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Abstract

Background: The relationship between pyroptosis and cancer is complex. It is controversial that whether pyroptosis
represses or promotes tumor development. This study aimed to explore prognostic molecular characteristics to pre-
dict the prognosis of breast cancer (BRCA) based on a comprehensive analysis of pyroptosis-related gene expression
data.

Methods: RNA-sequcing data of BRCA were collected from The Cancer Genome Atlas (TCGA) and Gene Expres-

sion Ominibus (GEO) datasets. First, pyroptosis-related differentially expressed genes (DEGs) between normal and
tumor tissues were identified from the TCGA database. Based on the DEGs, 1053 BRCA patients were divided into two
clusters. Second, DEGs between the two clusters were used to construct a signature by a least absolute shrinkage
and selection operator (LASSO) Cox regression model, and the GEO cohort was used to validate the signature. Various
statistical methods were applied to assess this gene signature. Finally, Single-sample gene set enrichment analysis
(ssGSEA) was employed to compare the enrichment scores of 16 types of immune cells and 13 immune-related path-
ways between the low- and high-risk groups. We calculated the tumor mutational burden (TMB) of TCGA cohort and
evaluated the correlations between the TMB and riskscores of the TCGA cohort. We also compared the TMB between
the low- and high-risk groups.

Results: A total of 39 pyroptosis-related DEGs were identified from the TCGA-breast cancer dataset. A prognostic
signature comprising 16 genes in the two clusters of DEGs was developed to divide patients into high-risk and low-
risk groups, and its prognostic performance was excellent in two independent patient cohorts. The high-risk group
generally had lower levels of immune cell infiltration and lower activity of immune pathway activity than did the low-
risk group, and different risk groups revealed different proportions of immune subtypes. The TMB is higher in high-risk
group compared with low-risk group. OS of low-TMB group is better than that of high-TMB group.

Conclusion: A 16-gene signature comprising pyroptosis-related genes was constructed to assess the prognosis

of breast cancer patients and its prognostic performance was excellent in two independent patient cohorts. The
signature was found closely associated with the tumor immune microenvironment and the potential correlation
could provide some clues for further studies. The signature was also correlated with TMB and the mechanisms are still
warranted.

Keywords: Pyroptosis, Breast Cancer, Prognosis, Tumor immune microenvironment, Tumor mutational burden

*Correspondence: jmli@smu.edu.cn; jiang48231@163.com BaCkground

' Guangdong Provincial Key Laboratory of Proteomics, State Key Breast cancer (BRCA) is a heterogeneous disease with
Laboratory of Organ Failure Research, Department of Pathophysiology, a high level of morbidity, accounting for 30% of cancer
School of Basic Medical Sciences, Southern Medical University, No.1023 . . .

Shatai South Road, Guangzhou 510515, Guangdong Province, China dlagnoses in females in 2020 [1]. Currently’ treatment
2 Department of Bioinformatics, School of Basic Medical Sciences, strategies of for BRCA mainly consist of surgery, chemo-
Southern Medical University, Guangzhou 510515, China therapy, endocrine therapy, trastuzumab-based antibody

©The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or

other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visithttp://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativeco
mmons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12885-022-09526-z&domain=pdf

Chen et al. BMC Cancer (2022) 22:429

therapy and radiation therapy on the basis of disease
stage and pathological characteristics [2]. Despite the
dramatic improvement in breast cancer prognosis over
the previous decades, innovative methods are still needed
to identify high-risk patients. Moreover, treatment plans
should be individualized due to the heterogeneity of
BRCA. The most significant advance in the characteriza-
tion of cancer heterogeneity over the past few decades
may be the application of DNA microarray [3] and next-
generation sequencing [4] technologies over the past few
decades. In addition to clinicopathological features, indi-
vidual gene signatures could provide alternative informa-
tion to predict breast cancer prognosis [5].

Pyroptosis is a recently discovered type of pro-
grammed cell death that can lead to cell swelling and
cell membrane rupture and trigger a strong inflamma-
tory response related to innate immunity [6]. Pyropto-
sis plays a dual antitumor and tumor-promoting role in
the occurrence and development of tumors. On the one
hand, it could cause local inflammation and subsequently
provide an opportunity to relieve immunosuppression
of the tumor microenvironments (TME) [7]. Addition-
ally, chemotherapy drugs can trigger tumor cell pyrop-
tosis through different mediators [8]. On the other hand,
excessive inflammatory mediators released during pyrop-
tosis are tightly related to the tumorigenesis [9], drug side
effects [10, 11], resistance to chemotherapeutics [12] and
the acceleration of tumor development in different can-
cers [13].

The TME plays complex and paradoxical roles in
cancers, which elicit both beneficial and adverse con-
sequences for tumorigenesis [14]. A variety of immuno-
therapies, such as immune checkpoint blockade, have
been used in the treatment of cancer and yielded satis-
factory response rates [15]. However, a highly immuno-
suppressive TME accelerates tumor progression [16].
Increasing evidence shows show that in the TME the
immune cells contribute to tumor metastasis [17]. To
date, the specific relationship between pyroptosis and the
TME as well as their roles in BRCA progression are still
unclear.

In the present study, we aimed to construct a scoring
model based on pyroptosis-related genes to predict the
prognosis of BRCA patients. First, we classified 1053
female BRCA patients from the TCGA dataset into two
clusters according to their expression profiles of the
pyroptosis-related genes. Second, DEGs between the two
clusters were utilized to construct a pyroptosis-related
signature by the LASSO-Cox method. Finally, the signa-
ture was validated via multiple approaches. The signature
could predict the prognosis of BRCA patients and indi-
cate immune infiltration. Our findings suggest a potential
connection between pyroptosis, prognosis and the tumor
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microenvironment of BRCA patients, which has seldom
been reported earlier to date.

Methods

Datasets

The RNA-seq and mutation data of female BRCA
patients and the corresponding clinical data were down-
loaded from the TCGA data portal (https://portal.gdc.
cancer.gov/repository). The 1164 samples included 111
normal tissues and 1053 tumor tissues. When we per-
formed conjoint analyses, the samples with missing data
were deleted. 900 patients survived while 142 patients
had passed away at the time of the last follow-up.

In addition, the breast cancer RNA expression data
with paired clinical and follow-up information of four
external validation cohorts (including 636 samples,
GSE20685+ GSE20711+ GSE42568+ GSE88770) [18-
21] were downloaded from the GEO database (https://
www.ncbi.nlm.nih.gov/geo/). We merged the four vali-
dation cohorts and removed the batch effect. We also
adjusted and normalized the RNA expression data of
the two datasets with the “limma” (version 3.49.4) and
“sva” (version 3.42.0) R packages. 465 patients survived
while 171 patients had passed away at the time of the last
follow-up.

Identification of differentially expressed pyroptosis-related
genes

We identified 52 pyroptosis-related genes from prior
reviews, and they are presented in Table S1. The “limma”
R package was used to identify DEGs between tumor and
normal tissues from the TCGA database with a cut-off
p value of 0.05. The DEGs are annotated as follows: * if
p <0.05, ** if p <0.01, and *** if p <0.001. The “pheatmap”
R package (version 1.0.12) was used to create a heatmap
of the DEGs.

We calculated the TMB of TCGA cohort with mutation
data and Varscan software [22] and explored the muta-
tional status of the DEGs in the TCGA cohort.

We divided patients into high- and low-expression
groups based on the median expression of 52 pyroptosis-
related genes separately. Subsequently we compared the
overall survival (OS) between two groups with the “sur-
vival” (version 3.2—11) and “survminer” (version 0.4.9) R
packages and displayed them with Kaplan—Meier (KM)
curves.

Clustering patients based on the 39 DEGs

By exploring the expression pattern of the 39 pyroptosis-
related DEGs in BRCA using the “ConsensusClusterPlus”
R package (version 1.57.0), we divided patients from the
TCGA cohort into two clusters. We also compared the
overall survival between the two clusters.
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We calculated and compared the different passways
enriched between two clusters with “GSVA” (Gene Set
Variation Analysis) package [23] and displayed them in a
heatmap.

Development and validation of the pyroptosis-related
gene prognostic signature

We further employed univariate Cox regression analy-
sis (R package “survival”’) to evaluate the correlations
between the DEGs in different clusters and survival sta-
tus in the TCGA cohort. The LASSO regression model
(R package “glmnet’; version 4.1-2) was then utilized to
narrow down the candidate genes and to develop the
prognostic model. The risk score was calculated using
the following formula: risk score =expression of Gene 1 x
B1+ expression of Gene 2 * 2+ ... expression of Gene n
* Bn, where [ represents the regression coefficient of the
genes in the signature.

The BRCA patients in the TCGA cohort were divided
into low- and high-risk groups according to the median
risk score, and OS was compared between the two groups
via Kaplan—Meier analysis (“survival” and “survminer” R
packages). The “survival’, “survminer” and “time-ROC”
(version 0.4) R packages were employed to perform
1-year, 3-year, and 5-year ROC curve analyses.

The BRCA patients in the TCGA cohort were divided
into stage I-II and stage III-IV cohorts and OS were com-
pared between the two subgroups via Kaplan—Meier
analysis separately.

The clinical data (age, stage) of the patients in the
TCGA cohort were collected and analysed in combina-
tion with the risk score in our independent regression
model. Univariate and multivariate Cox regression mod-
els were employed for the analysis by the “survival” R
package.

Nomogram construction and calibration
The riskscore and relevant clinical parameters such as
age and stage were incorporated into the construction
of a prognostic nomogram via “rms” R package (ver-
sion 6.2-0) to predict 1-, 3-, and 5-year OS of BRCA
patients in the TCGA cohort. We used a calibration plot
comparing predicted and observed overall survival to
evaluate the performance of the prognostic nomogram
(method =“boot”, B=1000). The “time-ROC” (version
0.4) R package was employed to perform 1-year, 3-year,
and 5-year ROC curve analysis to evaluate the perfor-
mance of the nomogram.

We assessed the accuracy of the signature compared
with age and stage through the concordance index
(c-index) with “pec” R package.
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Display of the heatmap based on the DEGs in the signature
and the risk score

A heatmap based on the genes in the signature and the
risk score was displayed by the “limma” and “pheatmap”
R packages. We also compared the difference in clinical
features between the two risk groups and showed them
on the heatmap.

The differences of the mutational status between high-
and low-risk groups

We explored the mutational status of the top 20 genes
most frequently mutate in the BRCA samples. We further
compared the differences between high- and low-risk
groups.

GO and KEGG enrichment analysis of the genes

in the signature

BRCA patients in the TCGA cohort were divided into
two groups according to the median risk score. The
DEGs between the low- and high-risk groups were iden-
tified according to the given criteria (|log,FC| >1 and
FDR<0.05). To further explore the gene functions and
pathways between the groups, GO and KEGG analyses
were performed by applying the “clusterprofiler” (version
4.1.3) [24], “org. Hs.eg.db” (version 3.13.0) and “ggplot2”
R packages.

Explore the potential of clinical application of our
signature
We further compared the enrichment scores of 16 types
of immune cells and 13 immune-related signaling path-
ways between the low- and high-risk groups in the TCGA
cohort by employing single-sample gene set enrichment
analysis (ssGSEA). The “GSVA” (version 1.41.3) and
“GSEABase” (version 1.55.1) R packages were utilized to
calculate the scores of infiltrating immune cells and to
evaluate the activity of immune-related pathways. The
“ggpubr” package was used to display the box plots.

BRCA patients in the TCGA cohort were divided
into different immune subtypes: Wound Healing (C1),
IFN-gamma Dominant (C2), Inflammatory (C3), Lym-
phocyte Depleted (C4), Immunologically Quiet (C5),
TGEF-beta Dominant (C6) [25]. We compared differences
of immune subtypes between high- and low-risk groups.

We also summarized documented immune check-
points and calculated the correlations between the
riskscore, expression of every gene in the signature and
the expression of immune checkpoints. Subsequently we
displayed the correlations with a heatmap.

To further explore the clinical application value of
our signature, we calculated the TMB of TCGA cohort
with mutation data. Then we evaluated the correlations
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between the TMB and riskscores of the TCGA cohort.
We also compared the TMB between the low- and high-
risk groups in the TCGA cohort and displayed that it
with “ggplot2” and “ggExtra” R packages.

We calculated the optimal TMB cutoff value using the
“surv_cutpoint” function in “survminer” R package and
divided the BRCA patients in the TCGA cohort into low-
and high-TMB groups. Then we compared OS between
the two groups via Kaplan—Meier analysis. In the same
way, to evaluate the mixing functions of riskscore and
TMB, we divided the BRCA patients into four groups by
TMB and riskscore. Then we compared OS among the
four groups.

Statistical analysis

The gene expression between the normal and tumor
samples of BRCA was compared via single-factor analy-
sis of variance. The differences of clinical characteristics
between high- and low-risk groups were compared with
the pearson chi-square test. The differences of immune
cells and functions infiltration scores between high- and
low-risk groups was compared with wilcox test. The cor-
relation between TMB and riskscore was calculated with
spearman rank correlation. The correlations between the
riskscore, expression of every gene in the signature and
the expression of immune checkpoints were also cal-
culated with spearman rank correlation. All statistical
analyses were performed with R software (v4.1.0), and
p <0.05 was selected as statistically significant.
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Results

Identification of 39 DEGs between normal and tumor
tissues

The general workflow of this study is displayed in Fig. 1.
The 52 pyroptosis-related gene expression levels were
compared in 111 normal and 1053 tumor tissues, and
we identified 39 differentially expressed genes (DEGs).
Among them, 17 genes were downregulated while the
other 22 genes were upregulated in the tumor group.

We calculated the OS differences of the 52 genes and
listed them in Table S2. We displayed the OS differences
of 9 genes closely related with pyroptosis occurrence
such as GSDMD, GSDME, CASP8, NLRP7. The expres-
sion of the 9 genes were all positively correlated with the
OS of BRCA patients.

The RNA expression levels of these DEGs and their
differences are presented as a heatmap in Fig. 2A. The
mutational status of every DEG are shown in Fig. 2B. The
TMB scores of TCGA cohort were listed in Table S3. The
most frequently mutant gene is caspase-8 which plays a
crucial role in pyroptosis.

Patients were stratified into two clusters based

on the DEGs

The consensus clustering analysis indicated that the cor-
relations were high between two clusters when k=2,
which meant that the 1053 BRCA patients could be well
divided into two clusters based on the 39 DEGs (Fig. 3A).
The overall survival (OS) of cluster C2 was significantly
better than C1(p =0.027, Fig. 3B).

Normal (n=111)
TCGA I:
Tumor (n=1053)

!

DEGs between tumor and normal
(n=39)

!

Consensus clustering matrix(k=2)

!

DEGs between two clusters
(n=140)

l

| 16-gene signature |

1

f Univariate &
KM %egtocgr?;é;am & multivariate COX&
Nomogram

T™B immune infiltration differences
differences between high- and low-risk groups

Fig. 1 The flowchart of data collection and analyses




Chen etal. BMC Cancer  (2022) 22:429 Page 5 of 16

Jnammm Type Type
CASP3***

‘ WW i ) m 'Hlff I
e (w "' i A ?
i : e

'” "!A'” ” lh' ww IH

\ H H I‘ i\l
! ll" .| -

W I I‘ ‘ I l} \ | EZ\?EE I 5
l Il ” . { FEE;;;; I_o5
‘ i
| “ |||| h 'l “ « ‘“ w |\|\ ‘ ' %Em

tl M " o e
i < i X. i

)
Nj i W

M"M ' m

ﬁ%z—

Ihi
? v l“"si t

NNNNN

ngEp fh39pyp related DEGs a dh amo ghmAThh mpfhpyp related differe
DEG)b etwe ormal and h umo P I s we h wed as: *p <0.05, **p <0.01, **p < 0001 B The mu onaI
f yDEG nd the TMB f mpl . Differe d te different mu n types




Chen etal. BMC Cancer ~ (2022) 22:429 Page 6 of 16

A Consensus matrix k=2 B 1.00 Cluster
== C1
- == C2
% 0.75
©
Q
[
o
.g 0.50
bt
]
(2]
0.25
p=0.027
0.00
012345678 910111213141516171819202122232425
Number at risk Time (years)
—
% C1] 742621397291216 163123 87 68 41 31 24 16 15 11 9 8 8 6 6 5 5 3 2 0 0
=
6 Cc2 291246172128101 78 66 45 30 15 8 5 3 3 3 3 3 3 3 2 1 0 0 0 0 O

012345678 910111213141516171819202122232425
Time (years)

C

Cluster Cluster
KEGG_PRIMARY_IMMUNODEFICIENCY I g;

KEGG_AUTOIMMUNE_THYROID_DISEASE
KEGG_ALLOGRAFT_REJECTION
KEGG_GRAFT_VERSUS_HOST_DISEASE
KEGG_TYPE_|_DIABETES_MELLITUS
KEGG_INTESTINAL_IMMUNE_NETWORK_FOR_IGA_PRODUCTION
KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION
KEGG_ASTHMA
KEGG_NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY
KEGG_LEISHMANIA_INFECTION
KEGG_HEMATOPOIETIC_CELL_LINEAGE

KEGG_VIRAL_MYOCARDITIS

} \|H I )
|

| ‘H ‘ KEGG_CYTOSOLIC_DNA_SENSING_PATHWAY

HH '
" H |‘ ‘ N '

H ‘ ‘ ‘ ‘ ‘ H” H| ’ KEGG_TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY

KEGG_CHEMOKINE_SIGNALING_PATHWAY
KEGG_T_CELL_RECEPTOR_SIGNALING_PATHWAY
KEGG_CELL_ADHESION_MOLECULES_CAMS
KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION
KEGG_B_CELL_RECEPTOR_SIGNALING_PATHWAY

KEGG_NOD_LIKE_RECEPTOR_SIGNALING_PATHWAY

Fig. 3 Patients stratified into two clusters based on the DEGs. A 1053 BRCA patients were divided into two clusters according to the consensus
clustering matrix (k=2). B Kaplan-Meier overall survival (OS) curves of the two clusters. C Gene Set Variation Analysis (GSVA) analysis indicated that
immune related passways enriched more in C2 than in C1

GSVA analysis indicated that immune related passways  ldentification of a 16-gene signature in the TCGA cohort
such as primary immunodeficiency passway significantly =~ After univariate Cox regression analysis, 140 genes
enriched more in cluster C2 than C1 (Fig. 3C). met the criteria of p <0.02 and were retained for

further analysis. Among them, 2 genes (ATP8A2,
PXDNL) were associated with increased risk (HRs > 1),
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Table 1 The genes involved in the signature and their
coefficients

No. Genename  Coef No. Genename  Coef

1 ATP8A2 0.10922 9 CLIC6 —0.05064
2 PXDNL 0.09159 10 IL27RA —0.05944
3 IGLLS —0.00254 1 CXCL1 —0.06532
4 PIGR —0.02008 12 KLHDC7B —0.09290
5 LIMD2 —0.02222 13 APOBEC3D —0.10388
6 PSMB8 —0.02651 14 ELOVL2 —0.10436
7 MATK —0.03621 15 PLAT —0.10957
8 CHI3L1 —0.05035 16 KLRB1 —0.12656

while the other 138 genes were protective genes (HRs
< 1) (Table S4). By performing least absolute shrinkage
and selection operator (LASSO) regression analysis,
a 16-gene signature was constructed according to the
optimum X\ value (Fig. 4A, B). The risk score could be
calculated using the data in Table 1.

Validation of the risk signature
Patients from the TCGA dataset were stratified into low-
and high-risk groups based on the median. A notable
difference in OS was detected between the low- and high-
risk groups (p <0.001, Fig. 5A). Time-dependent receiver
operating characteristic (ROC) analysis was applied to
evaluate the sensitivity and specificity of the prognostic
model, and the area under the ROC curve (AUC) was
separately 0.756 for 1-year survival, 0.752 for 3-year sur-
vival, and 0.723 for 5-year survival (Fig. 5C).

Based on the median risk score of the TCGA cohort,
620 patients from the GEO dataset were divided into

low- and high-risk groups. OS of low-risk group is also
better than that of high-risk group (»p =0.001, Fig. 5B).
The AUC was separately 0.751 for 1-year survival, 0.682
for 3-year survival, and 0.651 for 5-year survival (Fig. 5D).

Based on the stage, we divided patients into stage I-1I
and stage III-IV groups. OS of low-risk group is better
than high-risk group (both p <0.001, Fig. 5E and F).

Univariate Cox regression analysis indicated that the
riskscore was an independent factor capable of predict-
ing poor survival in the TCGA cohort (Fig. 6A). The
multivariate analysis also revealed that, after adjusting
for other confounding factors, the riskscore was a prog-
nostic factor (Fig. 6B) for patients.

Nomogram construction and validation

After the multivariate analysis, age, stage and riskscore
were significant for the prognosis and selected to con-
struct a nomogram to facilitate the prognosis predic-
tion (Fig. 6C). The corresponding score of each factor
(age, stage and riskscore) was calculated in the nom-
ogram and the total score could be used as a tool for
prediction. A calibration curve was plotted to indicate
the consistency between the actual observed prog-
nosis value and the value predicted by the nomogram
(Fig. 6D).

The performance of the nomogram was assessed and
the AUC was separately 0.790 for 1-year survival, 0.775
for 3-year survival, and 0.735 for 5-year survival (Fig. 6E).

Compared with other age and stage in the compre-
hensive prognosis prediction, the signature gave an
advantage in C-index (Fig. 6F).
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Clinical difference between different groups

In addition, we plotted a heatmap of the clinical fea-
tures and genes from the signature for the TCGA
cohort (Fig. 7A) and found that the age, T and stage

status differed significantly between the low- and high-

risk groups (*p <0.05,

LTS

P

<0.001).
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GO and KEGG mainly indicated immune response were mainly associated with the immune response,
GO enrichment and KEGG pathway analysis of DEGs  chemokine-mediated signaling pathways, and inflam-
between different risk groups indicated that the genes  matory cell chemotaxis (Fig. 7B, C).
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The mutational status of different risk groups is generally
different

We investigated and displayed the top 20 genes most
frequently mutate in the TCGA cohort. The mutational
status of high-risk group (Fig. S2A) is generally differ-
ent from low-risk group (Fig. S2B). For instance, TP53
mutated more frequently in high-risk group whereas
CDH1 mutated more frequently in low-risk group.
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The potential clinical application of the risk signature
SsGSEA of the TCGA cohort showed that the high-risk
group all had lower levels of infiltration of immune cell
infiltration than did the low-risk group (***p <0.001,
Fig. 8A). Thirteen immune pathways all showed lower
activity in the high-risk group than in the low-risk group
in the TCGA cohort (***p <0.001, Fig. 8B).

BRCA patients in the TCGA cohort were divided into
5 different immune subtypes (Table S6). Most patients
are C2 immune subtype in low-risk group whereas Most
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Fig. 8 Differences of immune cells, pathways and subtypes between different risk groups. A, B Comparison of the enrichment scores of 16 types
of immune cells and 13 immune-related pathways between low- and high-risk groups in the TCGA cohort p values were showed as: *p <0.05,
**p <0.01,***p <0.001. C BRCA patients in the TCGA cohort were accordingly divided into 5 different immune subtypes. The classifications of
immune subtypes were statistically different between high- and low-risk groups
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Fig. 9 Correlations with checkpoints. The signature was negatively correlated with most checkpoints such as TIGIT and LAG3. Several genes in the
signature such as CXCL1 and IL27RA were positively correlated with nearly all checkpoints

patients are Cl immune subtype in high-risk group.
The differences were statistically different between two
groups (Fig. 8C).

The signature was negatively correlated with most
checkpoints such as TIGIT and LAG3. Several genes in
the signature such as CXCL1 and IL27RA were positively
correlated with nearly all checkpoints (Fig. 9).

It indicated a strong correlation between our signature and
the TMB of TCGA cohort (Fig. 10A). The TMB is higher in
high-risk group compared with low-risk group (Fig. 10B).

OS of low-TMB group is better than that of high-TMB
group (Fig. 10C). When we mixed TMB and riskscore

together, OS of low-TMB+ low-risk group is better than
that of high-TMB+ high-risk group (Fig. 10D).

Discussion

In this study, we first examined the mRNA levels of 52
currently known pyroptosis-related genes in BRCA and
normal tissues and found that most of them were differ-
entially expressed. Moreover, the two clusters produced
by the consensus clustering analysis based on the DEGs
did show significant prognostic value. Then, 743 DEGs in
the two clusters were identified, among which 140 genes
met the criteria in the univariate Cox regression analysis.
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A risk signature comprising 16 genes was constructed
via LASSO Cox regression analysis, which was then
found to perform well in the TCGA and GEO datasets.
The functional analyses indicated that the DEGs between
the low- and high-risk groups were strongly related to
immune-related pathways. The high-risk group had uni-
versally decreased levels of infiltrating immune cells and
decreased activity of immune-related pathways com-
pared with those of the low-risk group.

Pyroptosis, a novel and recently discovered form of
programmed cell death, was found to play a dual-role
across different cancers in recent years. A PD-L1-medi-
ated switch from apoptosis to pyroptosis has also been
reported to facilitate tumor necrosis [26], which may
promote tumor growth and impede antitumor immunity
[27]. Gao et al. found that higher GSDMD expression
may help tumors evade the innate immune response and
indicates a poor prognosis in non-small-cell lung cancer

(NSCLC) [28]. However, another study demonstrates that
GSDME acts as a tumor suppressor by activating pyrop-
tosis, enhancing antitumor immunity [29]. Pyroptosis-
induced inflammation in the TME could stimulate the
immune system through the activation of immune cells
and immune pathways, which consequently improve the
efficiency of cancer immunotherapies [30]. How pyropto-
sis functions in tumor tissues and influences the survival
of BRCA patients remains unknown. Our study demon-
strated that most pyroptosis-related genes changed with
tumorigenesis and were correlated with better outcomes
in breast cancer. We also generated a signature featur-
ing 16 pyroptosis-related genes and found that it could
predict OS in BRCA patients. Surprisingly, these genes
were strongly related to immune cells and immune-
related pathways. Based on the results of our GO and
KEGG analyses, it is reasonable to speculate that pyrop-
tosis can regulate the composition of the tumor immune
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microenvironment (TIME). Moreover, it also indicates a
strong correlation between our signature and the TMB
and the signature could to predict the TMB of breast can-
cer patients.

In clinical practice, monoclonal antibodies that target
immune checkpoints have led to great breakthroughs in
cancer therapeutics. Several PD-1/PD-L1 and CTLA-4
inhibitors have been approved for cancer treatments [31].
Due to the importance and bright prospects of immune-
related treatments in cancers, more immune functions
in tumorigenesis and development should be explored.
The TME has diverse capacities to induce both beneficial
and adverse consequences during specific stages of can-
cer progression and metastasis [14, 32]. Moreover, the
TME is constantly evolving with tumor progression and
exposure to treatment, for example, with in situ-to-inva-
sive transition. The TME is composed of tissue-resident
cells and a large proportion of recruited immune cells
that can constitute up to 50% of the tumor mass in breast
cancer [33]. The presence of high levels of immune cells
has been associated with an improved prognosis or better
response to treatment in patients with breast cancer [34].
Macrophages can also possess pro- or antitumor effects.
Some previous studies indicated that tumor-associated
macrophage (TAM) infiltration might increase angiogen-
esis, enhance tumor cell mobility and invasiveness and
be associated with poor survival in breast cancer [35].
Regulatory T cells (Tregs) mainly induce immune toler-
ance and promote the immune escape of tumors [36]. A
previous study showed that high numbers of Tregs were
associated with poor survival in ovarian cancer [37]. In
a metastasis model, tumor metastasis was accompa-
nied by increased numbers of Treg cells in the primary
tumors, which suggests that Treg cell recruitment to the
primary tumor facilitates immune escape and tumor
metastasis [38]. This means that Tregs play a deleterious
role in tumor metastasis, which is inconsistent with the
results of our study. Here, Tregs scored high in low-risk
group. The possible reason for this discrepancy is that in
advanced tumor stages, Tregs may decrease to a relatively
low level as the immune function of patients is com-
pletely destroyed.

In our signature, most genes are tightly linked to
the TIME in cancer. For instance, As a surface marker
on several T cell subsets [39] and NK cells, killer cell
lectin-like receptor subfamily B member 1 (KLRB1)
encodes CD161 and reflects tumor-associated leu-
kocytes. The expression of KLRB1 was closely associ-
ated with favorable outcomes in a pan-cancer research
[40]. C-X-C motif chemokine ligand 1 (CXCL1), as a
relatively specific biomarker of tumor-associated mac-
rophages (TAMs), promotes breast cancer migration
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and invasion via NF-kB/SOX4 activation [41]. Chi-
tinase 3-like protein 1 (CHI3L1), secreted by M2 mac-
rophages, promotes the metastasis of breast cancer cells
by binding interleukin-13 receptor a2 chain (IL-13Ra2)
on the membranes of cancer cells [42]. Some genes
contribute a lot to the riskscore, however, their roles
in breast cancer were largely unstudied, for instance,
Peroxidasin like (PXDNL), ATPase phospholipid trans-
porting 8A2 (ATP8A2) and plasminogen activator, tis-
sue type (PLAT). Maybe our research would provide
some clues for subsequent studies.

Notably, immune subtype C1 makes up the largest pro-
portion of high-risk groups whereas immune subtype C2
does of low-risk groups. C1 indicates Wound Healing
immune subtype which has high expression of angiogenic
genes and Th2 cell bias. C2 represents IFN-y dominant
immune subtype which has the highest M1 macrophage
polarization, CD8 T cells infiltration and T cell receptor
(TCR) diversity. Now we know that M1 macrophages are
major players in pro-inflammatory responses while M2
macrophages are the opposite [43]. Compelling evidence
point to a correlation between CD8 T cells infiltration in
tumors and enhanced adaptive immune [44, 45]. It was
also reported that TCR diversity positively related to
overall survival in breast cancer patients [46]. Maybe all
these features contribute to the relatively decreasing risk
of low-risk group.

When faced with the complexity of pyroptosis and
TIME, more in-depth studies are needed to guide routine
clinical practice. It is ideal to identify patient populations
who have a better prognosis or respond better to immu-
notherapeutic agents. In the last decade, next-generation
sequencing (NGS) technology has emerged and allowed
tremendous achievements in cancer diagnosis and analy-
sis. With lower costs and increased, NGS has become
increasingly feasible in clinical practice today [47]. When
faced with huge amounts of highly complex NGS data,
bioinformatics has become an indispensable method [48].
In our study, NGS data and bioinformatics methods were
utilized to construct and validate a simplified pyroptosis-
related signature that could not only effectively predict
the prognosis of patients diagnosed with breast cancer
but also indicate the degree of immune infiltration.

Currently, the mechanisms of pyroptosis have not been
fully explored, especially with regard to the relationship
between pyroptosis and breast cancer. Despite the draw-
backs that clinical and molecular subtypes were not ana-
lysed separately and there was a lack of experimental data
due to the availability of clinical specimens, we believe
our studies might provide some clues for clinical deci-
sion making and subsequent studies and expand the tools
available for immunotherapy.
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Conclusion

In this study, we succeeded in constructing a pyroptosis-
related 16-gene signature that could predict the progno-
sis of breast cancer patients. The signature was also found
to be closely associated with the tumor immune micro-
environment and could predict the TMB of breast cancer
patients.
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