
Soluble Dietary Fibers as Antihyperlipidemic Agents: A
Comprehensive Review to Maximize Their Health Benefits
Published as part of the ACS Omega virtual special issue “Phytochemistry”.

Alaa F. Bakr and Mohamed A. Farag*

Cite This: ACS Omega 2023, 8, 24680−24694 Read Online

ACCESS Metrics & More Article Recommendations

ABSTRACT: The number of hypercholesterolemic people is
increasing rapidly worldwide, with elevated lipid profiles
representing a major risk factor of coronary heart diseases. Dietary
intervention was shown to improve the lipid profile, thus
enhancing the quality of life. Dietary fiber is a nondigestible
form of carbohydrates, due to the lack of the digestive enzyme in
humans required to digest fiber, and is classified according to its
water solubility properties as either soluble (SDF) or insoluble
dietary fiber (IDF). Consumption of SDF is associated with several
health benefits such as reduced lipid levels, lower blood pressure,
improved blood glucose control, improved immune function, and
reduced inflammation. SDF has been shown to lower blood
cholesterol by several action mechanisms including directly due to the gelling, mucilaginous, and viscous fiber nature, and indirectly
due to its fermented products and modulation of the gut microbiome. This review aims to provide a holistic overview on how SDF
impacts the lipid profile. We start by providing an overview of the chemical structure of the major SDFs including mucilage, gums
(gum arabic and guar gum), pectin, and inulin.

■ INTRODUCTION
Dietary fiber (DF) is described in different ways all over the
world. Several definitions are based on analytical approaches for
separating fiber, whereas others define fiber according to a
physiological basis. Conventionally, DF is defined as plant
polysaccharides which cannot be digested by intestinal enzymes,
but are adequately fermented entirely or partly by the intestinal
microbiome.1 High fiber foods intake can improve themetabolic
profile, decrease blood pressure, assist in weight management,
and increase insulin sensitivity.2 The recommended daily
allowances (RDAs) of fiber for men and women aged 19−50
years is 38 g/day for men and 25 g/day for women.3 RDA
recommendations are for healthy people and not for individuals
with chronic diseases. High fiber foods are presented in Figure 1.
DF can be categorized according to the composition and

solubility. Regarding structure, polysaccharides are classified
into linear or branched molecules. On the basis of solubility, DF
is classified into soluble fiber, which is made up of noncellulosic
polysaccharides (e.g., pectin, gums, mucilage), or insoluble
dietary fiber (IDF), which forms cell wall components (e.g.,
cellulose, lignin, hemicellulose).4 The solubility of fibers also can
be totally changed depending on the temperature and pH value.5

For example, the chemical modification of insoluble fibers such
as cellulose could produce a gelatinous methyl cellulose that is
entirely fermented in water rapidly with the viscous structure

vanishing.6 Moreover, the solubility of pectin is enhanced with
the increase of the quantity of its terminal chains.7 The
categorization of DF according to solubility is presented in
Figure 2.
Hyperlipidemia is defined as an increased level of total

cholesterol with or without increased triglycerides. This could
be attributed to genetic and/or environmental factors or as a
comorbidity of another disease such as obesity, hypothyroidism,
and diabetes.8 Cholesterol is an insoluble molecule transported
in the blood via lipoproteins. There are two types of
lipoproteins: high density lipoprotein (HDL), which absorbs
cholesterol and transports it back to the liver where it is cleared
out from the body, and low density lipoprotein (LDL), which is
known as the bad cholesterol since it accumulates on the walls of
blood vessels, forming plaques that result in narrowing or
occlusion of blood vessels and eventually causing cardiovascular
disease (CVD) and stroke.9 According to the World Health
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Organization (WHO), hypercholesterolemia accounts for 4.5%
of total deaths or 2% of total disability-adjusted life years
(DALYs).10

Despite the presence of lipid-lowering medications, such as
statins,11 some studies showed beneficial effects from the intake
of SDFs on the lipid profile. Recent studies state that a 10 g/day
increase in intake of SDFs can lower the risk of coronary heart
disease by 14% and the risk of coronary death by 27%with lower
side effects compared to the use of statins, famous antihyperlipi-
demic drugs.12

Significantly, SDF supplies the gut microbiota with carbon
and energy; besides, SDF improves the intestinal environment
by augmenting the beneficial bacteria.13 Moreover, SDF
increases mucus production by the intestinal epithelium that
retains bacteria insulated from the intestinal lining epithelium.14

Insufficient consumption of SDFs will diminish the quantity of
probiotics and affect the metabolism of the intestinal bacteria to
consume amino acids which increases the possibility of intestinal
injury by the accumulation of toxic metabolites, involving
amines, ammonia, fatty acids, and phenolic compounds.15

Hence, a dietary pattern with low fiber and high fat, protein, and
sugar may induce chronic diseases such as obesity and
cardiovascular disease.16 Therefore, sufficient consumption of
SDF is recommended to prevent the degradation of intestinal
mucosa by intestinal microbiota and the incidence of these
diseases.17

Besides increasing mucus production, SDF has other valuable
physiological functions. SDF was found to decrease total
cholesterol, LDL cholesterol, and serum triglyceride levels.18,19

The aim of this review is to summarize the clinical trials and in
vivo research data interrelating the hypolipidemic properties of
soluble dietary fibers involvingmucilage, gum, pectin, and inulin.
Although SDF is beneficial for human health, the inappro-

priate consumption of SDF can result in several health hazards
and limit its use.20 Consumption of large amounts of SDF
suddenly may lead to several gastrointestinal tract (GIT)
complaints including abdominal bloating, flatulence, constipa-
tion, and diarrhea.21 Recently, a study done by Singh et al.
revealed that fortification of the diet with SDF such as refined
inulin resulted in intestinal dysbiosis in mice.22 Moreover, the

Figure 1. Quantity of fibers in different dietary sources per 100 g.

ACS Omega http://pubs.acs.org/journal/acsodf Review

https://doi.org/10.1021/acsomega.3c01121
ACS Omega 2023, 8, 24680−24694

24681

https://pubs.acs.org/doi/10.1021/acsomega.3c01121?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c01121?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c01121?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c01121?fig=fig1&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c01121?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


binding affinity of certain SDFs, such as pectin and guar gum,
can reduce the bioavailability of certain bioactive compounds
such as β-carotene, lycopene, and lutein as well as micro-
nutrients.20 Hence, despite their physiological actions, a diet
fortified with SDFs should be consumed with caution to avoid
possible GIT disorders and disruption in gut microbiota.

■ CHOLESTEROL-LOWERING MECHANISMS OF SDF
The water holding capacity of SDF increases the bulk weight and
dilutes the nutrients inside the intestine due to the presence of
water inside involving carbohydrates and lipids and their

movement via the intestinal wall.19 These bulking and viscosity
features of SDF prolong satiety and decrease food consumption,
which was considered as one of the important mechanisms of
lipid lowering.23 Another underlying principle behind the
reduction of lipid by SDF is attributed to the ability of fibers
to bind to bile acids/salts and prevent their reabsorption into the
enterohepatic circulation as well as enhance their excretion into
feces. Hence, formation of new bile salts from cholesterol occurs,
so dropping blood cholesterol levels and having a lipid-lowering
effect.24

Figure 2. Classification of dietary fibers according to their solubility.

Figure 3.Main lipid lowering action mechanisms of soluble dietary fiber. Brown lines point to blocking actions, and blue arrows point to stimulating
actions.
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Furthermore, hepatic LDL receptors become upregulated to
restore hepatic cholesterol stores, which will lead to decreased
serum LDL concentrations.25 Many studies indicate that SDF
adsorbs and sequesters cholesterol; it increases the rate of bile
acid excretion, leading to a reduction in triglycerides and LDL
levels.26 A third mechanism involves reduction of the
postprandial blood glucose which reduces insulin production.
This is then reflected by a reduction of cholesterol biosynthesis,
since insulin activates 3-hydroxy 3-methylglutaryl coenzyme A
reductase (HMG-Co AR), a rate-limiting enzyme in the
cholesterol biosynthesis pathway. Finally, through fermentation
of SDF by the intestinal microbial flora into short-chain fatty
acids (SCFAs), such as acetate, propionate, or butyrate, it may
play a role in the inhibition of hepatic cholesterol synthesis.27

Butyrate is metabolized by colonic mucosal cells, while acetate
and propionate are rapidly absorbed. The production of SCFAs
and in particular changes in the propionate:acetate ratio may
influence lipid metabolism, decreasing hepatic absorption and
increasing excretion through bile and fecal lipids.28 Another
hypothesis for the hypocholesterolemic effects of SDF is based
on a lower overall energy intake. Since fiber-rich foods contain
fewer calories and take a longer time to digest, SDF promotes
increases of satiety.12 During adipogenesis, the MAPK signaling
pathway controls the expression of both CCAAT-enhancer
binding proteins α (C/EBPα) and peroxisome proliferator-
activated receptors γ (PPARγ) mRNA. Guar gum (10% for 12
weeks) was found to regulate the metabolic changes caused by
PPARγ suppression in mice fed a high fat diet. Afterward the
expression of mitochondrial uncoupling protein 2 (UCP2) was
upregulated, inducing the triggering of the AMPK pathway.29

The underlying hypolipidemic mechanism of SDF discussed in
the text is illustrated in (Figure 3).

■ SOLUBLE DIETARY FIBERS
Mucilage.There were few reports on plant-derived mucilage

before 1991; after that, curiosity in plant mucilage emerged.30

The progress of analytical instruments and better awareness of
the chemical composition of mucilage has launched the way for
novel applications of this biocompatible and nontoxic
compound.
Mucilage (MC) is typically present as a jelly-like substance in

different parts of plants including root, stem, or leaf besides

being present in seeds following treatment with water.
Characterization of MC varied according to their source as
well as extraction method affect the ratio of individual
constituents. The main sources of soluble mucilaginous dietary
fiber are psyllium seed husk (outer coat),31 Zizyphus mauritiana
fruits,32 flaxseeds,33 chia seeds,33 and Aloe vera leaf.34

From a chemical perspective, MC is formed of uronic acids,
glycoproteins, and highly branched polysaccharides as D-xylose,
L-arabinose, D-galactose, L-rhamnose, D-mannose, D-glucose, or
L-fucose linked by glycosidic bonds.35 The distribution and
molecular weights of polysaccharides determine the features of
mucilage. High-molecular-weight polysaccharides promote the
ability of MC to be used as a thickening and gel-forming agent.36

On top of polysaccharides, the main constituents of mucilage
are several proteins, lipids, minerals, and water. Moreover, small
constituents are detected in mucilage such as tannins,
flavonoids, sterols, and alkaloids. The protein concentration in
mucilage influences its water-holding capacity.30 Greater protein
concentrations in mucilage are recognized to enrich the quality
of products having mucilage.37

Several studies revealed the capability of using mucilage in the
pharmaceutical industry and in drug-delivery systems due to its
binding features.38 Moreover, the thickening and binding
capacities of mucilage also make it useful in the food industry.39

Since mucilage is principally an abundant source of dietary fiber,
it exerts multiple therapeutic effects including a laxative effect,
satiety regulation, and reduction of hyperlipidemia, hyper-
glycemia, and obesity.40 Mucilage was found to be poorly
fermented inside the small intestine and has the ability to absorb
water into the gut leading to the formation of gel.41 This feature
provides a desired laxative effect, supplies a poorly fermented
substance for microbial multiplication, and produces as a result a
greater bacterial bulk and increases the content of colon.42

Conversely, mucilage has the capacity to hinder gastric and
colon emptying time; this is helpful for the treatment of
diarrhea,43 irritable bowel disease, ulcerative colitis, and
hemorrhoids.44

As mentioned above, the mechanism of the hypocholestere-
mic action of gel-forming fiber is attributed to accordingly
hindering intestinal motility and the gastric emptying rate.45

Moreover, mucilage could hinder the absorption of carbohy-
drates inside the small intestine and thus inhibit the cholesterol

Table 1. Clinical Trials and In Vivo Studies on the Hypocholesterolemic Effect of Mucilage (MC)a

study subject dose of MC results ref

clinical
trial

randomized, double blind, crossover
study applied on 15 diabetic
patients

pudding containing yellow mustard MC (15.5 g, 3.10 wt %), flaxseed
MC (11.4 g, 2.28 wt %), fenugreek gum (5.9 g, 1.18 wt %) three
times daily for 2 weeks

↓ BG, insulin, and ↑ intestinal
viscosity significantly

48

double blind, randomized, and
placebo controlled study applied on
72 obesity patients

flaxseed MC (2560 mg and 1280 mg twice daily for 12 weeks) ↓ BW (p < 0.001), TC (p = 0.038),
TG (p = 0.040), compared to
placebo group

49

in vivo hypercholesterolemic rabbits fenugreek seeds MC (40 mg/kg for 3 months) ↓ TC, TG, and LDL (p < 0.05) 50
hypercholesterolemic rats diet containing 10% Lepidium sativum MC for 3 weeks ↓ TC, TG, LDL, and VLDL 51
hyperlipidemic rats Cordia dichotoma MC (0.50 and 1.00 g/kg) for 4 weeks ↓ TC and LDL 52
diabetic rats Aloe vera MC (1.2 g daily for 6 weeks) ↑ genes involved in lipid

metabolism
53

hyperlipidemic rats flaxseed or cress seed mucilage (40 mg/kg for 4 weeks) ↓ TC, TG, LDL, and MDA 54
diabetic rats Aloe vera MC (1 mL daily for 3 weeks) ↓ TC, TG, and BG 34
rats HFD plus Nopal MC 500 mg/kg daily for 30 days ↓TC, TG, BG, and abdominal

circumference
55

hyperlipidemic rabbits Trigonella foenum-graecum MC (75 mg/kg for 90 days) ↓TC, TG, LDL, and ↑HDL 56
diabetic mice okra MC (150 mg/kg for 21 days) ↓TC, TG, LDL, and BG 57

aBW, body weight; HbA1c, glycosylated hemoglobin; TC, total cholesterol; TG, triglycerides; HDL, high density lipoprotein; LDL, low density
lipoprotein; V-LDL, very low density lipoprotein; BG, blood glucose; HFD, high fructose diet. MDA, malondialdehyde.
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biosynthesis pathway as well as stimulate the secretion of
insulin.46 MC was found to alter the gut microbiota in
individuals with obesity. Administration of flaxseed mucilage
daily for 6 weeks for obese patients reduced the quantity of
Faecalibacterium prausnitzii species in intestine. Unexpectedly,
decreasing the concentration of F. prausnitzii improves insulin
sensitivity through producing SCFA butyrate in a large amount
which has an anti-inflammatory effect and recovers the
metabolic disorder related to obesity such as insulin resistance.47

Overall, several studies focused on mucilage over 20 years.
Despite this, large numbers of studies presented only basic
information regarding the chemical composition and properties
of mucilage. Besides, few studies have relatively evaluated
mucilage as a hypolipidemic agent in both human and animal
models. The hypocholesterolemic effects of mucilage in animal
models and in humans are listed in Table 1.
Gums. Major gums used as sources of drugs include gum

arabic and guar gum. Gum arabic (GA), African gum belt, is a
natural edible gum from various species of the acacia seyal trees.
GA is formed of polysaccharide sugars and glycoprotein,
attached to carbohydrate (D-galactose and L-arabinose) with a
covalent bond. GA includes amino acids and trace elements such
as aluminum, phosphorus, magnesium, copper, zinc, and iron.58

GA exhibits antioxidant,59 renoprotective, and blood glucose
reducing properties.60 GA is not degraded in the small intestine;
thus it is digested with difficulty by animals and humans. It is
fermented inside the colon, yielding short-chain fatty acids,
mainly propionate, by the enzymatic action of intestinal
bacteria.61

Several studies have reported on the lipid-lowering effects of
GA in both animal and human models (Table 2). GA reduces
lipid levels mostly through the downregulation of gene levels
included in lipid metabolism such as11β-hydroxysteroid
dehydrogenase type I, HMG-CoA reductase, and adipose

triglyceride lipase.62 Likewise, GA was found to downregulate
peroxisome proliferator-activated receptor γ and stearoyl-CoA
desaturase mRNA expression in mice liver as well as steroid 17-
α-monooxygenase (CYP17) in mice muscle.63 Further, GA
hinders intestinal lipid absorption by increasing the viscosity of
intestinal content.64

The second example of gum is guar gum (GG). Guar gum,
Cyamopsis tetragonoloba or cluster bean, is a viscous soluble
fermentable fiber. Guar seeds were found to be formed of
endosperm (42%) in which the main portion is gum.77 Roughly
80−85% of the gum is made up of a galactomannan polymer that
develops a gel in water causing a thickening which makes it
suitable for food processing.78

Moreover, GG has shown several beneficial therapeutic effects
against diabetes, colon cancer, heart, and liver disease.79,80

Further, partially hydrolyzed guar gum (PHGG) was found to
improve abdominal pain and bowel habits when consumed by
irritable bowel syndrome patients at a dose of 5 g/day for 4
weeks.81 A meta-analysis of 34 trials indicated GG showed a
nonsignificant difference in the body weight of patients
compared to patients receiving placebo with the incidence of
side effects such as diarrhea and cramps. Hence, GG cannot be
recommended as a medicine for body weight reduction.82

Like gum arabic, GG exhibits its hypolipidemic effect by
increasing the viscosity of the intestinal content besides altering
levels of beneficial bacteria (e.g., bifidobacteria) and patho-
logical microbiota (e.g.,Clostridium species) resulting in limiting
lipid absorption.83 Guar-containing bread readily incorporated
into the diet withminimal alteration in the normal eating pattern
and palatability is likely to increase compliance and be of
considerable therapeutic use in the future owing to its added
value in the management of hyperlipidemia.84 The use of large
doses of high-molecular-weight guar galactomannan gum (∼2.4
× 106) can, however, lead to problems of palatability upon

Table 2. List of Gum Arabic (GA) Effects as a Hypolipidemic Agent in Human and Animal Modelsa

study subject dose of GA results ref

clinical
trial

controlled study applied on 55
hyperlipidemic patients

30 mg of GA plus atorvastatin (20 mg)
daily for 4 weeks

↓TC (7.8%), TG (2.9%), and LDL (8.1%) compared to atorvastatin treated
group

65

controlled study applied on 40
diabetic patients

10 g/day for 16 weeks ↓ TC, TG, BG, and HbAc1 significantly 66

randomized, placebo controlled,
double blind trial applied on 100
diabetic patients

30 g/day for 3 months ↓ TC (8.28%), LDL (5.95%), TG (10.95%), and BG; ↑ HDL (19.89%) 67

randomized, placebo controlled trial
applied on 45 diabetic patients

30 g/day for 3 months ↓ body adiposity index (3.9%) and visceral adiposity index (23.7%) 68

phase II, single-arm trial applied on 47
sickle cell anemia patients

30 g/day for 12 weeks ↓ TC, TG, and LDL significantly 69

controlled, randomized, single blind,
parallel-design study trial applied
on 31 participants

20 g/day for 12 weeks ↓ (p = 0.008) and diastolic blood pressure (0.009), fat free mass (p = 0.03),
mass, carbohydrate (p = 0.008), and calorie (p = 0.014) intake, and fasting
plasma glucose (p = 0.046)

70

in vivo male albino rats diet supplemented with 30% GA for
30 days

↓ TC and LDL 71

male donkeys 25 g/day for seven successive days ↓ TC, TG, urea, and creatinine 72
female CD-1 mice GA (10%) in drinking water for 6 weeks ↓ TC, HDL, and LDL but not TG 63
diabetic rats GA (10%) in drinking water for

10 weeks
↓ TC, LDL, TG and ↑ HDL 73

diabetic rats GA in drinking water (10% w/v) for
12 weeks

↓TG, TC, TG, LDL, urea, and creatinine 74

metabolic syndrome (MS) rat model diet containing GA (5%) mixed with
Kishk Sa’eedi (KS, 10%) or
pomegranate seed oil (1%)

↓ plasma dyslipidemia, BG, AST, creatinine, and urea; ↑ HDL 75

mice high fat diet containing 10% w/w GA
for 15 weeks

↓ TC, LDL, BG, and ↑ HDL 76

aHbA1c, glycosylated hemoglobin; TC, total cholesterol; TG, triglycerides; HDL, high density lipoprotein; LDL, low density lipoprotein; V-LDL,
very low density lipoprotein; BG, blood glucose.
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inclusion of the polymer into foods. Sensory studies have shown
that improvements in the quality of guar wheat bread can be
achieved by using low-molecular-weight guar galactomannan
((0.5−1.0) × 106), warranting production of different varieties
of bread and other foods containing guar gum to provide a wide
selection of products and improve long-term compliance for
consumers.85 The hypolipidemic effects of GG in human and
animal models are listed in Table 3.
Pectin. Pectin (PC) is the main structure of cell walls of

several plants including in citrus peel, apple, and carrot.99 Pectin
is extensively used in the food industry as a thickener and gelling
agent.100 Moreover, pectin is considered a good source of SDF
and has a several biological benefits for human health.100 Pectin
is rich in galacturonic acid, where homogalacturonan (HG),
formed by the α-1,4 linkage of D-galacturonic acids, represents
the smooth region of the pectin backbone and is about 65% of
pectin polysaccharides, and the hairy regions are comprised of
rhamnogalacturonans I and II (RG-I and RG-II). The degree of
methyl esterification (DE), whether it is high (DE > 50%) or low
(DE < 50%), defines the solubility and gelling properties of
pectin.101

Pectin was found to be indigestible by intestinal enzymes;
conversely, it could be simply degraded by intestinal bacteria,
resulting in the production of SCFAs.102 Besides, pectin
enhances the intestinal integrity and supports the connection
of intestinal epithelial cells with probiotic Lactobacillus strains to
epithelial cells.103 Moreover, several studies have shown that PC
stimulates the growth of bacterial populations such as
lactobacilli, bifidobacteria, and F. prausnitzii.104 Pectin was
found to be degraded by several bacteria species such as
Bacteroides and Prevotella that secrete carbohydrate-active
enzymes including lyases, methylesterases, and acetyles-
terases.105

Several in vitro and in vivo studies have been carried out to
examine the lipid-lowering effects of pectin. A study by Brouns et
al.106 explored the cholesterol-lowering effect of pectin from
different sources, with different physicochemical properties.
Pectin, extracted from citrus, apple, and orange pulp fiber,
processed to achieve different DEs and molecular weights
(MWs), were used in a crossover clinical study on individuals
with mild hypercholesterolemia. Results showed that the pectin
source, along with the DE and MW, accounted for the LDL-C
lowering capacity, where high DE and MW pectin showed a
better LDL-C lowering effect than low DE pectin. Whether such
structural features are also linked to other effects like lowering
the blood glucose level should be examined.
To assess the potential of pectin to serve as a prebiotic that

confers health benefits, in vitro fermentation studies were done
using human fecal samples to determine alterations of the
microbiota profile and the produced SCFAs. Baobab fruit pulp
powder (BP) was examined by Foltz et al.,163 owing to its high
composition of HG pectin polysaccharide with a low DE. The
study was done using a 48 h in vitro incubation with human
microbiota from three different stool sample donors. Despite the
observed interindividual differences, acetate and propionate
SCFAs were constantly increased and butyrate was increased to
some extent. It is worth noting that propionate is proposed to
reduce the serum cholesterol level by inhibiting HMG-Co AR.
Also, among the five taxonomic gut microbial groups quantified,
Bacteroideteswas found enriched in the three samples, compared
to the control. Another study byMin et al. investigated the effect
of different pectin sources on gut microbiota and SCFA
production. The bacterial fermentation of high methoxy pectin
(HMP) and two low methoxy pectins extracted from sugar beet
(SBP) and soy (SOY) was tested through anaerobic incubation
with four human fecal samples. Although results showed

Table 3. Guar Gum (GG) as a Hypolipidemic Agent in Human and Animal Modelsa

study subject dose of GG results ref

clinical
trial

randomized trial applied on 141 hypertensive,
overweight patients

3.5 g twice daily before meal for 6 months ↓ HbA1c, LDL, and ApoB without altering
TG

86

controlled study applied on hyperlipidemic patients guar gum bread for 4 weeks ↓ TC (10%) 84
randomized trial applied on 9 diabetic patients 7 g three times daily for 3 months ↓ TC and LDL 87
controlled study applied on 60 diabetic patients 10−20 g daily for 15−30 days ↓ TC, TG, LDL, VLDL, and blood

glucose; ↑ HDL
88,
89

randomized trial applied on 17 diabetic patients 21 g/day for 3 weeks ↓ TC (14%) 90
controlled trail applied on 20 nonalcoholic
steatohepatitis (NASH) with obesity and
osteoarthritis patients

GG (5 g) plus metadoxine (0.5 g) twice
daily for 90 days

↓ obesity, absorption of carbohydrates, and
fermentation products in the intestine

91

in vivo guinea pigs (male, female, and ovariectomized) diet mixed with GG (2.5 g/100) for
4 weeks

↓ TC (64%), LDL (44%) cholesterol, and
TG (22%)b

92

hyperlipidemic male rats diet supplemented with 10% GG for
3 weeks

↓ TC, TG, glucose, insulin, glucagon, and
corticosterone levels

93

pigs diet supplemented with 3.5% GG for
4 weeks

↓ TC, LDL, and TG 94

hyperlipidemic male rats flour mixed with GG (3 g/100 g) for
8 weeks

↓ TC (17.2%), LDL (29.7%), and TG
(28.4%)

95

hyperlipidemic rats diet containing 5% (w/w) GG for 28 days ↓ TC 96
hyperlipidemic rats diet containing 5, 10, and 20% (w/w) GG

for 28 days
↓ TC, TG, and LDL 97

diabetic rats diet containing 5, 10, and 20% (w/w) GG
for 28 days

↓ TC, TG, LDL, and blood glucose 79

hyperlipidemic guinea pigs high fat diet mixed with partially
hydrolyzed GG (12 g/100 g of diet) for
4 weeks

↓ TC; ↑ excretion of fatty acids and neutral
sterolsc

98

aHbA1c, glycosylated hemoglobin; TC, total cholesterol; TG, triglycerides; HDL, high density lipoprotein; LDL, low density lipoprotein; V-LDL,
very low density lipoprotein. bOvariectomized guinea pigs had higher TC and TG compared to males and females. cExcretion of fatty acids and
neutral sterols did not alter the fecal fatty acid profile.
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different microbiota profiles, especially that three of the
participants were overweight, the composition was altered
after the 30 h post fermentation period. SCFA production was
higher with citrus and apple pectin compared to SBP and oat.
Moreover, propionate and butyrate production were found
significantly higher in the case of soy fermentation compared to
SBP, likely attributed to differences in structures leading to
different fermentation levels acting as a better prebiotic.107

Moreover, pectin oligosaccharides derived from lemon peel
waste (LPOS) and sugar beet pulp (SBPOS) provide better
prebiotic potential than their pectin counterparts. Studying the
fermentation profile by human fecal microbiota showed the
enrichment of bifidobacteria and lactobacilli in all pectin
preparations. However, a marked bifidogenic effect was evident
by SBPOS fermentation, while LPOS showed a significant
increase in lactobacilli count.104

Moreover, the hypocholesterolemic effect of pectin was
verified in humans and animals. Food sources, the chemical
structure, and therapeutic effects of pectin are concluded in
Figure 4. The hypocholesterolemic effects of pectin in human
and animal models are revealed in Table 4. The clinical trials are
considered inadequate and poorly designed. Thus, more trials
should be performed on humans in the future to evaluate the
therapeutic effects of pectin as a hypolipidemic agent.
Inulin. Inulin is a nondigestible carbohydrate formed of D-

fructose units joined by β-(2−1) bonds and an α-(1−2)
terminal D-glucose.129 It is found in a variety of plants such as
chicory, artichoke, leek, asparagus, and garlic. The ability of
fructans to be selectively fermented by health promoting
Bif idobacterium bacteria underscores their use as functional
food and in nutraceuticals.130 A recent study has evaluated the
effect of gut microbiota in mediating the antihyperlipidemic
action of inulin. Briefly, inulin stimulated the production of
SCFA-producing bacteria such as Ruminococcaceae and

Lachnospiraceae as well as the expression of angiopoietin-like
protein 4 that may be enhanced by the greater production of
SCFAs. These findings pointed to the mediating effect of
bacteria on the effect of inulin.131

A study by Van De Wiele et al.132 compared the prebiotic
effects of fructans with a low degree of polymerization (DP),
oligofructose (DP 2−20), and with a higher DP, chicory inulin
(DP 3−60), under in vitro conditions using the Simulator of the
Human Intestinal Microbial Ecosystem (SHIME) reactor
inoculated with fecal bacteria of a healthy donor. Although
inulin required a longer fermentation period, owing to its longer
chain length, the prebiotic effectiveness was higher even in the
distal region of the colon. Both fructans increased propionate
and butyrate production; however, the propionate level was
significantly higher with inulin fermentation in all colon
vessels.133 Also, inulin was shown to exert a greater bifidogenic
effect along with a significant reduction in the ammonium level
than oligofructose; hence it was considered a safer option than
oligofructose. Furthermore, increased abundance of Bif idobac-
terium and Anaerostipes bacteria together with decreased
Bilophila bacteria were observed with the intake of 12 g of
chicory inulin for a period of 4 weeks by healthy adults with mild
constipation.133 Foods high in inulin and the chemical
composition and therapeutic benefits of inulin are demonstrated
in Figure 5. Besides, clinical trials and in vivo studies over 20
years are revealed in Table 5.
Although inulin has been established to act as a prebiotic,

studies regarding the lipid-lowering effect of inulin are somehow
controversial. For example, intake of 20 g of chicory inulin per
day for 3 weeks was found to significantly reduce serum TG,
with a slight reduction in serum TC of 12 males with mild
hypercholesterolemia.110,134 However, no significant effect on
the lipid profile was shown in a randomized, double blind,
placebo controlled study where healthy individuals consuming

Figure 4. Chemical composition, dietary sources, and therapeutic effects of pectin.
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10 g of fructan preparation (inulin and oligofructose) for a long
term (6 months).135 These results are in line with those
demonstrated byMistry et al., where neither the lipid profile nor
cholesterol metabolism changed in mice fed long-chain or short-
chain inulin for 2 weeks, despite the significant increase in fecal
SCFA level.136

■ SAFETY OF SDF
Although SDF exhibits valuable health benefits, it cannot be
disregarded that improper SDF consumption may induce
specific health hazards that differ according to the nature and
amount of SDF as well as themedical history of the subject.16 An
unexpected increase of SDF ingestion could induce constipa-
tion, diarrhea, and other abdominal disorders.158 Besides, rapid
fermentation of SDF (60 g/kg of fructooligosaccharides) by
intestinal bacteria revealed a marked injury to intestinal mucosa
as well as increased intestinal permeability in rats infected with
Salmonella enterica.159 SDF also was found to increase the extent
of several elements such as metal ions through its binding
capacity. In spite of this, a previous study showed that the
bioavailability of β-carotene, lycopene, and lutein were reduced
significantly in six healthy young women by different types of
SDF including pectin, guar gum, and alginate.160

Moreover, intake of a diet rich in purified inulin (7.5%), pectin
(2.5%), and fructooligosaccharides (2.5%) for 6 months
induced icteric hepatocellular carcinoma (HCC) to mice that
were deficient in Toll-like receptor 5, through the promotion of
secondary bile acids in the systemic circulation and cholestasis,
followed by triggering of several inflammatory pathways that
ended with necrosis of hepatocytes. These findings could not be
induced by cellulose (7.5%), the insoluble and nonfermentable
fiber.161

Similarly, it has been reported that daily administration of a
high dose of psyllium (20.4 g) that was rich in mucilage for 3
months caused diarrhea in 30 hypocholesterolemic patients.162

However, the dose and time relationship was established in
another study that revealed that administration of psyllium for 8

week at a dose of 3.0−20.4 g daily reduced cholesterol
significantly in a dose and time dependent manner.88 This
study was performed on 1039 mild and moderate hyper-
cholesterolemic patients that were included in the meta-analysis
studies including randomized placebo controlled trials, double
blind or open label. These data suggested that, despite the
prominent physiological benefits of a diet rich in SDF, its
consumption should be made with caution.

■ CONCLUSIONS AND FUTURE DIRECTIONS
Hypercholesterolemia is a risk factor for coronary heart disease,
and nutrition management is the best therapeutic approach.
Soluble dietary fibers have several protective effects against
chronic diseases, including cardiovascular disease, diabetes, and
metabolic syndrome. The attempt to manage these conditions
through dietary intervention could improve the quality of life of
many individuals, reducing morbidity and mortality rates while
leading to suffering from fewer side effects compared to medical
treatment strategies. Despite the differences of the gut
microbiota composition due to either dietary habits or health
condition, SDFs have shown to positively alter the microbiota
profile with the production of beneficial SCFAs. SDFs also have
multiple non-nutritive health effects that help improve lipid
profiles via multiple actionmechanisms. The inclusion of SDF in
the diet appears to be the right approach to reduce the risk of
hypercholesterolemia, atherosclerosis, and cardiovascular dis-
ease based on extensive reports in this review.
These studies will possibly drive scientists to establish novel

antihyperlipidemic agents from natural resources and to validate
their mechanistic approaches using pharmacological assess-
ments. More clinical studies with a larger cohort group, a
chemically well-characterized type of SDF by a specified clinical
context, and suitable predictors of metabolic health and SDF
pharmacokinetic/pharmacodynamic behaviors are still required
to extrapolate the experimental data to human scenarios. The
interaction of SDF in combination with specific antihypercho-

Figure 5. Chemical composition, dietary sources, and therapeutic benefits of inulin.
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lestorlemic drugs should also be considered in different cohort

groups and populations.
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Table 5. Clinical Trials and In Vivo Studies Evaluating the Hypocholesterolemic Effect of Inulin (IN)a

study subject dose of IN results ref

clinical
trial

double blind, randomized, placebo
trial applied on 12 obese patients

7 g/day orally in morning for 4 weeks ↓ TC (p = 0.028), LDL (p = 0.028), VLDL (p = 0.046), TG (p = 0.046) 137

randomized study applied on 15 obese
patients

IN enriched cookies for 1 month ↓ TC and LDL significantly 138

randomized, controlled study applied
on 30 obese Mexican women

5 g/day for 3 months ↓ TC, TC, LDL, and blood glucose level significantly 139

randomized, placebo controlled trial
applied on 24 diabetic women

10 g/day for 8 weeks ↓ FBS (8.5%), HbA1c (10.4%), TC (12.9%), TG (23.6%), LDL
(35.3%), LDL/HDL ratio (16.25%), and TC/HDL ratio (25.2%),
and ↑ HDL (19.9%)

140

randomized, controlled trial applied
on 25 diabetic women

10 g/day for 4 weeks ↓ TC, insulin, and blood glucose level 141

randomized, controlled trial applied
on 10 diabetic patients

30 g/day for 9−18 weeks ↓ BFI, FBG, and insulin 142

randomized, controlled trial applied
on 25 diabetic women

10 g/day for 8 weeks ↓ FBG (9.4%), HbA1c (8.4%), TC (14.1%), LDL (21.7%), TC/HDL
ratio (20.7%), and LDL/HDL ratio (27.5%)

143

randomized, controlled trial applied
on 14 obese men

high fat milkshake containing 24 g of IN
one time

↑ fat oxidation, ↓ blood glucose, and insulin; no effects on TG free
glycerol and satiety hormones GLP-1

132

randomized, controlled trial applied
on 51 obese patients

16 g/day for 3 months ↓ FBG, insulin, HbA1c, TC, LDL, and TG 144

randomized, placebo controlled,
double blind applied on study 42
obese patients

10 g of IN plus 10 g of resistant
maltodextrin daily in 400 mL of milk
for 12 weeks

↓ TC, TG, and LDL 145

randomized, controlled trial applied
on 14 obese men

high fat milkshake with 24 g of
fermentable IN

↓ fat oxidation and ↑ FFA .146

in vivo Balb/c mice diet containing 5% IN for 3 weeks ↓ TC and TG 147
rats FRD supplemented with IN

(10 g/100 g) for 4 weeks
↓ blood pressure and TG 148

albino rats FRD supplemented with 0.174 g/100 g
body weight

↓ TC, TG, LDL, serum glucose, and insulin level 8

piglets diet supplemented with 2% IN for
12 days

↓ TC and ↑ IgA and IgG concentrations 149

hyperlipidemic hamsters combination of IN and Fibersol-2 orally
at 864, 1727, or 2591 mg/kg/day for
9 weeks

↓ TC, TG, LDL, LDL/HDL ratio; hepatic TC and TG levels in a dose
dependent manner

150

rats diet containing 5% fat with 5% 5% IN for
28 days

↓ TC and TG 151

diabetic rats 2.5, 5, or 10 g/kg daily for 8 weeks ↓ blood glucose, insulin, TC, TG, and NEFA in a dose dependent
manner

152

C57BL/6J mice HF/HS diet supplemented with IN (9%)
for 4 weeks

↓ TC and fecal cholesterol and bile acid excretion 153

Syrian hamsters HFD containing 20% IN for 3 weeks ↓ TC (24%), TG (34%), and LDL (29%); ↑ fecal excretion of total fat,
TG, and bile acids

154

Sprague−Dawley rats HFD containing IN (8% w/w) ↓ TC, TG, and LDL 155
C57BL/6 pregnant female mice HF/HS diet plus 1.67 or 3.33 g/kg/day

orally for 4 weeks
↓ TC, TG, LDL, blood glucose level, and insulin level 156

diabetic female rats oral administration of 10 mg/kg daily for
2 weeks

↓ TC, TG, LDL, serum glucose, and insulin level 157

aFRD, fructose-rich diet; HFD, high fat diet; HF/HS, high fat/high sucrose; NEFA, nonesterified fatty acid; HbA1c, glycosylated hemoglobin; TC,
total cholesterol; TG, triglycerides; HDL, high density lipoprotein; LDL, low density lipoprotein; V-LDL, very low density lipoprotein; BFI, body
fat index; FFA, free fatty acid.
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