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Transcranialmagnetic stimulationwasused to investigate corticospinal output changes in 10professional pianoplayers duringmotor
imageryof triad chords inCmajor tobe “mentally”performedwith threefingersof the righthand (thumb, index, and littlefinger). Five
triads were employed in the task; each composed by a stable 3rd interval (C4-E4) and a varying third note that could generate a 5th
(G4), a 6th (A4), a 7th (B4), a 9th (D5), or a 10th (E5) interval. The 10th interval chord was thought to be impossible in actual
execution for biomechanical reasons, as long as the thumb and the index finger remained fixed on the 3rd interval. Chords could
be listened from loudspeakers, read on a staff, or listened and read at the same time while performing the imagery task. The
corticospinal output progressively increased along with task demands in terms of mental representation of hand extension. The
effects of audio, visual, or audiovisual musical stimuli were generally similar, unless motor imagery of kinetically impossible triads
was required. A specific three-effector motor synergy was detected, governing the representation of the progressive mental
extension of the hand. Results demonstrate that corticospinal facilitation in professional piano players can be modulated according
to the motor plan, even if simply “dispatched” without actual execution. Moreover, specific muscle synergies, usually encoded in
the motor cortex, emerge along the cross-modal elaboration of musical stimuli and in motor imagery of musical performances.

1. Introduction

Since the musculoskeletal system is highly redundant, the
motor system is thought to employ a restricted set of modular
commands, or synergies, to accomplish both automatic and
goal-directed actions [1]. For example, using principal com-
ponent analysis (PCA), it has been demonstrated that few

principal components account for a great amount of variance
in the hand’s degrees of freedom (i.e., joint angles) during
maintenance of static hand postures [2]. This strategy aims
to reduce the dimensionality of motor commands with valu-
able computational advantages. Several lines of evidence both
in humans and nonhuman primates suggest that motor syn-
ergies are implemented in the corticospinal outputs. In
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rhesus macaques, a motor cortical region containing neurons
that specify functional synergies of distal and proximal mus-
cles has been identified [3, 4]. In addition, electrical microsti-
mulation of monkey’s motor cortex evokes complex and
highly coordinatedmovements across multiple joints, match-
ing common gestures in the monkey’s natural repertoire [5].
Moreover, in a kinematic study addressing hand’smovements
evoked by transcranial magnetic stimulation (TMS), PCA
revealed few synergies resembling those extracted from voli-
tional motion of the hand [6]. Recently, in a study combining
kinematic, electromyographic and neuroimaging recordings,
synergies involved in several hand postures were successfully
predicted by neural activation pattern in the motor cortex
[7]. Thesefindings suggest that neural assemblies in themotor
cortex are connected in a complex way to the periphery and
might contribute to arm movements that require the coordi-
nated activation of some muscles and relaxation of others.
Therefore, the control of movements in the motor cortex
might be organized in terms of behaviorally useful actions.

By TMS of the motor cortex, it is possible to dissect the
engagement of the motor system in planned [8] or executed
actions [9] in relation to several physiological properties.
Therefore, TMS is the most appropriate tool to investigate
changes of corticospinal output during a variety of cognitive
and motor tasks involving the primary motor cortex and
the connected brain regions [10, 11]. Motor plans dis-
patched, but not executed, towards the “prime mover” of
the imagined movement involving either wrist or intrinsic
hand muscles can be disclosed by TMS in healthy human
subjects [12–14]. Together with neuroimaging investiga-
tions, these studies converge on the conclusion that neural
networks underpinning imagined and executed actions
largely overlap and functionally engage the primary motor
cortex as a final effector area, although to a lesser extent
for motor imagery than for execution [15–17].

In the musical domain, neuroimaging investigations
comparing piano execution with imagery showed overlap-
ping activations in a widespread frontoparietal network
[18] including the premotor areas, the precuneus, and the
medial part of the left intraparietal sulcus [19, 20], but sur-
prisingly, the involvement of the sensorimotor cortex during
imagery is still controversial [19, 21]. Although TMS can
disclose the causal involvement of brain regions in cognitive
and behavioral tasks, studies investigating motor imagery
employing this technique in piano players, and in musicians
in general, have been seldom performed [22]. Moreover, the
involvement of the sensorimotor cortex during the imagina-
tion of musical performance execution would be expected in
skilled musicians, given their natural ability in translating
audiovisual musical stimuli into motor commands [23].

Here, we asked whether a cross-modal modulation of the
corticospinal output occurs in professional piano players
during motor imagery of triad chords by manipulating the
sensory modality through which chords are prompted (i.e.,
visual, auditory, or audiovisual). Triad chords were "per-
formed" with three fingers: the thumb (controlled by the
Abductor Pollicis Brevis (APB) muscle), the index finger
(controlled by the Flexor Digitorum Superficialis (FDS) mus-
cle, beyond the first dorsal interosseous muscle), and the little

finger (controlled by the Abductor Digiti Minimi (ADM)
muscle and by the synergic wrist extensor muscles Extensor
Communis Digitorum (ECD) muscle).

We reasoned that TMS-evoked responses could reflect the
recruitment of motor synergies involving the ADM muscle
(i.e., the prime mover of the experimental task, therefore the
one that should better differentiate the various experimental
conditions) and the other muscles included into the mental
representation of the progressive hand extension, as required
by the progressively larger musical intervals (from the 5th to
the extremely demanding for most subjects 10th interval).
Moreover, we added a condition inwhich the actual execution
of the chord to be mentally imagined was kinetically impossi-
ble for the tested subjects (i.e., a 10th interval chord,while keep-
ing the thumb and the index finger on the 3rd interval keys).

2. Subjects and Methods

2.1. Participants. The sample was composed of 12 fully right-
handed professional piano players (7 males, age range: 22-41
years) with more than 12 years of 4-hour daily piano practice
and master degree at the Conservatory “Luigi Cherubini”
(Florence, Italy) and at the Istituto Superiore di Studi Musi-
cali “Rinaldo Franci” (Siena, Italy). Due to data corruption,
2 subjects (1 male) were discarded from analysis. The proto-
col was approved by the Local Ethics Committee, and the
subjects gave their written informed consent to participate.
None had contraindications to TMS [24].

2.2. Paradigm and Stimuli. Participants sat in front of a table
where a piano keyboard was depicted (Figure 1) with their
arms fully relaxed. The task consisted into performing the
mental execution of 5 chords in C major with the right hand
on the presented keyboard. Chords were formed by a fixed
3rd interval (C4-E4) topped by a varying third note, resulting
in a 5th (G4), 6th (A4), 7th (B4), 9th (D5), or 10th (E5) interval
(Figure 1, column 1). The actual execution of the 10th interval
chord was thought to be kinetically impossible due to biome-
chanical constraints. An auditory, visual, or bimodal audiovi-
sual stimulus prompted the imagery of 1 of the 5 chords at
each trial. In particular, 5 auditory stimuli were used, corre-
sponding to the 5 chords digitally recorded through a
MIDI-controlled sampler playing real piano sounds. Short
staves with the chord to be imagined written on it served as
visual stimuli. In the audiovisual condition, the two stimuli
were delivered together at the same time. Stereo loudspeakers
and a PC monitor were used for auditory and visual stimuli
administration, respectively. Each stimulus lasted 3 s and
was preceded by a warning acoustic signal lasting from 1 to
2 s. An experimental constraint was that subjects were always
required to mentally execute the triads using the thumb and
the index finger for C4 and E4, respectively, and the fifth fin-
ger for the third note (Figure 1). All subjects were given the
opportunity to train with the task before starting the experi-
ment, until they were able to perform the imagery without
showing any electromyographic activity in the recorded mus-
cles. Participants were instructed to initiate motor imagery of
the visually, auditory, or audiovisually prompted chords
immediately after the appearance of the corresponding
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Figure 1: Experimental sketch. Triads were prompted through a visual, auditory, or audiovisual stimulus. The visual stimulus was the chord
written on a stave (a); small numbers over each stave denote the required fingering for each chord (i.e., 1 stands for the thumb, 2 for the index
finger, and 5 for the little finger). Participants were instructed on the fingering to employ before initiating the experiment; therefore, no
further indication on the fingers to be used were administered as chords were prompted. The imagined extension of the hand increased
across chords (b); the broken finger in the 10th interval chord denotes that the actual execution was impossible due to biomechanical
constraints.
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stimulus. The appearance of an empty stave served as a con-
trol condition during which no motor imagery was required.
All conditions and musical intervals were repeated 12 times
in a fully randomized order. The duration of the experiment
ranged from 45 to 60 minutes.

2.3. Neurophysiological Procedures. A circular nonfocal coil
connected with a Magstim 200 monophasic stimulator
(Magstim, Whiteland, Dyfed, UK) was positioned on the
vertex with its handle pointing backwards. The cortical rep-
resentations of the right Extensor Communis Digitorum
(ECD), Flexor Digitorum Superficialis (FDS), Abductor
Pollicis Brevis (APB), and Abductor Digiti Minimi (ADM)
were targeted within the left motor cortex. Motor-evoked
potentials (MEPs) were recorded by means of surface elec-
trodes placed with a tendon-belly montage and connected
to a four-channel Neuropack electromyograph (Nihon Koh-
den, Tokyo, Japan) sampling at 20 kHz with a bandpass
20Hz-5 kHz filter. The choice of a nonfocal coil guaranteed
stable simultaneous responses from all the considered fore-
arm and hand muscles, even if positioned outside the hot
spot of each muscle [25]. To the same aim, the intensity of
the TMS pulse was adjusted to obtain fairly stable motor-
evoked potentials (MEPs) simultaneously from the right
ECD, FDS, APB, and ADM muscles. The intensity of TMS
was set at 110-120% of the resting motor threshold, defined
as the minimal intensity to produce MEPs of less than
100μV in the target muscles with 50% probability.

In order to minimize habituation, each TMS pulse was
delivered following a jittered time interval ranging from 1 s
to 2 s from the deployment of the prompting stimulus, there-
fore well outside a simple reaction time that could have
biased the resulting MEPs’ amplitude [12, 13, 26, 27]. This
time served also to monitor the EMG silence in the target
muscles in the time preceding the brain stimulation. The
EMG silence preceding the TMS pulse was also monitored
using an acoustic feedback provided by the EMG recorder.
Trials contaminated by EMG or other artifacts were less than
18%, so that 8-10 MEPs per muscle were available for the
statistical analyses in each condition.

2.4. Data Analysis. For each muscle, the peak-to-peak ampli-
tudes of the MEPs obtained in each experimental condition
were averaged and expressed as a percentage of the average
MEP amplitude recorded during the control condition.

Since the assumption of normality was violated as
assessed by the Shapiro-Wilk test, nonparametric test statis-
tics were adopted. A paired sample permutation test [28]
based on a t-statistic was used to perform pairwise compari-
sons of MEP amplitude for the factor muscle, condition, and
chord; the condition by muscle, chord by muscle, and chord
by condition by muscle interactions were also evaluated. At
least 5000 permutations were run for each comparison. This
is considered an appropriate number of permutations for a
significance level of 0.05 [29]. p values were adjusted using
the false discovery rate (FDR) method [30] in order to con-
trol familywise error rate.

Nonnegative matrix factorization (NNMF) [31] was used
to extract synergies from muscle activity elicited by TMS

during motor imagery. The algorithm was fed with input
matrices containing 4 columns (i.e., 1 for each recorded
muscle) and 10 rows storing the average MEPs’ amplitude
in each subject during motor imagery of a given chord or
under one particular condition. The procedure was repeated
for all chords and conditions. Given the number of synergies
to extract, NNMF generates two output matrices whose
product approximates the original matrix, i.e., a synergy
matrix and a matrix of coefficients. An iterative method start-
ing from initial random values of synergy and coefficients is
used to minimize the root-mean-squared residual error
between the original matrix and the product of the two out-
put matrices. Inour case, the algorithmused themultiplicative
update rule [32] and ran 50000 times using different random
initial values and selected the solution corresponding to the
lowest error in reconstruction. The goodness of factorization
was assessed by means of the variance account for (VAF)
method [33], i.e., by evaluating the ratio of the sum of squared
residuals and the sum of squared residual from mean activa-
tion. Pairwise comparisons of the extracted synergies were
performed for the factor condition and chord. To this end,
the similarity between paired synergies was first assessed by
means of the dot product of their matrices of coefficients.
Then, the measured dot products were compared to the 99th

percentile of the distribution of shuffled dot products com-
puted by random labeling of the matrix of coefficients
(p < 0 01) [34].

3. Results

3.1. Pairwise Permutation Tests. For the factor muscle, pair-
wise comparisons of MEP amplitude of ECD vs. APB
(p < 0 001), ECD vs. ADM (p < 0 001), and FDS vs. APB
(p < 0 001) reached significance. A trend toward significance
was found for the comparison of FDS vs. ADM (p = 0 090)
(Figure 2). Therefore, corticospinal excitability assessed dur-
ing motor imagery of chords was greater at the APB com-
pared to the ECD and FDS and at the ADM compared to
the ECD. No significant differences in the corticospinal out-
put emerged between the APB and the ADM nor between
the ECD and the FDS.

The comparison of MEP amplitude recorded during
motor imagery of the 9th interval chord vs. the 10th interval
chord yielded a significant result (p = 0 01). Additionally, a
trend toward significance was observed with respect to the
comparison between the 6th interval chord and the 9th inter-
val chord (p = 0 09). Overall, an increase of MEP amplitude
was observed from the 5th to the 9th chord, although not sig-
nificantly. Conversely, corticospinal excitability was signifi-
cantly reduced during motor imagery of the 10th chord
compared to the 9th chord (Figure 2).

3.2. Nonnegative Matrix Factorization and Synergy
Extraction. As shown in Figure 3, following the extraction
of 2 synergies, a VAF of 83.16%, 87.47%, 91.34%, and
94.17% in the 5th, 6th, 7th, 9th, and 10th interval chords,
respectively, emerged. The first component showed a greater
coefficient for the APB than for the other muscles. Con-
versely, the ECD, FDS, and ADM were mainly represented
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in the second component. Pairwise comparisons of the syner-
gies extracted across all chords never yielded significance
using the 99th percentile of the distribution of the shuffled
dot products. However, all the dot products of the synergy’s
pairs in the first component and almost all in the second
component fell within the 95th percentile; the remaining ones
distributed below the 90th percentile.

VAF exceeded 90% after extraction of two synergies in
all the three conditions (i.e., 92.61%, 90.80%, and 93.72%
for the auditory, visual, and audiovisual condition, respec-
tively). In the auditory condition, the APB was mainly
represented in the first component, whereas ECD, FDS,
and ADM in the first. The opposite situation was observed
in the visual and audiovisual condition. Therefore, a sig-
nificant difference emerged in pairwise comparisons of au-
ditory vs. audiovisual and visual vs. audiovisual condition
(Figure 4). Conversely, the dot products of coefficients dis-
tributed below the 95th percentile of the shuffled dot prod-
uct distribution with respect to the comparison of the
visual vs. audiovisual condition. Despite the difference
observed, it is worth to note that a similar segregation in
different component was observed for the APB compare
to ECD, FDS, and ADM.

4. Discussion

It is well known that some of the most worldwide famous
piano players, as Horowitz, Schoenberg, and Rubinstein,
successfully used motor imagery as musical training or
immediately prior to a concert exhibition to improve profi-
ciency in musical performance [35]. However, neuroimaging
research has provided conflicting results on the functional
involvement of the primary motor cortex in pianists per-
forming musical imagery tasks [19, 21]. Taking into consid-
eration that hand motor synergies (i.e., the patterns of
muscle activity whose timing and amplitude modulation
enable the correct production of movements [33, 36]) are
encoded in the human primary motor cortex for hand ges-
tures [7], such lack of motor cortex involvement during

imagery is an unexpected finding that could depend upon
several, not mutually exclusive, aspects: playing or imag-
ining music require the allocation of most of functional
resources for a dynamic integration of perceptual, cogni-
tive, and emotional operations [37], so that activations
of sensorimotor areas may remain hidden at a certain
statistical mapping level. Notably, the motor executive
aspects in expert musicians are obviously overlearned
and somewhat automatized, so that they may require less
functional activation of final common effector cortices
[38, 39]: this would allow players to better concentrate on
expressivity, emotions, or online control of the produced
sounds. Obviously, not only the motor cortex controls
motor synergies for hand gestures [7]: intracortical connec-
tions [40] as well as propriospinal branching of corticosp-
inal axons are also regarded as the neural substrates of
muscle synergies involved in coordinated multijoint move-
ments [3, 40–42].

Nevertheless, converging neuroimaging and neurophys-
iological studies showed that the activity of the hand area
of the motor cortex in piano players is increased during lis-
tening of familiar musical pieces [22, 43, 44] or during the
observation of fingering errors on a keyboard [45]. However,
there are no studies investigating by electrophysiological
techniques the online modulation of corticospinal output
for different muscle groups during motor imagery of chords
in professional piano players and in musicians in general.
This is precluding any step of knowledge regarding motor
synergies used by musicians during musical planning/execu-
tion, as well as how these are modulated by audio and visual
musical stimuli. This, despite the evidence that musical
training promotes the emergence of audio- [43] or visuomo-
tor [46–48] cross-modal activations in a frontoparietal net-
work including the primary motor cortex [49]. Moreover,
action sound and action observation of everyday hand ges-
tures, congruent with the perceived action, have been
already proven to produce selective corticospinal facilitation
in normal subjects [50]. Hence, it is reasonable that profes-
sional piano players, in which a sort “musical grammar”
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Figure 2: Mean MEPs’ peak-to-peak amplitude for each chord (a) and muscle (b) expressed as percent change from baseline. (a) Motor
imagery of a 9th interval triad chord produced a significant increase in MEPs’ amplitude with respect to motor imagery of a 10th interval
chord. (b) APB muscle showed greater facilitation than ECD and FDS. Similarly, ADM showed increased corticospinal excitability when
compared to ECD. Bars denote standard errors. Asterisks indicate significant differences.
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Figure 3: Synergies extracted by means of NNMF across different chords (a) and conditions (b). Line vectors indicate coefficients, whereas
dots correspond to the values estimated in the synergy matrix (see text for further details).

6 Neural Plasticity



for musical-related hand gestures is operating at cortical
level [51, 52], might well capitalize from cross-modal per-
ceptions to tune at the best of their motor output towards
efficient motor synergy production, such as during very fine
action representations required by progressively increasing
triad chords intervals.

Current results show that professional pianists are able to
cross-modally modulate their corticospinal output during
the mental imagery of triad chords: motor imagery produced

the highest corticospinal facilitation in the hand muscles
rather than in the forearm ones. This is not surprising, as
either the ABP or ADM was always engaged in the mental
execution of each triad chord, although with different
demands: the former remained stable on the C note and the
latter was required to be “mentally extended.”

However, such fine tuning is sustained by a definite
three-effector (at least) motor synergy including the FDS
and ADM muscles (that represent the prime movers for the
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Figure 4: Pairwise comparisons of synergy coefficients calculated across different chords (a) and conditions (b).
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required progressive hand extension) as well as the ECD
muscle that is coacting with the ADM muscle for the little
finger abduction. A gradual increase, although not signifi-
cant, in corticospinal excitability was observed moving from
the 5th interval chord to the 9th interval chord across progres-
sively wider imagined extensions of the hand. Since a trend
toward significance was detected comparing the 6th interval
chord with the 9th interval chord, the lack of significant dif-
ferences between the other chords might reflect the fact that
such intervals are the easiest to be recognized and “executed”
for musicians, that the task did not engage sufficiently the
primary motor cortex, or that the sample size was too small
to make small changes statistically significant.

Not surprisingly, prompting chords using auditory,
visual, or audiovisual musical stimuli produced similar effects
on corticospinal excitability towards the prime mover mus-
cles: this may indicate that professional musicians are able
to translate and capitalize the musical information indepen-
dently by the sensory channel (i.e., auditory or visual) used
to acquire them (see [43, 48, 53]). Adding a cross-modal rein-
forcement (as in the audiovisual condition) did not result in
additional modulation of the corticospinal system or motor
synergy variations, suggesting that the corticospinal tuning
was likely already working at its best in professional musi-
cians even during monomodal presentation. However, since
a control group of nonmusicians was not included in the
study, this conclusion remains highly probable but specula-
tive. Further studies are needed to disentangle the role of
musical skillfulness in motor imagery.

Even if not investigated here, besides the primary motor
cortex, the premotor cortex (PMC) might also be a candidate
for the observed cross-modal tuning of corticospinal output
in piano players. Indeed, electrophysiological studies in ani-
mals have shown that neurons in the PMC respond to audi-
tory and visual stimuli that are linked to known actions [54]
and, in humans, perturbation of PMC by repetitive TMS dis-
rupts learning of listened melodies [55] or rhythmic entrain-
ment [56]. PMC also plays a relevant role in visuomotor
transformation in humans [57]. The PMC is closely con-
nected with the primary motor cortex that according to
recent neuroimaging evidence [7] encodes motor synergies
for human hand gestures.

Language [43], music [58], and actions [59] share a com-
mon syntactic-like overlapping structure. Effects of audiovi-
sual feedback on corticospinal output in piano players may
be regarded as the analogue of the many physiologically
demonstrable multisensory cross-modal interactions on the
motor system: action observation [26, 27, 60–63] or action
listening [64], speech listening [65–67], especially in the case
of action-related words [68, 69], or smelling food [70], induce
corticospinal facilitation in the muscles the actor would use
to actually execute congruent actions. Moreover, it is known
that neural representations of action-related sounds depend
on motor familiarity [71], as chords for musicians. These
facilitatory effects induced by audio- and visuomotor trans-
formations could be particularly amplified in professional
musicians [72], thanks to their enhanced functional [73]
and structural [74] adaptive plastic capabilities in the senso-
rimotor brain areas.

It might be argued that an involuntary motor cortical
activity may be elicited in piano players by music listening,
especially for chords requiring the action of the thumb and
of the little finger, and that these activities might have biased
MEP amplitude. This effect is ruled out by the initial practice
carried out by all subjects with the task and by continuous
visual and acoustic monitoring of electromyographic activity
in seconds preceding the TMS pulse throughout the experi-
ment. Moreover, the musical-related specificity of the
observed cross-modal effects on the engagement of specific
motor synergies, but even on corticospinal output in general,
rules out the possibility that corticospinal changes might be
solely due to the peculiar pianists’ skillfulness in finger motor
abilities: it is unlikely, but it is a matter to be verified experi-
mentally, that music-naïve typewriters or braille readers
might undergo to similar music-related corticospinal effects,
beyond the facilitation induced by motor practice alone.
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