a restricted set of pro-inflammatory 

functions. However, in the TME, high infiltration of 
tumor-associated neutrophils (TANs) has been associated 
with poor prognosis (7).

Neutrophil extracellular traps (NETs) are networks 
of DNA histones and proteins released by activated 
neutrophils. Despite helping to immobilize and eliminate 
pathogens (8-10), an increasing number of studies have 
demonstrated that NETs play a significant role in tumor 
progression and metastasis (11-16). NETs are quantified 
by the area of colocalization of histone markers or 
extracellular DNA with neutrophil granular or cytoplasmic  
components (17), which can help to predict clinical stage 
and prognosis (18-22). The immunosuppressive role 
of NETs in the TME mainly involves triggering the 
exhaustion and dysfunction of CD8+ T cells (23-25), 
regulating the balance between Th1 and Th2 CD4+ T cells 
and impairing the antitumor effects of natural killer (NK) 
cells (26-30).

The capability of NET formation-related genes 
(NFRGs) to evaluate LUAD patient survival and response 
to immunotherapy is not clear. In this study, we constructed 
an NFRGs-based prognostic signature for LUAD patients 
to predict survival and immunotherapy response. First, we 
explored the distinct composition of the TME and cell-
cell interactions in LUAD patients at single-cell resolution 
and noted a substantial increase in neutrophils in the TME. 
We then comprehensively assessed the expression of 24 
neutrophil trap formation-related genes at both the single-
cell level and bulk RNA level. Next, we constructed and 
validated a 4-NFRG-based prognostic model for LUAD 
patients based on The Cancer Genome Atlas (TCGA) 
Program, Gene Expression Omnibus (GEO) and real-
world clinical cohort data. The potential of our risk score to 
stratify LUAD patients with different clinical information 
was evaluated. Subsequently, we developed a nomogram 
to quantify survival probability combined with the risk 
score and other clinical characteristics. Furthermore, 
the predictive value of this nomogram for prognosis, 
immunotherapy efficacy and chemotherapy sensitivity were 
assessed and explored based on distinct datasets. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://tlcr.amegroups.com/article/
view/10.21037/tlcr-24-463/rc).

Highlight box

Key findings
• Revealing the expression patterns of neutrophil extracellular traps 

formation-related genes (NFRGs) and construction a predictive 
model for lung adenocarcinoma (LUAD) by integrative analysis of 
single-cell and bulk transcriptomes.

What is known and what is new? 
• Studies have shown that NETs play critical roles in tumor 

progression, metastasis and immunosuppression in the LUAD 
tumor microenvironment (TME). 

• We constructed a prediction model for the survival, drug 
sensitivity, immune checkpoint blockade (ICB) response for LUAD 
patients based on four NFRGs, including CAT, CTSG, TLR2, 
ENO1.

What is the implication, and what should change now? 
• This study highlights the value of NETs in stratifying LUAD 

patients and informing individualized management strategies.
• Efforts should be taken to adjust and explore the predictive value 

of our risk score for ICB response in multicenter and large-scale 
prospective cohorts.
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Methods

Single‑cell RNA sequence analysis

The “NormalizeData” function was used to normalize raw 
counts, and the “FindVariableFeatures” function was utilized 
to select highly variable genes in the R package “Seurat” 43 
(V4.0.3) to address the batch effect and tissue specificity of 
the single-cell RNA-seq data. Principal component analysis 
(PCA) and uniform manifold approximation and projection 
for dimension reduction (UMAP) were used to reduce the 
number of highly variable genes.

Cell-cell interaction analysis

The R package “CellChat” (https://github.com/sqjin/
CellChat) was utilized to analyze and visualize the 
intercellular communication among different cell types and 
specific ligand-receptor interactions based on single-cell 
RNA sequencing (scRNA-seq) data.

Public data sources and acquisition

Single-cell RNA-seq data from Salcher  et al. were 
downloaded from the core atlas of Single-Cell Lung Cancer 
Atlas (LuCA) (https://cellxgene.cziscience.com/collections/
edb893ee-4066-4128-9aec-5eb2b03f8287) (31). This large 
integrated Seurat object comprising data for 156 LUAD 
patients and 86 control individuals was utilized to reveal 
distinct TME and cell compositions. The gene expression 
data of the TCGA-LUAD and GSE72094 cohorts were 
normalized by the “Scale” function before analysis. Missing 
value from bulk mRNA data were imputated by mean 
value, and missing clinical data was deleted. The protein 
expression levels of NFRGs were compared using the 
online website The University of ALabama at Birmingham 
CANcer data analysis Portal (UALCAN) (http://ualcan.
path.uab.edu/analysis.html).

Construction of an NFRG-based prognostic signature

Twenty-four NFRGs were included from previous studies, 
and they are presented in Table S1 (32-35). The R package 
“limma” (version 3.36.2) was used to identify differentially 
expressed NFRGs between LUAD tumor tissues and 
noncancer tissue samples. Benjamini-Hochberg (BH) 
method from the “limma” package to control the false 
discovery rate (FDR) when identifying differential genes, 
taking into account that performing multiple hypothesis 

tests may lead to false-positive results. The univariate Cox 
proportional hazards regression model was performed 
to identify genes with a significant prognostic value. 
Furthermore, the LASSO Cox regression model via the 
R package “glmnet” (version 4.1-2) was used to inform 
the selection of the most prognostic gene signature from 
all the identified NFRGs and obviate model overfitting. 
The optimal tuning parameter λ was identified via 
the 1-SE (standard error) criterion. According to the 
risk scores derived from the selected gene signature, a 
prognostic model was developed. The risk score was 
the sum of the messenger RNA (mRNA) expression 
levels of the four NFRGs and their corresponding 
coefficients, i.e., risk score = ∑[CAT*(−0.220535782175529) 
+  C T S G * ( − 0 . 0 3 6 8 6 5 7 5 1 5 1 7 9 5 3 2 )  +  E N O 1 * 
(0.156333581719548) + TLR2*(−0.150335127077594)].

Evaluation of the prognostic performance of the  
NFRG-based signature

A LUAD cohort (GSE72094) was employed as the test 
cohort. Patients were divided into high- and low-risk 
groups based on the median risk score. Kaplan-Meier 
(K-M) survival curves and PCA were used to assess the 
predictive performance of the signature. Receiver operating 
characteristic (ROC) curves were used to compare the 
accuracy of 1-, 3- and 5-year survival predictions. In 
addition, univariate and multivariate Cox regression models 
were utilized to evaluate the clinical variables (age, sex and 
clinical stage) of patients in the training and testing cohorts, 
in combination with the risk score generated by our 
prognostic model. The “prcomp” function in the R package 
“stats” was used to perform PCA. The R packages “survival”, 
“survminer”, “timeROC” and “survex” were used for ROC 
curve analysis and Brier score evaluation. 

Construction of a nomogram for survival prediction

A clinically applicable nomogram based on prognostic 
variables (age, sex, clinical stage and risk score) of the 
pooled cohort was constructed to predict 1-, 3-, and 5-year 
survival probabilities. The predictive performance of the 
nomogram was validated through ROC curve analysis.

Single-sample gene set enrichment analysis (ssGSEA) 
evaluation of the top 10 oncogenic pathways

The top 10 oncogenic pathways, involving 330 reported 
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genes, were selected to evaluate the enrichment score using 
the ssGSEA algorithm (36). Representative scores were 
calculated as the activated score minus the repressed score 
as previously reported (37). Subsequently, we compared the 
ssGSEA score of each pathway between distinct risk groups. 
The risk groups were determined based on the risk score 
associated with the newly established prognostic signature.

Potential chemotherapy therapeutic drug sensitivity 
prediction

The “pRRophetic” package was used to predict the 
difference in drug sensitivity between the high- and low-
risk groups (38).

Characterization of the tumor immune microenvironment

The R package “gsva” was utilized to perform ssGSEA to 
calculate the scores of 15 infiltrating immune cells and to 
evaluate the activity of 14 immune-related pathways. The 
R package “ESTIMATE” was used to predict tumor purity 
as well as the proportion of stromal and immune cells in the 
TME (39).

Immunotherapeutic response prediction

The machine learning tool Tumor Immune Dysfunction 
and Exclusion (TIDE) is applied to predict cancer patients’ 
response to immune checkpoint inhibitors (ICIs) (40). 
The TIDE score, T-cell exclusion score, myeloid-derived 
suppressor cell (MDSC) score and cancer-associated 
fibroblast (CAF) score were retrieved from the TIDE portal 
(http://tide.dfci.harvard.edu) on the basis of normalized 
transcriptome data for the TCGA-LUAD cohort. 
Moreover, the Wilcoxon rank-sum test was conducted to 
compare the mRNA levels of immune checkpoint molecules 
in the TCGA-LUAD cohort between the low- and high-
risk groups. Furthermore, the GSE126044 and GSE135222 
cohorts, comprising patients with NSCLC who received 
anti-programmed cell death ligand 1 (anti-PD-L1) or anti-
programmed cell death protein 1 (anti-PD-1) antibody 
therapy, were used as external cohorts (41,42). The risk 
scores between responders (R) and non-responders (NR) in 
the above cohorts were compared.

Evaluation of the prognostic signature by quantitative 
real‑time polymerase chain reaction (PCR)

Fifty-five pairs of LUAD and matched adjacent normal 
tissue samples were collected for reverse transcription-
quantitative polymerase chain reaction (RT-qPCR). 
Samples were obtained from patients who had been 
diagnosed with primary LUAD by pathological examination 
of tissue biopsy and had surgical resection operations at 
the Cancer Hospital of the Chinese Academy of Medical 
Sciences (Beijing, China) from September 2021 to March 
2022. The clinical information for all patients enrolled is 
listed in Table S2. The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013) and 
was approved by the Ethics Committee of Peking Union 
Medical College Cancer Hospital (Beijing, China) (No. 
NCC2021C-527). Written informed consent was obtained 
from all participants.

Tissue specimens were immediately stored in liquid 
nitrogen after resection. Total RNA was extracted from 
the tissue specimens using TRIzol reagent (Invitrogen) 
according to the manufacturer’s protocol. SuperScript II 
reverse transcriptase was used to synthesize first-strand 
cDNA from the RNA template (TaKaRa, Japan, RR047). 
Taq Pro Universal SYBR qPCR Master Mix (Vazyme, 
Nanjing) was used to perform RT-qPCR. The relative 
expression levels were normalized to those of glyceraldehyde 
phosphate dehydrogenase (GAPDH). Table S3 shows the 
sequences of the primers utilized in our study. Patients were 
divided into two groups based on the calculated risk score.

Statistical analysis

Cox prediction models were applied to evaluate the sample 
size. The K-M method with a two-sided log-rank test 
was performed to compare the overall survival (OS) of 
patients between subgroups. To assess the independent 
prognostic value of the risk model, we used univariate and 
multivariate Cox regression models. The Wilcoxon rank 
sum test was used to assess the immune cell infiltration and 
immune pathways between the two groups. The Wilcoxon 
rank-sum test or Kruskal-Wallis test was performed to 
analyze continuous variables. All statistical analyses were 
accomplished with R software (version 4.1.2), SPSS 22.0 
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(IBM Corp., Armonk, New York, USA) and GraphPad 
Prism 8.0 (GraphPad Software Inc., San Diego, CA, USA). 
A P value lower than 0.05 was considered statistically 
significant.

Results

Analysis of the TME and NFRGs at single-cell resolution

To investigate the involvement of NETs in LUAD, we 
utilized single-cell RNA sequencing (scRNA-seq) data from 
156 LUAD patients and 86 control individuals to reveal 
distinct TMEs and cell compositions. A total of 623,816 
cells were included (Figure 1A). Overall, 24 cell types were 
identified in total (Figure 1B). Compared to normal tissues, 
LUAD tissues exhibited the highest proportions of CD4 T 
cells and CD8 T cells. In addition, tumor cells, regulatory 
T cells (Tregs) and neutrophils were overwhelmingly 
increased in LUAD tissues (Figure 1C). To further 
elucidate the interactions between the above cells, cell-cell 
communication analysis was conducted (Figure 1D). The 
potential outgoing and incoming signals as well as the paired 
molecules in specific signaling pathways were assessed. 
As illustrated in Figure 1D, tumor cells were the major 
signal provider and receptor. Neutrophils appeared to send 
signals by the secreted class 3 semaphorin protein (SEMA3) 
signaling pathway and receive signals by the noncanonical 
WNT (ncWNT) s igna l ing  pathway (Figure  1E ) .  
The role of neutrophils in promoting tumors is partly due 
to their ability to produce NETs (43). Subsequently, we 
sought to determine the differential expression of NFRGs 
among distinct cell types. According to Figure 1F, TLR2, 
TNF, S100A8, S100A9, MMP9, LYZ, Enolase 1 (ENO1), 
CTSC, CAT, CTSG, BPI, and AZU1 were expressed in 
almost every cell type. In contrast, TLR2, S100A12, 
and CTSG were specifically expressed in neutrophils. In 
addition, TKT, LTF and AZU1 were mostly expressed in T 
cells, ciliated cells and myeloid cells (Figure 1F). Overall, 
these findings suggest that NETs play a key role in the 
development of LUAD. 

Identification of NFRGs between LUAD tumor tissue and 
normal tissue samples and construction of a prognostic 
signature

To assess the differentially expressed NFRGs, data for 497 
cancer and 54 normal tissue samples were downloaded 
from the TCGA database. A heatmap illustrated that 21 

NFRGs were differentially expressed between tumor and 
adjacent nontumor tissues (Figure 2A). To construct a 
prognostic model, univariate Cox regression analysis was 
performed to screen genes with a prognostic value. As a 
result, six genes (CAT, CTSG, ENO1, MNDA, TLR2 and 
TLR4) met the criteria of P<0.05 and thus were considered 
related to survival. Among them, ENO1 was associated 
with an increased risk of mortality with a hazard ratio 
(HR) >1, while the other five genes (CAT, CTSG, MNDA, 
TLR2 and TLR4) were protective genes with HRs <1 
(Figure 2B). Furthermore, the protein levels of these 6 
genes were compared using the online website UALCAN. 
CAT, CTSG, and MNDA were downregulated, while 
ENO1 and TLR2 were upregulated in primary tumor 
tissues. However, the protein expression level of TLR4 
seemed to be extremely low (Figure 2C). Next, LASSO 
Cox regression analysis was performed to construct a 
4-gene-based signature according to the optimum λ 
value (Figure 2D,2E). The risk score was calculated as 
follows: risk score = ∑[CAT*(−0.220535782175529) 
+  C T S G * ( − 0 . 0 3 6 8 6 5 7 5 1 5 1 7 9 5 3 2 )  +  E N O 1 * 
(0.156333581719548) + TLR2*(−0.150335127077594)] 
(Figure 2F).

Evaluation of the prognostic performance of the NFRG-
based signature

To validate the prognostic model, TCGA-LUAD patients 
were employed as our training cohort, and a GEO 
cohort containing 393 LUAD patients (GSE72094) 
was employed as the test cohort. Patients were divided 
into high- and low-risk groups based on the median risk 
score. K-M analysis indicated a significant difference in 
the survival rate between the low- and high-risk groups 
(P<0.001, Figure 3A,3B). Patients in the low-risk group 
(blue dotted line) were found to have longer survival times 
and lower death rates than those in the high-risk group 
(red dotted line). In addition, ROC curve analysis showed 
that our signature showed robust predictive efficacy in 
the training cohort (AUC =0.677 for 1-year, 0.639 for 
3-year, and 0.583 for 5-year survival) (Figure 3C) and 
test cohort (AUC =0.653 for 1-year, 0.673 for 3-year, 
and 0.747 for 5-year survival) (Figure 3D). Risk plots 
exhibited satisfactory separation between the two groups  
(Figure 3E,3F). Additionally, Brier score in both train 
cohort and test cohort were less than 0.25, which 
suggested a robust predicting power of the signature 
(Figure 3G,3H).



Wang et al. Prediction model of NFRGs for survival and ICB response in LUAD3412

© AME Publishing Company.   Transl Lung Cancer Res 2024;13(12):3407-3425 | https://dx.doi.org/10.21037/tlcr-24-463

Figure 1 Landscape of NFRG expression and the TME in LUAD patients at single-cell resolution. (A) UMAP plot showing profiled cells 
according to disease type. Red represents LUAD samples, and green represents normal control samples. (B) UMAP plot showing 24 main 
cell type clusters of 623,816 cells. (C) Cell proportion changes in the TME of LUAD samples compared with normal control samples. (D) 
Number of interactions (left) and interaction strength (right) constructed by CellChat in the LUAD cohort. Thicker lines indicate more 
interaction with other types of cells. (E) Heatmap depicting the relative strength of each signaling pathway network for each cell type 
with incoming (right) and outgoing (left) signaling patterns. (F) Bubble plot comparing expression of NFRGs between LUAD and normal 
control samples across 24 main cell types. UMAP, uniform manifold approximation and projection; LUAD, lung adenocarcinoma; NK, 
natural killer; NFRGs, neutrophil extracellular trap formation-related genes; TME, tumor microenvironment.
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Figure 2 Construction of a 4-NFRG-based prognostic signature. (A) Heatmap showing differential expression of 21 NFRGs between 
LUAD and control tissue samples. Red represents high expression, and blue represents low expression. (B) Forest plot showing univariate 
Cox regression analyses of NFRGs on the overall survival of LUAD patients. (C) Protein level expression of NFRGs in the UALCAN 
database of LUAD patients (data from the CPTAC database). (D) Coefficients of four NFRGs were selected by the lambda with the 
minimum binomial deviance marked by the black dashed line [ln(lambda) = −4.6]. (E) The LASSO binomial model fitting process. Each 
curve represents a variable. (F) Table showing genes and corresponding coefficients in the prognostic model. Student’s t-test was used to 
generate a P value. The P value cutoff was 0.05. *, P<0.05; **, P<0.01; ***, P<0.001. NFRG, neutrophil extracellular trap formation-related 
genes; LUAD, lung adenocarcinoma; Coef, coefficients; LASSO, least absolute shrinkage and selection operator; UALCAN, University of 
ALabama at Birmingham CANcer data analysis Portal. 
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Figure 3 Evaluation of the prognostic model in the training cohort and test cohort. (A,B) Kaplan-Meier curves for survival status and 
survival time in the TCGA training cohort and test cohort. (C,D) The ROC curves demonstrating the potential of the prognostic model 
in predicting 1-, 3-, and 5-year OS in the training and test groups. (E,F) Risk distribution of high- and low-risk groups across survival time 
in the training and test groups. (G,H) Model performance of the prognostic model by Brier score and AUC curve. TCGA, The Cancer 
Genome Atlas; LUAD, lung adenocarcinoma; AUC, area under curve; ROC, receiver operating characteristic; OS, overall survival.
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Independent prognostic value of the risk signature and 
construction of a nomogram for survival prediction

Univariate and multivariate Cox regression analyses were 
conducted to evaluate whether the risk signature could 
independently predict prognosis. Univariate Cox regression 
analysis showed that our risk signature was an independent 
prognostic factor in the TCGA (HR =4.270, 95% CI: 
2.257–8.080, Figure 4A) and GEO cohorts (HR: 4.962, 95% 
CI: 2.540–9.691, Figure 4B). Multivariate analysis indicated 
that the risk score was still a prognostic factor in both 
cohorts after adjusting for other confounding factors (HR 
=3.656, 95% CI: 1.924–6.949, Figure 4C; HR =4.589, 95% 
CI: 2.280–9.234, Figure 4D). Additionally, to develop a more 
applicable quantitative analytic algorithm that could be used 
in the clinic to predict LUAD patients’ expected survival, 
a nomogram was constructed by integrating the risk status 
and common clinical characteristics (age, sex, clinical 
stage, and risk score). These variables were employed to 
calculate the individual sample’s score as well as the total 
score for evaluating 1-, 3- and 5-year survival probabilities  
(Figure 4E). Moreover, calibration curves were developed to 
show the consistency between the actual prognostic value 
and the value calculated by the nomogram. The calibration 
curves exhibited a near optimal performance, suggesting 
that our predictive nomogram was accurate (Figure 4F).

Correlations between the risk signature and 
clinicopathological characteristics

Based on the above, we found a significant independent 
prognostic risk signature for patients with LUAD. To 
further assess the roles of NFRGs in the development of 
LUAD, we sought to explore clinicopathological features 
that were associated with the risk signature. All patients 
in the TCGA-LUAD cohort were ranked by the formula 
score and then divided into high- and low-risk groups. 
Age, the extent and size of the primary tumor, and distant 
metastasis status had no significant correlation with the risk 
score (Figure 5A). In contrast, patients who had higher risk 
scores seemed to have an advanced clinical stage (Figure 5B)  
and more severe lymph node metastases (Figure 5C). 
Interestingly, except for Epidermal Growth Factor Receptor 
(EGFR) mutation, the relative risk scores were obviously 
higher for the group with other mutation statuses compared 
with the wild-type group (Figure 5D). In addition, patients 
with Tumor Protein p53 (TP53) mutations had the highest 
risk. Furthermore, we performed a stratified survival analysis 

and identified that higher risk scores were associated 
with unfavorable clinical outcomes only in the KRAS 
proto-oncogene, GTPase (KRAS) mutation group, not in 
TP53 and EGFR co-mutation group and wild type group  
(Figure 5E-5G). These results indicate that NFRGs are 
closely associated with LUAD progression and prognosis.

Relationship between the prognostic risk signature and 
chemotherapy drug sensitivity

Functional annotation was further performed using 
ssGSEA. Based on previously reported signatures  
(Table S4), we calculated the enrichment scores of the top 
10 common oncogenic pathways in the high- and low-
risk groups. The MYC, NOTCH, nuclear factor erythroid 
2-related factor 2 (NRF2), Wnt/β-catenin (WNT), 
phosphatidylinositol 3-kinase (PI3K) and cell cycle–related 
pathways had higher ssGSEA scores in the high-risk group; 
conversely, the receptor tyrosine kinase/RAS (RTK/RAS) 
pathway was remarkably enriched in the low-risk group 
(Figure 6A). Accordingly, we evaluated the sensitivity of 
chemotherapeutic drugs targeting different oncogenic 
pathways. Patients in the low-risk group exhibited lower 
half-maximal inhibitory concentration (IC50) values for 
drugs targeting the cell cycle (Figure 6B), PI3K (Figure 6C),  
WNT (Figure 6D), c-Jun N-terminal kinase (JNK)  
(Figure 6E), and poly ADP-ribose polymerase (PARP) 
(Figure 6F) pathways. These results suggested that the risk 
signature helped to predict chemotherapy drug sensitivity 
in LUAD patients.

Assessment of the TME and prediction of immunotherapy 
response

To evaluate the distinct TME between the low- and high-
risk groups, we further compared the enrichment scores of 
16 types of immune cells and the activity of 15 infiltrating 
immune cells and 14 immune-related pathways in the 
TCGA cohort by applying the ssGSEA score. A heatmap 
illustrated that antitumor immune cells were excessively 
enriched in the low-risk group, suggesting that the low-risk 
group exhibited a more active immune microenvironment 
(Figure 7A). In addition, the Estimation of STromal and 
Immune cells in MAlignant Tumor tissues (ESTIMATE) 
algorithm was used to quantify the overall infiltrating 
immune cells and stromal cells. The results confirmed 
that the low-risk patients had higher immune scores and 
ESTIMATE scores than the high-risk individuals in the 

https://cdn.amegroups.cn/static/public/TLCR-24-463-Supplementary.pdf
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Figure 4 Construction of a nomogram based on the 4-NFRG prognostic model. (A,B) Univariate analyses showing the value of the 
prognostic model in the TCGA training cohort and test cohort. (C,D) Multivariate analyses showing the value of the prognostic model in 
the TCGA training cohort and test cohort. (E) Nomogram for predicting the 1-, 3-, and 5-year OS of LUAD patients in the TCGA training 
cohort. (F) Calibration curve of the nomogram to predict 1-, 3-, and 5-year OS in the training cohort. *, P<0.05; ***, P<0.001. TCGA, The 
Cancer Genome Atlas; LUAD, lung adenocarcinoma; OS, overall survival; NFRG, neutrophil extracellular trap formation-related genes.
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Figure 5 Assessment of the correlation between the 4-NFRG prognostic model and different clinicopathological characteristics in TCGA-
LUAD patients. (A) Heatmap showing expression profiles of the four NFRGs and their associations with clinicopathological characteristics 
in the high-risk and low-risk groups. (B,C) Beeswarm boxplot depicting the significant difference in risk scores in LUAD patients stratified 
by clinical stage and N stage. (D) Relative risk score in LUAD patients with different mutation statuses. (E-G) Kaplan-Meier curves for 
survival status and survival time in wild-type, TP53 and EGFR co-mutation, and KRAS mutation groups. P<0.1 was considered significant 
(log-rank test). ns, no significance; *, P<0.05; **, P<0.01; ***, P<0.001. TP53, Tumor Protein p53; EGFR, epidermal growth factor receptor; 
KRAS, KRAS proto-oncogene, GTPase; NFRG, neutrophil extracellular trap formation-related genes; TCGA, The Cancer Genome Atlas; 
LUAD, lung adenocarcinoma.
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Figure 6 Relationship between the prognostic risk model and chemotherapy drug sensitivity. (A) Bar plot showing scores of 10 oncogenic 
pathways based on ssGSEA between high- and low-risk groups. (B-F) Boxplot depicting the estimated IC50 values of five kinds of 
chemotherapeutic drugs that targeted various pathways (cell cycle, PI3K, WNT, JNK, PARP) in high- and low-risk groups. *, P<0.05; 
**, P<0.01; ***, P<0.001. ssGSEA, single-sample gene set enrichment analysis; IC50, half-maximal inhibitory concentration; PI3K, 
phosphatidylinositol 3-kinase; WNT, Wnt/β-catenin; JNK, c-Jun N-terminal kinase; PARP, poly (ADP-ribose) polymerase.
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Figure 7 Assessment of the TME and immune checkpoint molecules between two risk groups. (A) Heatmap profiling of tumor-infiltrating 
immune cells and immune activities between high- and low-expression groups in the LUAD cohort. (B) Violin plots comparing the stromal 
score, immune score, ESTIMATE score and tumor purity between the two risk groups. (C) Box plots of the TIDE score, T-cell exclusion 
score, CAF score and MDSC score between the two risk groups. (D) mRNA expression of immune checkpoint molecules between the two 
risk groups. (E) Boxplots illustrating treatment response [complete nonresponse (NR) and response (R)] to immunotherapy in high- and 
low-risk groups in NSCLC cohorts. *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001. ESTIMATE, Estimation of STromal and Immune 
cells in MAlignant Tumor tissues; TIDE, tumor immune dysfunction and exclusion; CAF, cancer-associated fibroblast; MDSC, myeloid-
derived suppressor cells; TPM, transcripts per million; NSCLC, non-small cell lung cancer; ICB, immune checkpoint blockade; TME, 
tumor microenvironment; LUAD, lung adenocarcinoma. 
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TCGA cohort (Figure 7B).
Given the above results, we hypothesized that patients 

in the low-risk group might gain more benefit from 
immunotherapies. It has been reported that TIDE 
is an accurate method for predicting cancer patient 
responsiveness to ICI therapies (40). As expected, patients 
in the high-risk group had higher TIDE scores, T-cell 
exclusion scores, CAF scores and MDSC scores, indicating 
a higher probability of tumor immune escape and a lower 
likelihood of benefiting from anti-PD-1/CTLA4 therapy 
(Figure 7C). Moreover, the mRNA expression levels of 
CTLA4, TIGIT, HAVCR2 and CD47 were remarkably 
upregulated in the low-risk group (Figure 7D). Moreover, 
risk scores were slightly higher in non-responders (NR) 
than in responders (R) in two independent NSCLC 
immune checkpoint blockade (ICB) cohorts. Altogether, we 
concluded that the risk signature could serve as a biomarker 
for predicting immunotherapeutic benefits.

Evaluation of the expression levels of the four NFRGs in 
LUAD tumor tissues by RT-qPCR

We subsequently validated our bioinformatics analysis 
results in our own cohort of 58 LUAD patients. RT-qPCR 
was utilized to quantify the expression levels of the four 
NFRGs (CAT, CTSG, ENO1, TLR2). Compared with the 
corresponding nontumor tissue samples, the relative mRNA 
expression levels of ENO1 and TLR2 were significantly 
higher, but those of CTSG and CAT were lower in tumor 
tissue samples (Figure 8A). Based on our risk formula, 
every patient received a risk score, so they were divided 
into low- and high-risk groups based on the median risk 
score. Patients who had lymph node metastasis and distant 
metastasis had higher risk scores (Figure 8B,8C). Similarly, 
the lower the differential status was, the higher the risk 
score (Figure 8D). Moreover, the ratio plot showed that 
patients in the high-risk group had more severe lymph node 
metastasis (Figure 8E) and distant metastasis (Figure 8F) and 
worse differential status (Figure 8G).

Discussion

In this study, we first evaluated the composition of 
the TME in LUAD patients at single-cell resolution. 
Similar to Treg cells, tumor-associated neutrophils were 
substantially increased in LUAD samples. Previous studies 
have indicated that neutrophils are the most dominant 
immune cells in NSCLC and might have multiple cross-

talk connections with other cells (44-48). Our analysis 
illustrated that neutrophils mainly interacted with tumor 
cells through the SEMA3 and ncWNT signaling pathways, 
which are associated with tumor angiogenesis, malignant 
cell proliferation, invasiveness, and metastasis (49-51). 
More importantly, the tumor-promoting role of neutrophils 
is in part conferred by their ability to produce NETs (43). 
NET formation occurs when neutrophils are stimulated by 
microorganisms, cytokines, chemicals, immune complexes 
or tumor cells (52-54).

Therefore, we characterized the differential expression 
of NFRGs at both the scRNA-seq and bulk RNA-seq levels 
in LUAD samples. We found that most of these genes were 
significantly differentially expressed; more importantly, six 
genes (CAT, CTSG, ENO1, TLR2, TLR4, MNDA) were 
considered independent prognostic factors.

Based on these survival-related genes, we constructed 
a 4-gene risk signature through LASSO Cox regression 
analysis. Its prognostic value was then validated to be 
robust and sensitive in training and test cohorts. Moreover, 
as chemotherapy is one of the main treatment strategies 
for LUAD, we systematically explored the discrepancy in 
chemotherapy drug sensitivity between the low-risk and 
high-risk groups. Notably, patients in the low-risk group 
exhibited lower IC50 values for drugs that target the cell 
cycle, PI3K, WNT, JNK and PARP pathways. Taken 
together, our risk model might provide new insight for the 
individual management of LUAD patients with distinct risk 
scores.

Further analysis indicated that LUAD patients who had 
an advanced clinical stage and severe lymph node metastasis 
tended to have higher risk scores. Interestingly, the role 
that NETs play in tumor metastasis is an emerging topic 
of interest. On the one hand, NETs have been shown to 
promote tumor cell migration and invasion in LUAD (11).  
On the other hand, NET accumulation in the lungs leads 
to dormant cell awakening and subsequent metastatic  
growth (55). Strikingly, our stratified survival analysis 
indicated that higher risk scores were associated with 
unfavorable clinical outcomes specifically in the TP53 and 
EGFR co-mutation group and KRAS mutation group, which 
are the most commonly mutated genes in LUAD (1). A 
previous study has suggested that KRAS-mutant tumor cells 
may induce stronger NETs of tumor-infiltrating neutrophils 
through upregulation of CXCL8 (56). To a certain extent, 
our risk model helped to stratify LUAD patients with 
distinct clinical and mutational statuses. In addition, NETs 
might serve as a potential target for LUAD patients with 
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Figure 8 Evaluation of expression levels of the four NFRGs in LUAD tumor tissues by RT-qPCR. (A). Relative expression of the four 
NFRGs in 58 LUAD tumor tissues and paired adjacent nontumor tissues. (B-D) Boxplots showing the distribution of N stage (B), M stage 
(C), and differentiation (D) in the cohort of 58 LUAD patients. (E-G) Bar graphs illustrating the ratio of clinical characteristics: N stage (E), 
M stage (F), and differentiation (G) in the high- and low-risk groups in the evaluation cohort. P values were calculated using the Wilcoxon 
test or after assessment of normality. Besides, the continuity-corrected chi-square test was applied to explore the differences of categorical 
variables between low- and high- risk groups. NFRGs, neutrophil extracellular trap formation-related genes; LUAD, lung adenocarcinoma; 
RT-qPCR, reverse transcription-quantitative polymerase chain reaction.
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KRAS mutations.
Currently, immunotherapy has exhibited great potential 

as a novel strategy for LUAD treatment (57). However, 
responses to immunotherapy vary among individuals, 
possibly due to the low tumor mutational burden (TMB), 
immunosuppressive TME, and low expression of immune 
checkpoint molecules (58,59). Therefore, discovering 
effective biomarkers for predicting which groups of 
LUAD patients could benefit from immunotherapy is of 
great urgency. Our study demonstrated that antitumor 
immune cells were substantially enriched and that the 
ESTIMATE score was significantly higher in the low-risk 
group, indicating a more active immune microenvironment. 
Moreover, our 4-NFRG-based prognostic risk score was 
negatively correlated with the expression levels of immune 
checkpoint molecules such as CTLA4, TIGIT, HAVCR2 and 
CD47, indicating that the 4-NFRG-based prognostic model 
may play a pivotal role in predicting the immunotherapy 
response. In addition, patients who had higher risk scores 
also had higher TIDE scores, T-cell exclusion scores, CAF 
scores and MDSC scores, indicating a higher probability 
of tumor immune escape and a lower likelihood of 
benefiting from anti-PD-1/CTLA4 therapy. Furthermore, 
two NSCLC immunotherapy cohorts, GSE126044 and 
GSE135222, were applied to evaluate the efficacy of our 
risk score for predicting the response to immunotherapy. 
In summary, our 4-NFRG-based prognostic signature is 
an effective biomarker for predicting immunotherapeutic 
benefits.

Next, the clinical relevance of our risk score was 
validated in a clinical cohort consisting of 58 LUAD 
patients. The relative mRNA expression levels of the four 
NFRGs (CAT, CTSG, ENO1, TLR2) were quantified by 
RT-qPCR. Consistent with the bioinformatics analysis, 
the expression levels of ENO1 and TLR2 were significantly 
higher, while those of CTSG and CAT were lower in tumor 
samples than in their corresponding nontumor samples. In 
addition, based on the risk formula generated in our study, 
the risk scores for the 58 patients were determined, and 
the patients were divided into low- and high-risk groups 
according to the median risk score. As expected, we found 
that patients with higher risk scores tended to have worse 
differential status and more severe lymph node metastasis.

Nonetheless, there are still several limitations in our 
study. First, for every LUAD patient, the relationship 
between the 4-NFRG-based risk score and the real amounts 
of NETs in tumor tissues is unclear. In the future, efforts 
should be made to evaluate their correlation and to explore 

more representative markers of NET formation. Moreover, 
the NSCLC immunotherapy cohorts enrolled in this study 
were relatively small. We believe that the predictive value 
of our risk score for immunotherapy response needs to 
be adjusted and explored in multicenter and large-scale 
prospective cohorts.

Conclusions

In brief, we systematically evaluated NFRGs at both the 
single-cell and bulk mRNA levels. We comprehensively 
validated the predictive value of the novel four NFRGs-
based risk model on the prognosis of LUAD patients in 
the TCGA cohort, GEO cohort and clinical samples. 
Our risk signature helped to stratify LUAD patients with 
distinct clinical and mutational statuses. Furthermore, 
our 4-NFRGs-based risk signature may be an effective 
biomarker to predict the immunotherapy response in 
LUAD patients. Finally, validating NETs formation might 
promote individual risk stratification, and targeting NETs 
might offer personalized therapy strategies for patients with 
LUAD.
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